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Abstract. It is shown how a renormalized perturbation series can be defined for a
theory with strictly local, non-polynomial, interacting Lagrangian

so as to preserve locality at every order.

1. Introduction

In Ref. [1] an inductive construction of the perturbation series for
polynomial Lagrangians was given. It was shown that, given a Wick
polynomial J2?(x) in a free field A(x) one can construct (by induction on n)
the chronological products

which generate the perturbation series of a theory whose interaction
Lagrangian reduces to j£?(x) in the first order. In this note we show how
to extend this method to the case when JS?(x) is no longer a Wick poly-
nomial but an entire function in the free field, denoted

*<*>= Σ t,
r=0 ' '

Such an entire function is still a strictly localized field in the sense of
Jaffe [2] provided the coefficients tr do not grow too fast; in fact we shall
restrict ourselves to a special class of theories in which

\t,\<EMrrλr (2)
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where 0 < / < \. Under such conditions the two point function

(Ω,J5f(x)«Sf(0)Ω)= \e'il

is given by

where ρr(p) is the r-particle phase space and, for r ̂  2, is bounded by

C r D 2 ( r ~ 2 ) « Λ ^ / r 2 ( r - 2 ) / _1_

- - hence ^ *& expUπp|

As a consequence ρ(p) can be integrated with test functions decreasing

I -\ 1 1 3
like exp\ — A \ p \ σ ) where — > -̂  - -, i.e. σ < -- — λ.

(J ~2 λ ^

Such functions may have Fourier transforms with compact support
only if σ > l . Hence the condition λ<\ ensures the strict locality of
c£?(x). In the inductive construction of the perturbation series, we wish
to preserve this strict locality, i.e. to satisfy the causal factorization
property of the chronological products. For detailed information
regarding generalized functions, see [2—6].

2. Induction Hypothesis

Just as in the polynomial case, it is useful to introduce the local fields

r s s i

and to define chronological products for all the ̂ (r). These will be denoted
Tr(X) where X stands for (x1,..., xv) e IR4v and r = (r1, ..., rv) is a multi-
integer. These notations are the same as in Ref. [1] and will not be further
explained. In our induction hypothesis we assume that the Tr(X) have
been constructed for all X with \X\ g n — \ and satisfy

(4)
7 s\

Here the summation runs over all positive multi-integers s = (s1? . . .,s v)
(AΓ= 1, . . . , v); :A(X)S: means :A(xiy

i...A(x^Sv: and as usual

5 !=[]( 5 7 ! ) Tne tr(X) = (Ω,Tr(X)Ω) are translationally invariant
j = ι

generalized functions which satisfy

. (5)
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Here M|X) and £)X| are constants depending only on \X\ and

σ,A,P). (6)

Here α runs over all multi-indices; The positive constants P, 4, σ depend
only on |X"| (and not on r or α) and

1 < σ < I - λ . (7)

We also make the same assumption for the antichronological products
(see [1]) denoted

The tr(X) are supposed to satisfy exactly the same inequalities (5), (6) as
the tr(X\ In the following Tr*(X) and t r * ( x ) stand for Tr(X) or T(X) and
for tr(X) or tr(X).

3. Going from n—lton: First Step

Our first step in showing that the inductive construction extends the
property (5) to the case \X\ = n is to show that

(Ω, T r * s ( X ) T*(X')Ω) (where \X\ + \X'\ = n)

satisfies a condition of the type (5). More generally let

X = (x 1 , . . . ,x v ), X' = (x' l 5 . . . ,x ' κ )

with v and κ rg n — 1, r = (ι\ , . . . , rv), s = (s1 , . . . , sκ) two multi-indices. Then

( Ω , T r * ( X ) T * ( X ' ) Ω )

V V f * m r Γ Y Ί (Ω,:A(XY::A(X'?:Ω)
= L L tr+a(X)is + b(X) - ΓVΊ - (θ)

1 = 0 α , b α ! D !

|α| = |b| = Z

It is easy to see (by "separating the points" in :A(X)a: and \A(X')b'] that

-^—trla(X)tslb(X') (Ω, :A(X)a: : A ( X ' ) b : Ω) is the sum of /! Terms,

each of which is of the form

tr*a(X)ts*b(X')ll(Ω,A(Xu(j})A(X'v(i})Ω). (9)
a\b\

Here u is a map from ( 1 , . . . , / ) into (1 , . . . , v) taking exactly α^ times the
value) for each7 = 1,..., v; u is a map from ( 1 , . . . , / ) into (1,. . . , κ) taking
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bj times the value j for each j = 1, . . . , κ. To study this quantity we use the
variables

ξj = Xj — xv (j = 1, . . . , v — 1. Conventionally we also introduce ξv = 0)

η = xγ - x'κ .

If we integrate (9) with a test function f ( ξ , ξ', η) we obtain

^ -Itr*a(ξ)t5*b(?)ψ(ξ,ξ')dξdξ'9 (10)
albl

ψ(ξ9ξ')=$f(ξ9ξ'9η)dηexp-i Σ ^P/,+ Σ
j = ι

d4Pδ(p- Σ Pj) Π δ(pϊ-m2)θ(p»)d*Pj. (11)
\ j = l / 7 = 1

Here

Pij= Σ Pί» PJ,= Σ Pr
u(0=; y(0 = j

and we recall that ξv = ξ'κ = 0. We also denote

According to the induction hypothesis, there are positive constants
C, P, β, σ, L, F independent of r, s, α, £>, w, ϋ (i.e., depending only on n)
such that the modulus of (10) is bounded by

F

albl

X C |α | + l / J | sup(l + ξ\)p (1 + \ξ')Q |αΓσ | α | I/^Γ σ i

But _ α ! j8 !

where M - \y\ + |μ| + 21 - 1 and
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It is straightforward to verify (see e.g. a similar calculation in [1])
that there is a universal constant A such that

(The case / = 0 is trivial.) The modulus of (10) is bounded by

a\
,

α !

y ! ( α - y ) ! μl(β-μ)l

-.i + . V l -

We note the following inequalities:
1. if x is a positive real number

(13)

2. let α l 5 . . . , αN be integers ^0 with α = ω. Then

Σ α !

so that
/ )

V 1 ^ Nω — - < Nω

α α !
|α| = co

^ Nσ ωασ α (all σ > 0) .
7 = 1

By using these inequalities it is easy to verify that there are constants

J3v + κ, Lv + κ, C'v + κ depending on v -hκ but independent of r, s, α, i>, u, i;, /,
such that

1

U(|s| + Z)

and

y ξ,ξ'η
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As a consequence we have (remembering that there are / ! terms such
as (9))

,f (Ω, Tr*(X) T*(X')Ω) f ( ξ , ξ'9 η) dξ dξ' dη\

where F9 B'v + κ and Lv + κ are constants independent of r and s (and /).
If 3 — 2/1 — 2σ>0, there are constants R and U depending on v -f κ but
independent of r and s such that

I f (Ω, T,* (X) T* (X'} Ω) f(ξ, ξ', η) dξ dξ' dη\

, σ, [/, P + β + 5) .

Moreover, by iterating this process we reach the following conclusion :
Let X = xl9...9xn and let I l 9 . . . ,/ v be a partition of X into non empty
subsets such that each of them contains at most n—1 points. Let
r = ( r ί , ..., rn) be a multi-integer and r |/ 1 ? . . . ,r |/ v be its restriction to
71? . . . ,/ v in the obvious sense. There exist constants Fw, Kπ, l/π and Pn

depending only on n, and not on r (or v) such that

|f(fi,Trf7^Tr^
^F Λ K/' | r | A H N ( f , σ , U n 9 P n ) .

(Here <^ - x j - χn.)
Let X = (x1? ...,xj, 7 = (x1? . . . ,x π _ 1 ) . According to the procedure

of [1] we define

(15)

(16)

dr(Y n)= X (-lfl(ί2,[Γ r | { J > π )(y,n),f r | /(/)]Ω) (17)
/ u j = y
/ n J = 0

7 Φ 0

with obvious notations. It follows that

,Un,Pn). (18)

We note that the preceding estimates actually serve to define the
operator- valued distributions of the form
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where the gr(X) are translationally invariant generalized functions
satisfying :

I J gr(X) f(X) dX\ ^ BC^ \r\λ^ N(f, σ, A, P)

(where B, C, A, P, σ may depend on G but not on r, and 1 < σ < f — λ).
(Note that, in particular, we could take all but a finite number of the

gr(X) to be identically 0.) We also denote

, (20)

. (21)
\s\^N S'

Then estimates identical to the preceding show that, if G, //,..., K are p
objects similar to G

lim f G(N^(Xl)H(N2](X2) ... K(N»\XP)Ω
-»

exists in the sense of the strong topology of the Hubert space provided
some N(f, σ, A, P} is finite. As a consequence the Gr(X) define operator
valued generalized functions on a dense domain. On this domain they
can be freely multiplied. The limiting procedure shows that these opera-
tors are generalized functions in the Jaffe class, and that the considerations
of locality, supports etc. usual in the polynomial case also apply to them.

As a consequence by the same arguments as in [1], the support of
Dr(Y, n) (hence of dr(Y, n)) is contained in Γ+ uΓ~,

Γ+={xί9...9xn:Xj-xneV + for all 7}= -Γ~

and the next problem is to split D(Y,ri) into two pieces with supports
Γ+ and Γ~ , by splitting each dr(Y,n). In so doing we must be able to have
each of the two pieces satisfy an inequality of the type (1 8). We follow
exactly the same procedure as in the polynomial case (see [1]).

4. Second Step : The Splitting Operation

Let τ > 0 be an arbitrarily small number. Then there exists a function
III (indeed an infinity of such functions) with the following properties:

1. Ill is defined over ]RN and is °̂° everywhere except at the origin.
2. UI(ρξ) = Ul(ξ) for every ξ Φ 0 in 1RN and every ρ > 0.
3. 0 ̂  III ̂  1 III takes the value 1 (resp. the value 0) in a neigh-

bourhood of Γ+-{0} (resp. in a neighbourhood of Γ
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4. There exists a constant C such that for all ξ φ 0 and all α,

To construct such a function, one first constructs it on the unit
sphere and then extends it by homogeneity to the whole of IR^~{0}.

According to (18), dr is a continuous linear functional on the Banach
space of ^^ functions / such that N(f, σ, l/π, Pn) < oo. We plan to show
that, provided τ has been chosen small enough, there exist new constants
Uή,UZ,Rn,Sn such that

(i) if / is °̂° with Daf(ty - 0 for all α and N(f, σ - τ, I/;, PJ < oo,
then III / is a ̂  ̂  function such that

N(ffl/, σ, [/„, Pn) g RnN(/, σ - τ, [/;, PJ .

(ii) There exists an operator W on °̂° functions / satisfying
N(/, σ - 2τ, (7 ,̂ Pπ) < oo such that Wf is again a °̂° function and:

a) N(Wf, σ - τ, C/;, Pn) ̂  5nN(/5 σ - 2τ, ̂ , Pn).
b) Dα(P1//)(0)-0 for all α (for any/).
c) If Dα/(0) - 0 for all α then PF/ - /.
From this it will follow that:

N(ΏIWf,σ9Un,Pn)^RnSnN(f,σ-2τ9Uί,Pn)

which will enable us to define the advanced "function" ar(Y; n) by

with

This will yield a set of tr(X) for \X\ = n again satisfying

-2τ,^+ 1,PJ. (22)

Proo/ of (i). We assume that τ has been chosen so that

0 < τ < -̂ — -. Suppose / is a °̂° function with £>α/(0) - 0 for all α and

JV(/,σ-τ, ί/;,Pπ)^l, where C/ ^l. (Note that σ-τ >τ + 1 > 1.) We
have:

Hence, for |ξ| < 1,

-τ)( |α | + ω)^-|ξ|ω. (23)
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For ς φ O

\D«(Ulf)(ξ)\ =
oil

s Σ -C-

For \ξ\ g 1, by (23), this is smaller than

While, for \ξ\^ 1,

<
α !

-C|7r< α - y

α C(2N)M

|-ω) τ ( | α |~ω )ω ( σ" τ~1 ) ω

r|σ|α|

Finally, we see that there is a constant C1 ? independent of α and 17̂ , such
that

+ ̂ ^

Hence it is obviously possible to choose If" sufficiently small so that the
series

converges to a constant Rn. This proves (i).
Proof of (ii). To prove (ii) we choose a °̂° function w over 1RA such

that w(ξ) - 1 if \ξ\ g i, w(ξ) = 0 if |ξ| ̂  1 and, for all α

K|a|(1 + i)|a| (24)

(25)

We define the operator W by

a!

Here {εfc} is a decreasing sequence of positive real numbers < 1 satisfying:

εk = ε f c ~ ( f f ~ 2 t ~ 1 ) for all integers fc>0. (26)
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Here ε is a real number >0.

\β\/

^Σ Σ ε

β y

The sum of terms for which \β\ > α| is majorized by:

Σ Σ {β(lfl
β 7^«

V^

m = 0

If U'n is small enough, this is bounded by

const U'W 2 ( σ~2 τ ) | α | |α| ( σ~ i τ ) |α | +1 .

The sum of terms for which |α ^ \β\ is majorized by

Σ Σ

β
|AI<I«I

If U'n^ 1, as we shall suppose, this is bounded by

i2N)3|'l|a|"-')1"
y ί k l g W

Hence, for sufficiently small l^, the series

is majorized by a finite constant, independent of /. This proves (ii).



Non Polynomial Lagrangians 191

Remark 1 . Note that the same splitting operation has been used to
define the ar(Y; n) for all r. This operation depends on n.

Remark 2. If / is #°° and verifies: Dyf(0) = Q for all α, and
N(/,σ-τ, ί/;,Pπ)< oo, the quantity <dr, III/> = <αΓ,/> does not
depend on any particular choice of III. Indeed, let III' be another auxiliary
function having the properties 1 to 4 required from III. Let {fk} be a
sequence of °̂° functions such that N(f — fk, σ — τ, l^',Pπ)->0 as /c->oo,
and that each fk vanishes in a neighbourhood of 0. Then

<£/,., ffl/> = lim <dr, III/*) = lim <dr, IIΓ/t> = <dr, III'/) .
fc-> QO fc-* OO

However, the splitting operation depends on the particular choice of
the operator W, i.e. on the particular choice of the auxiliary function w
and of the sequence C|α | .

Remark 3: ambiguity of the definition of the ar; Lorentz inυariance.
To simplify further consideration let σ' = σ — 2τ and let W σ, be the class
of generalized functions G such that there exist constants K and V
(depending on G) such that, for all /,

Let C be a generalized function in the class ^'σ, with

having support in Γ + uΓ~. Suppose there are two pairs of generalized
functions F1

±,F2

± in the class ^'σ,, with

ί support FJ

±CΓ±

Then Fί

+ — F2

+ = Fί ~ — F2~ is a generalized function in ^'σ,, with
support at the origin. The Fourier transform of a member G of W σ, with
support at the origin is an entire function (over complex momentum
space) G such that

j_
\G(p + iq)\ < const exp(5|p + iq\σ')

and conversely (the constants here depend on G). The space %>' σ, is
invariant under the real Lorentz group and the subspace of its elements
having support at 0 is also Lorentz invariant. We denote this subspace
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Suppose C is invariant under the real Lorentz group and C = F+ — F~
with (support F±)cΓ± and F± G ^ f

σ > . Denote, for each generalized
function G, and each A e L\,

<AG,fy = <G,fAy where fΛ(ξ) = f ( Λ ξ ]

(i.e. formally (ΛG) (ξ) = G(A~l ξ)\ Clearly the mapping (A, G)-*ΛG is a
continuous (and even ^^} map of L\ x ^'σ, into Wσ, (the latter being
equipped with the topology described previously, i.e. dual of a Frechet).
Let us denote

E(A) = ΛF+ -F+ = AF~ -F~ .

This is an element of ^'£. It satisfies

ME(Λ) = E(MΛ) - E(M) (27)

for all A and M in L+. From this we wish to deduce the existence of an
element £0 of #'£ such that 1 :

£(/!) = Λ£0-£0 (28)

Then, denoting G± = F± — E0 we would find

C = G + - G ~ , AG±=G±, (29)

i.e. we would have obtained a Lorentz invariant splitting of C. However,
before doing this we shall require C to possess a property common to all
the d r ( Y ; n\ namely that its Fourier transform should vanish in a real
region containing all Jost points. From this it follows that the Fourier
transforms F± of F± are two branches of the same analytic H(p + iq),
holomorphic in a domain which is invariant under the whole complex
Lorentz group L + (<C). Furthermore the Fourier transform E(A) of
E(A) is the restriction to the reals of the function.

E(Λ, p + iq) = H(Λ, p + iq) - H(p + ίq)

which is entire in p -f- iq and in A 6 L+ (<C). It can be shown that, for every
complex A, this entire function of p + iq is still of order σ'~l. As a con-
sequence, if we come back to ^-space, we see that E(A) can be extended
to an entire function of A e L+(C) with values in #'£. Note also that, if
G G #'£, AG is also in this subspace for every A e L+ (C) since, for real Λ,
AG is the Fourier transform of G(Λp). Complexifying A and p in the
latter expression again yields an entire function of order σ'~l which

1 The following considerations are adapted from a paper in preparation in collabo-
ration with R. Stora whom we thank for permission to include them here.
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depends holomorphically on A. Hence A G is an entire function of Λ with
values in ^"°,. Let (9 denote one of the maximal compact subgroups of
L+ (C) (for example the subgroup of all complex Lorentz transformations
A such that A0j and AJO are pure imaginary for j = 1, 2, 3, all other /l^v

being real) and let a A denote the invariant measure on & normalized so
that

Set
E0 = - J E(M) dM . (30)

&

Since (27) obviously extends to all A and M in L+((C) by analytic con-
tinuation,

= j [E(Λ) + ΛE(M) - E(M)]
c?

- J [-E(M) + E(ΛM)]dM = 0.

The last integral vanishes because it is an entire function of A taking the
value 0 when A e Φ (by invariance of dM). Hence our problem is solved
and, denoting G± =F± — E0, there are constants K and F, depending
only on Un and Pπ such that

This shows that, if the T(X) have been defined in a Lorentz invariant way
for \X\^n—l9 they can be defined in a Lorentz invariant way for \X\ = n
(while still verifying inequalities of the type (22)).

Conclusion

It has been shown here that a renormalized perturbation series can
be defined for a strictly localizable but non-polynomial Lagrangian. The
requirements of locality and Lorentz invariance are fulfilled. The exist-
ence of an adiabatic limit for Green functions can be proved (for theories
with non-zero masses) in the same way as in the polynomial case [1].
However, our treatment is preliminary since it does not touch on the
question of minimality studied in Ref. [6]. Moreover the existence of
a strong adiabatic limit remains to be proved.
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