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Abstract. The paper considers the possibility of constructing ultralocal theories,
whose Hamiltonians contain no gradient terms and are therefore diagonal in position
space, entirely in terms of currents with an equal time current algebra replacing the
canonical commutation relations. It is shown that the free current theory can be defined
in terms of a certain representation of the current algebra related to the group, SL(2, R).
This representation is then constructed by using certain results of Araki and in the process
a new infinitely divisible state on the universal covering group of SL(2, R) is displayed.
An ultralocal free theory can also be constructed for the canonical fields, and its relation
to the free current theory is shown to involve a certain renormalization procedure
reminiscent of the thermodynamic limit.

1. Introduction

In the quantum theory for finite degrees of freedom, it has long been
known [1] that all irreducible representations of the quantum mechanical
commutation relations, [pk, qj\ = — iδkj (kj = 1,2,..., N), are unitarily
equivalent1. Thus, regardless of the particular Hamiltonian being con-

sidered, one may use the standard representation: pk-»-r , k kdxk

on L2(RN,dx). In field theory with infinite degrees of freedom, there
are many inequivalent irreducible representations of the canonical
commutation relations (CCR) [2],

[π(x), φ(yy] = - iδ(x - y) (*, yeRs], (1.1)

and it is generally expected that for each Hamiltonian, written in some
heuristic fashion in terms of these time-zero fields, one must choose the
appropriate representation so that the Hamiltonian can be defined as a
bona fide operator on the representation space.

* Research sponsored by the Air Force Office of Scientific Research under Contract
No. F 44020-71-C-0108 and Contract No. AF 49(638) 1545.

1 This result is rigorously true only for the Weyl form of the commutation relations.
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The Hamiltonian of a relativistic theory is usually taken to be of the
heuristic form,

\ J (π2(x) + μ2φ2(x) -f (Vφ - Fφ) (x) + W(ψ(x))) dx , (1.2)

with W a polynomial, for example. Several authors [3—6] have studied
quantum field theories whose Hamiltonians have the simpler form,

/4 = I j (n2(x) + μ202(x) + JF(ψ(x))) dx , (1.3)

and are thus diagonal in position space. The absence of gradient terms
leads one to expect that different regions of space will propagate in time
independently of each other and such models are accordingly called
ultralocal. Aside from the inherent mathematical interest in such models,
it is hoped that they may be useful in an alternate approach to constructive
field theory in which the gradient term, \ J (Vφ Vφ) (x) dx, rather than
^J W(φ(x))dx is taken as a perturbation.

The search for an appropriate representation of the CCR, expressed in
terms of π and φ, and for the ground state vector, in the representation
space, for an ultralocal Hamiltonian is the continuous analogue of the
corresponding problem expressed in terms of an infinite number of
qk's and pk's with a Hamiltonian of the form,

(1.4)

This discrete problem has been thoroughly investigated by Reed [7]
in the context of infinite tensor product (ITP) representations of the
CCR and its straightforward solution involves the replacement of H^
by a renormalized Hamiltonian,

#fc = 4- Σ (Pi + M2^2 + w(*ά - εw) (1-5)z k = ι

where εw is the ground state energy of \(p2 + μ2q2 + W(q)).
The ultralocal free canonical field theory with W = Q (for positive

mass μ) may also be constructed in a straightforward manner (see
Appendix A). If we denote the free canonical fields by φμ and πμ, then the
heuristic Hamiltonian,

(1.6)

is replaced by the rigorously defined renormalized Hamiltonian,

. (1.7)



Ultralocal Quantum Field Theory in Terms of Currents 171

When W does not vanish, however, it appears that no representation of
the CCR is appropriate for the ultralocal Hamiltonian, H% [5, 6, 8].
In order to allow for theories with "interaction", we therefore construct
our ultralocal models using currents in place of fields with an equal time
current algebra replacing the CCR.

The idea of using observable currents as the dynamical variables of a
physical theory in place of fields and of replacing the CCR by an equal
time current algebra,

Uj(χ), ΛOO] = i Σ cjkMx) δ(χ - y) , (1.8)
1=1

has been suggested by several authors [9-12]. The basic method is to
express the Hamiltonian in terms of the currents and then to look for
the representation of the current algebra appropriate to the particular
Hamiltonian under consideration. In this paper we construct the ultra-
local free theory for the currents S(x) and T(x), defined heuristically as

.
and

T(x) = i(φ(x) π(x) + π(x) φ(x)) (1.9b)

and then relate it to the ultralocal free canonical field theory. In a suc-
ceeding paper, we construct ultralocal "interacting" theories for these
same currents. It is hoped that this work will lead to a better understanding
of both ultralocality and current theories.

In Section 2, the (5, T) current algebra is studied and it is shown that
the free current theory is closely connected to the representations of a
larger current algebra related to the Lie group, SL(2, R). Section 3
is basically a review of Araki's work [13] on the construction of repre-
sentations of current algebras in terms of generating functional and
the relation of "ultralocal generating functionals" to cocycles on the
corresponding Lie groups. Section 4 consists of a construction of the
appropriate cocycle for SL(2, R) and a calculation of the corresponding
generating functional which defines the ultralocal free current theory.
In Section 5, the ultralocal free current, Sμ(x\ is related to </>μ(jt), and
(1.9 a) is made rigorous by means of a peculiar kind of renormalization
reminiscent of a thermodynamic limit in momentum space. There are
two appendices : Appendix A concerns the ultralocal free canonical field
theory while Appendix B contains relevant material on SL(2, R) and
its universal covering group. Throughout the paper, we will be working
in 5-dimensional position space and, unless otherwise stated, all our
results are independent of s.
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2. The Current Algebra

The choice of the two currents defined by (1.9) as basic variables
has been proposed previously [10, 14] and it seems to be appropriate
for a neutral scalar boson theory. We proceed to determine, by formal
application of the CCR, the current commutation relations and the form
of the Hamiltonian density as a function of these currents. The current
theories themselves use the results of these calculations as a starting
point and are defined independently of the existence of the corresponding
canonical field theories.

The current algebra, calculated in this manner, is easily seen to be:

(lib)

If we define S(f)= J S(x)f(x)dx and T(g)= j T(x)g(x)dx, then
<%(f) = exp(iS(/)) and i^(g) = exp(z'T(#)) are to be unitary operators for
real valued / and g in some test function space. The multiplication rules
for the fy and i^ follow formally from the smeared current commutation
relations,

(2.2a)

(2.2b)

by the use of the equation,

exYe~x= £ ~(aάX)"Y, (2.3)
ιι = 0 n

where (aάX) Y=[X, 7]. The calculation yields that

(2.4a)

(14b)

). (14c)

These results may be expressed by saying that the (S, T) current algebra
is related to the Lie algebra with two self adjoint generators, S and T,
satisfying [T, 5] = - iS and [S, S] = 0 = [T, T], while the exponentiated
smeared current algebra is related to the group F = {(z, w)|z, weR}
with multiplication law

(z1; W l) (z2, w2) - (zj 4- ^W lz2, Wl + w2) . (2.5)

In order to express (1.3) in terms of our currents, we first assume
that W is an even function _and replace μ2φ2(x)+ W(φ(x)) by V(S(x)),
where V(λ) = 4μ2λ+ W(]/4λ), and then replace π2(x) by the peculiar
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combination (TS~1T)(x). We thus consider ultralocal Hamiltonians
of the form

Hv = \ j ((TS-1 T) (x) + V(S(x))} dx . (2.6)

The choice of (TS'1 T) (x) to replace π2(x) has also been suggested by
Sharp [10]; it is heuristically justified by considering the commutation
relations of the free Hamiltonian,

Hμ = i J ((TS-1 T) (x) + 4μ2S(x)) dx , (2.7)

with S(x) and T(x) as we do immediately below. The results of Sections 4
and 5 yield a more acceptable justification.

Using (2.1), we formally calculate that

(2.8a)
1 T) (x) - 4μ2S(x)) . (2.8b)

An analogous calculation using (1.1) yields that

[H+ , W (x)] = - ί(i(ψ(x) π(x) + π(x) φ(x))) , (2.9a)

π(x) + π(x) φ(x))] = ~i(π2(x) - μ2φ2(x)) . (2.9b)

The obvious similarity between (2.8) and (2.9) indicates that at least on this
algebraic level (TS"1 T) (x) is a reasonable substitute for π2(x). That this
substitution is a priori not totally reasonable can be seen by substituting
(1.9) into (TS"1 T) (x) and then using (1.1). The result of that calculation
is that ( T S ~ ί T ) ( x ) = π2(x) + | <52(0) φ~2(x), which would seem to
indicate that (TS~1T)(x)-^ δ 2 ( 0 ) S ~ 1 ( x ) should be chosen to replace
π2(x) in the ultralocal Hamiltonian. It is one of the implicit results of
this paper that in fact ( T S ~ ί T ) ( x ) is the proper substitution for π2(x)
and that (2.7) is the correct replacement for (1.6).

We next note the important fact that if we consider the free
Hamiltonian density,

Hμ(x) = ̂ ((TS^T] (x) + 4μ2S(x)) , (2.10)

and include it together with S(x) and T(x), we obtain a three current,
current algebra with the commutation relations:

[T(x), SGO] = ~ iδ(x - y) S(x) , (2. 11 a)

[Hμ(x), S(y)-] = - iδ(x - y) T(x) , (2.1 Ib)

[ίfμ(x), TOO] = - iδ(x - y} (Hμ(x) - 4μ2S(x)) . (2. lie)

The search for the ultralocal free current theory can thus be interpreted as
a search for the proper representation of this three current, current algebra.
When an interaction term is added to the Hamiltonian, the currents
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S(x\ T(x\ and Hv(x) no longer form a closed algebra; the completely
algebraic approach to the problem is then no longer applicable.

In these algebraic terms, it is also possible to see why an ambiguity
arises in the choice of the term to replace π2(jt). If we consider the three
dimensional Lie algebra defined by,

[T,S] = -iS, [Lμ,S] = -iT, [Lμ,T] = -f(Lμ-4μ2S), (2.12)

we see that a formal representation is obtained by choosing for arbitrary
real r,

Lμ = ±(p2 + rq~2 + μ2q2) , (2.13)

with p and q the usual canonical variables of quantum mechanics2. The
value r = 0 corresponds to the CCR choice of π2(x) in ίζf while the value
r = 3/4 corresponds to the choice of ( T S ~ i T ) ( x ) in Hμ for the current
theories.

Before concluding this section and beginning the rigorous mathemati-
cal discussions of the next, we determine the Lie algebra defined by the
S, T and Lμ above. This is most easily accomplished by considering the
skew adjoint basis defined by

A=~Llί, B = iT, C=-~Lμ-i2μS. (2.14)

The commutation relations of this basis are

[>4,B] = C, [B,C] = -A, IC,A] = B. (2.15)

These are the commutation relations of the Lie algebra of SO(2, 1),
the proper three dimensional Lorentz group, or equivalently of the Lie
algebra of SL(2, R), the group of 2 x 2 real matrices of determinant one
(see Appendix B). Considered as S0(2, 1), A is the generator of spatial
rotations while B and C are the generators of pure Lorentz boosts;
iS = (A — C)/2μ generates the one parameter group of Lorentz transfor-
mations leaving a lightlike particle invariant (the little group of the
zero-mass particle).

We may thus consider the skew adjoint current algebra with basis:

A(x) = ~- Hμ(x) , B(x) = ϊ T(x) , C(jc) = ~~ Hμ(x) - i2μS(x) .

The search for the ultralocal free (S, T) current theory is thus a search for
the appropriate representation of this SL(2, R) current algebra.

2 It follows from Theorem B.4 and the discussion preceding Proposition 20 that
on L2((0, oo), dq) this is a valid representation when r ̂  — ̂ .
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3. Current Algebra Representations

In this section, G will always be a finite dimensional connected Lie
group with Lie algebra X. We denote elements of G by g, elements of
X by X, and the identity of G by id. If one fixes a basis, (Xt) (i — 1,..., n\ of
elements of X, the structure constants of X are the real numbers, cίjk,

n

satisfying [ X ί , X j ' ] = — £ Cijk^k- We also consider the (self-adjoint)
Λ = I n

generators, Jk = — iXk, satisfying [Jί? JJ = i £ cijkJk.
k=l

Given a continuous unitary representation 17, of G, on a Hubert space
ft, a representation of the Lie algebra is obtained by defining for X e X,

A.
dt t = Γ> \i=l

/ . \
U(Q\p(tX)) or equivalently U MΓ

1 d

17 exp iί X Γf
\ \ i=l

A (physical) current algebra is a finite set of objects, (J^x)) (i = 1, . . ., n),
satisfying the commutation relations, (1.8), where cijk are the structure
constants of some Lie algebra. To give a rigorous mathematical de-
finition of this notion requires some preliminary definitions [13].

We define G*, the current group of G, as the group of bounded,
measurable3, G-valued functions on Rs of compact support equipped
with the pointwise group operations of G. A G-valued function, g*(x),
is bounded if its range is contained in a compact subset of G its support
is defined as {x #*(jc)Φid}. Analogously, we define X*, the current
algebra of X, as the (infinite dimensional) Lie algebra consisting of the
set of bounded measurable X-valued functions on Rs of compact support
equipped with the pointwise Lie algebra operations of X. If X* e X*,
we denote by exppί*) that element of G* defined by (exp(X*))(jt)

= exp(Ar*(*))
A unitary representation, % of G* on a Hubert space § is said to be

continuous if, for all X*eX*, ^(exp(ίX*)) is weakly (or equivalently,
strongly) continuous in t. Given such a continuous unitary representation

of G*, we define <%(X*), for X* e X*, as
d

Given
dt

a basis for X as above, we define for / a bounded measurable function
on Rs of compact support, /k(f)= — i%(X*) where X* is taken to be
X*(x) = f ( x ) Xk = if(x) Jk. / k ( f ) is then a formal representation of the
smeared (physical) current algebra with / k ( f ) = $ J k ( x ) f ( x ) d x . We will
not discuss questions concerning the rigorous validity of the current
commutation relations for such representations (see [14]).

3 In this context, measurable refers to the Borel sets in Rs and to the σ-algebra of
sets generated by the compacts in G.
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If U is a representation of G on ft, then ψ e ft is said to be cyclic
(with respect to U) if {U(g)ψ\ge G} is a total set in ft4. A similar de-
finition holds for a representation of G*. A state on G is a complex valued
continuous function, E(g\ with £(id) = 1, such that for any positive integer
N and any choice of N elements, (gl9 ...,gN), in G the N x N matrix,
E(g^1gj), is positive semidefinite [15]. The importance of states is due
to the following well known fact.

Theorem 1. E(g) is a state on G if and only if there exists a contin-
uous unitary representation, U(g), of G on a Hubert space ft, with cyclic
vector Ω, such that E(g) = <Ω, U(g) Ω> «.,.> is the inner product in ft). //
([/', ft', Ω') is another triple satisfying these conclusions, then there exists
a unitary operator W: ft'->ft such that WΩf = Ω and U(g) = WU'(g) W~l

for all g e G.

For the current group, the object analogous to a state is a generating
functional.

Definition 2. A generating functional on G* is a complex valued func-
tion on G* satisfying:

(i) £*(id*) - 1, where (id*) (x) - id for all x e Rs,
(ii) E*(gf Gxp(tX*)g%) is continuous in t for all X * e X * and all

gf, qfe e G* and
(iii) the matrix E*(gf~1g:f) is positive semidefinite for all N and all

Λ* n* (= G*015 • • • ? UN E ̂

In analogy with Theorem 1, and proven in a basically identical
manner, we have

Theorem 3. E* is a generating functional on G* if and only if there
exists a continuous unitary representation, % of G* on a Hilbert space §
with cyclic vector Ω such that E*(g*) = <Ω, Φ(0*) Ω>.

// (̂ ', §', Ω') is another triple satisfying these conclusions, then
there exists a unitary operator W:ξ>'-+ξ> such that WΩ' = Ω and
W(g*) = WW(g*) W~l for all g* e G*.

The moral of this theorem is that one can implicitly construct contin-
uous unitary representations of the current group, G*, and thus self
adjoint (formal) representations, /k(f\ of the current algebra by deter-
mining generating functionals on G*. This is quite useful in that the
latter is often a simpler task than the former. In addition we note that
many other properties of the representation can be easily stated in terms
of its generating functional - for example, symmetry properties.

If g*eG* and αejR s , we define #*eG* as g%(x) = g*(x — a). A
generating functional, £*, is said to be translation invariant in case
E*(g*) = E*(g*) for all g* e G* and all αe£ s. If ReSO(s) and αe# s,

4 A total set in a Hilbert space is a set of vectors whose finite linear combinations,
with arbitrary complex coefficients, are dense.
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we define g*Rta)(x) = g*(R~1(x — «)) and we say that £* is Euclidean
invariant in case E*(g*) = E*(g£R α)) for all (Λ, α) e E(s), the Euclidean
group. The following theorem is then easily proven by standard methods.

Theorem 4. E* is Euclidean invariant if and only if there exists a
unitary representation, U(R, α), of E(s) on § such that U(R, a}Ω = Ω and
U(R, a) ®(g*) U((R, a)'1) = Φfofc,*)) for all (R, a) e E(s} and all g* ε G*.
(Here (%, §, Ω) is the triple associated with E* by Theorem 3.) In addition,
U(R, a) is a continuous representation of E(s) if and only if E*(g*h*R9a))
is continuous in (ΊR, a) for all g*, h* e G*.

In the models we are concerned with, the cyclic vector plays the same
role that the physical vacuum vector does in a Relativistic Quantum
Field Theory. Physical Euclidean invariance thus suggests that we
concentrate on Euclidean invariant (or at least translation invariant)
generating functionals. In addition, the form of ultralocal Hamiltonians
suggests that for such models, disjoint regions of space should be inde-
pendent. The proper notion of disjointness for generating functionals is
that of being factorizable [13, p. 365].

A generating functional is said to be factorizable iΐE*(gfg%) = £*(#*)
' E*(g*) whenever the supports of g\ and gξ are disjoint. Modulo certain
technical niceties, one may say that factorizable generating functionals
are always of the form E*(g*) — exp(Jdv(x) D(g*(x); *))[ 13, Theorem 5.1].
If we require translation invariance as well, this form reduces to
exp(JdjtD(g*(jc))), where D is some function on G. The following theorem
follows easily from the results of [13, pp. 380-381].

Theorem 5. Let D be a continuous complex valued function on G.
Then E*(g*) = Qxp(§ dxD(g*(x))) is a generating functional on G* if
and only if exp(αD(0)) is a state on G for all positive a. In that case, E* is
Euclidean invariant and factorizable, and E*(g*hfRfU}) is continuous as a
function of (/?, α) in the Euclidean group for all g*, h* e G*.

We mention that necessity is proven by considering elements of G*
which are identically equal to id outside a set of measure a and which are
constant inside that set. In accord with Theorem 5, we make the following

Definition 6. A state £ on G is said to be infinitely divisible if there
exists a continuous complex valued function, D(g), such that
E(g) = exp (£%)), and exp(α£>(#)) is a state on G for all a > 0. Any such D
will be said to determine E.

We now see that a search for the proper current algebra represen-
tations in which to define ultralocal Hamiltonians requires an investi-
gation of the infinitely divisible states on the corresponding group, G.
The classification of infinitely divisible states is accomplished most
easily by use of the following theorem due to Araki [13, Theorem 4.4].
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Theorem 7. D(g) determines an infinitely divisible state on G if and
only if there exists a continuous unitary representation, U(g), of G on
a Hubert spaced; a strongly continuous ^{-valued function, δ(g); and a con-
tinuous real valued function, P(g), such that the following three conditions
hold:

(i) U(g!) δ(g) = δ(g'g) - δ(g!) for all g, g' e G. (3.1)

(ii) P(g'g] - P(g'} - P(g) = Im^g''1), δfe)>Λ for all g, gf e G. (3.2)

(iii) D(g) = -K%), %)>* + iP(g). (3.3)

We may assume that (δ(g)} is a total set in ft, in which case, if (δf, U', ft')
also satisfy the hypotheses of the theorem, then there is a unitary operator
Py;ft'-*ft such that Wδ'(g) = δ(g) and U(g) = WUί(g)W~1.

This theorem suggests a definition as follows:
Definition 8. A triple, (δ, U, ft), consisting of a continuous unitary

representation, U(g), of G on a Hubert space, ft, and a strongly continuous
ft-valued function, δ, satisfying (3.1) for all g, g' e G is called a cocycle for G.

In a certain sense [16, Theorem 2.1] the classification of infinitely
divisible states reduces to the classification of cocycles. In particular,
the possibility of there existing different P(g)'s for the same cocycle is
largely answered by the following easily proven proposition.

Proposition 9. // (δ, U, ft) is a cocycle for G and Pk(g)(k = 1, 2) are
continuous real valued functions on G satisfying Pk(g'g) — Pk(g'} — Pk(g)
= Im <<5(0' ~1), <5(0)>Λ for all g, g' e G, then Pl (g) - P2(g) is a homomorphism
from G into R, the additive group of reals.

The classification problem for infinitely divisible states on abelian
groups has been completely solved [17]. In the case G = R, one obtains
the classical Levy-Khinchine formula of Probability Theory for infinitely
divisible characteristic functions [18]. In addition, Araki [13, Cor. 7.6]
has classified all the cocycles for any solvable Lie group; he also has
reduced the general problem to the case of semisimple (noncompact)
groups and irreducible representations, (U, ft). There seems to be very
little known for such groups [19], but in Section 4 we will construct a
nontrivial cocycle for an irreducible representation of SL(2,R), a
semisimple group. We will then be interested in the existence of a P(g)
for that cocycle. The following theorem suggests that in that case we
consider the universal covering group of SL(2,R), which is simply
connected as well as semisimple.

Theorem 10. Suppose G is semisimple, connected, and simply connected,
and (δ, U, ft) is a cocycle for G. Then there exists a unique continuous real
valued function, P(g), on G satisfying (3.2).
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Proof. LQtm(g1, g2] = InK^gf1), (5 (#2)>Λ. A simple calculation shows
that m is an additive multiplier [16] on G; i.e., m(glg29g3) + m(gl9g2)
= tf%ι,0203) + m(#2>03) τhen M(gί9g2) = exp(im(gί9g2)) is a (multi-
plicative) multiplier on G, and a well known theorem [20, p. 40] states
that all multipliers on such a group are trivial; i.e., M(0l5 g2) is given by
α(0ι#2) * (αteι))~1 ' (ffGfa))"1 f°r some continuous function α with values
on the unit circle in C. Since G is simply connected, we may define P(g)
by continuity to be the continuous function such that a(g) = exp(ιP(g)).
We then have the desired result.

The uniqueness of P(g) follows from Proposition 9 since a semisimple
group only has the trivial homomorphism into R. This is so because the
commutator subgroup of G (the subgroup generated by elements of the
form ghg~lh~l) is mapped into zero by any homomorphism into R,
and if G is semisimple, then G is equal to its commutator subgroup.
This completes the proof of the theorem.

In order to construct representations of the (5, T) current algebra
discussed in Section 2, we must consider the infinitely divisible states on
the group F defined by (2.5). Since F is a semidirect product, R© R,
and is therefore solvable, we can use Araki's results to obtain cocycles
for F. In this way, we obtain the following (incomplete)5 set of infinitely
divisible states on F:

Proposition 11. Let ft = L2(R, dλ) and let U(z, w) be the representation
of F on ft defined by

U(z, w) : ιp(λ)~*eizλewl2\p(ewλ) . (3.4)

Let Y = L1 (R, dλ) and suppose c(λ) is a measurable function on R satis-
fying

(ii) (C(A) — ew/2c(ewλ)) is a strongly continuous R-valued function
of w e R and

(iii) IΠI(C(A) c(ewλ)) is a stongly continuous Y-valued function ofweR.
We define

δc(z, w) = (eίzλew/2c(ewλ) - c(λ)) (3.5)
and

Pc(z9 w) - ew/2 f lm(eίzλc(λ) c(ewλ)) dλ . (3.6)

5 The incompleteness of this classification is due to the fact that we do not include
the cocycles corresponding to those representations of F in which C7(z, 0) = 1 for all z e R.
Such a cocycle yields D(z, w) = D0(w], where D0 satisfies the Levy-Khinchine formula.
The most general D(z, w) is then of the form D0(w) -f Dc(z, w), with Dc as given in Propo-
sition 11.
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Then (δc, U, ft, Pc) satisfy the conditions of Theorem 7 and we may obtain
the corresponding Dc(z, w) which determines an infinitely divisible state on F.

We note that if we choose c(λ) = d(λ)/λ* with d(λ) e C°° ([0, oo)),
+ oo ^χ

d(λ) = 0 for λ < 0, and j \d(λ)\2 —— < oo, then c satisfies requirements
A

(i), (ii), and (iii) above. In this case, we have

determining an infinitely divisible state on F. This choice of c yields a
cocycle for the irreducible subrepresentation U0, of 17, defined on
& 0 ΞΞL 2 ((0, oo), dλ)cΛ, in which the infinitesimal generator of U0(z, 0)
is positive.

4. The Free Theory Generating Functional

According to our discussion of Section 2, in order to investigate the
ultralocal free current theory, we must find the appropriate representation
of the SL(2,R) current algebra generated by S(x\ T(x), and Hμ(x)
= l / 2 ( ( T S ~ i T ) ( x } + 4μ2S(x)). Since the commutation relations of the

current algebra do not uniquely determine the relevant group (except
in a neighborhood of the identity), it is not yet clear whether we should
be concerned with the current group of SL(2, R), or perhaps of some
covering group of SL(2, R). In the end, we will naturally be led to consider
the universal covering group of SL(2, R).

In line with Theorem 3, we will actually search for the appropriate
generating functional for the (S, T, Hμ] current algebra in which the
cyclic vector, Ώ, is the ground state of Hμ. We should thus investigate
the infinitely divisible states on SL(2, R) (or some covering group) in
order to obtain the appropriate Euclidean invariant factorizable
generating functional as indicated by Theorem 5. Unfortunately, since
SL(2,R) is semisimple, it is not included in the work of Araki [13]
and there is no other systematic investigation of its infinitely divisible
states [19]. Rather than working directly on SL(2,R\ we will first
construct the correct generating functional for the (5, T) current sub-
algebra and then extend it to a generating functional for the total
(5, T, Hμ) current algebra.

The current group for the (S, T) current algebra is F*, where
F = {(z, w)|z, w e jR} with multiplication law given by (2.5). We express
elements of F* as g*(x) = (f(x),g(x)) and denote a continuous unitary
representation of F* by ^((/(*), #(*))) = exp(/S(/))exp(ΐT(g)), where
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S(f) and T(g) are respectively the self adjoint generators of ^ί((tf(x\ 0))
and ^((0, tg(x))}. We may use Proposition 1 1 to list a large class of
generating functionals on F*, from which we shall choose the appropriate
one corresponding to Hμ (and to the various interacting Hamiltonians,
Hv). We choose c(λ) = 0 for λ < 0 to insure that S(f) ^ 0 for / ^ 0 as is
expected for a current heuristically defined as ^φ2(κ). We then have

Theorem 12. Suppose c(λ) = d(λ)/λ* on (0, oo) with ] \c(λ)\2 dλ<oo
and d(λ) e C°°([0, oo)); then for f and g real valued, bounded, measurable
functions of compact support, E*(f,g) = Qxp($dxDc(f(x),g(x))) is a
Euclidean invariant factorizable generating functional on F*, where
Dc is defined by (3.7).

As a generating functional, £* is given by £*(/, #) = (Ω, exp(iS(/)
exp(iT(0))Ω). We then have that S(/)^0 when /^O, and S(f) has
absolutely continuous spectrum (for /φOj if and only if d(0)φO. In
addition, the unitary representation of the Euclidean group induced on the
representation space is continuous.

Proof. The theorem follows directly from Theorem 5 and Propo-
sition 1 1 except for the properties of positivity and absolute continuity
for S(f). To prove these, we need only consider the functions Eφ(t)
= (Φ, exρ(iίS(/))Φ), as Φ ranges over a total set in the representation
space. Eφ(t), for each Φ, is a continuous function of positive type and
thus by Bochner's theorem is the Fourier transform of a measure:

To prove positivity for S(f), we need only show (by the spectral theo-
rem) that the ρφ all have support on [0, oo) as Φ ranges over a total set; to
prove absolute continuity, we need only show that the ρφ are all absolutely
continuous (with respect to Lebesgue measure) as Φ ranges over a total
set. We choose as our total set, {eiS(h}eiT(9}Ω}. A simple calculation using
the multiplication law of F* shows that for Φ = eiS(h]eiT(9)Ω, Eφ(t)
= Qxp(§ dxDc(e~9(x}tf(x), 0)). It is therefore clear that we need only
show that Ef(t) = Qxp($dxDc(tf(x),ϋ)) is the Fourier transform of a
measure concentrated on [0, oo) whenever /^O, and of an absolutely
continuous measure (for / φ 0) if and only if d(0) φ 0. We have

Ef(t) = exp ( I dx f (gi'/M* - 1) dσ(λ)\ (4.1)
W o /

where—-— = c(λ)\2. (4.1) may be rewritten as
dλ

+f (eitu-\}dσf(u)\ (4.2)
- oo
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where σf is defined by

σ,(u)= j
supp(/)

We first note that if /^O, then since supp(σ)c[0, oo), it follows
from (4.3) that supp(σj) is also contained in [0, oo). It is a well known fact
in probability theory [21] that a characteristic function of the form (4.2)
with σf concentrated on [0, oo) is the Fourier transform of a measure
concentrated on [0, oo). If σf is of finite total mass (i.e. d(0) = 0), this can be

+ 00

seen directly, since then Ef(t) = J eltqdρf(q\ with
— oo

- J dσj GO ι

e, = e - Σ-~
π = 0 n

(where * denotes convolution); and the convolution of two measures
with support in [0, oo) again has support in [0, oo). If σf has infinite
total mass (i.e. d(0) φ 0), one can approximate σf by measures of finite
total mass. QJ will then be a weak limit of measures concentrated on
[0, oo) and will therefore also be concentrated on [0, oo).

We next note that (4.3) implies that σf has finite total mass if and
only if σ has finite total mass, and thus if and only if d(0) = 0. From (4.4)
we can easily see that when σf has finite total mass, ρf has a point mass at
the origin and therefore d(0) = 0 implies that S(f) does not have absolutely
continuous spectrum. The converse follows from the theorem in proba-
bility theory that for a characteristic function of the form (4.2) (with σf

absolutely continuous), ρf is absolutely continuous if σf has infinite total
mass [22]. This completes the proof of the theorem.

It would be quite unphysical to have all the currents, S(/), with point
spectrum at the origin we therefore expect that in any physically relevant
representation of the (S, T) current algebra given by Theorem 12, we
should have d(0) φ 0. Beyond this requirement, however, we have as yet
no way of choosing the proper c(λ) to yield the appropriate generating
functional for the ultralocal Hamiltonian Hv. We therefore make the
following

Ansatz 13. The appropriate generating functional on F*9 yielding a
representation of the (S, T) current algebra in which the cyclic vector Ω is
the ground state of Hv = ̂ \ ((TS"1 Γ) (x) + V(S(x))) dx, is that given by
E*(f, g) = exp(j d x D c ( f ( x ) , g(x)))9 as in Theorem 12, with c(λ) the solution
of the differential equation,

(λ) = Q , (4.5)

where S = λ, T = ~λ- + - - A ) , and λe(0, oo).
2z \ dλ dλ
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We note that c(λ) is chosen as that solution of the differential equation
which is square integrable at oo. We also mention that the above defini-
tions of S and T are just those obtained from the representation, U09

of F on Λ0 defined at the end of Section 3. In this paper, we will utilize
this ansatz only for the case of the ultralocal free Hamiltonian, Hμ, with

= 4μ2λ. The result is:

Proposition 14. The solution, which is square integrable at oo, to the
-2μλ

differential equation, ^(TS'^ + 4μ2S) cμ(λ) = 09 is cμ(λ) = ~- ^ .

The corresponding Dc^(z, w), as defined by (3.7), is then *

DJz, W) = \K\2Dμ(z, w) = - Ά- In (cosh ~ - /<ΓW'2 ~) (4.6)
Z \ L T /i /

and the corresponding generating functional on F* is

E*.κ(f, S) = exp(|K|2 j d x D μ ( f ( x ) , g(x))) . (4.7)

Proof. Using the definitions of S and T given in Ansatz 13 and re-

arranging terms, we find that TS~1T= — ]/>ΐ-τ ττ|/^ If we let
UA

cμ(λ) = dμ(λ)/λ*, the differential equation for cμ reduces to

dλ2

and to make cμ square integrable at oo, we must choose the solution,
dμ(λ) = K'e~2μλ, where K' is an arbitrary complex number; for later

convenience we choose K' = —/=-. It only remains to calculate Dμ(z, w)
as defined by (3.7), viz. V ̂

dλ I β - 4 M λ .
U/l ' :>-2μλ-2μe™λ+izλ _ ^

Letting αλ = 2μ, α2 = 2μβw, zl = — 2μe™ + iz, and z2 — — 2μ 4- iz, we find
that

1 0 0 J O co J1 \

. (4.8)
\o Λ o

We may use the fact [23, formula 3.551-1] that

0 ^

for Reμ > ~ 1 and Reβ > |Rey to obtain, after taking suitable limits, that
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Re y + fl
Ke 2

( f l l-Z l)(a

. By substituting i

2-*2>\_ 1.

4ala2 } 4 *"

nto (4.8)

ί u W

COShy

, we find that

ie-«* z }2

4 μ j '

which immediately yields (4.6) and thus completes the proof of the
proposition.

Formula (4.7) completely determines the ultralocal free current
theory generating functional on F* up to a choice of \K\2. This choice
will be made in Section 5, but meanwhile we wish to extend E*tK to
the entire (S, T, Hμ) algebra by extending the cocycle,

(4-9)

from F to all of SL(2, R). It is first necessary to extend the representation
l/0, as defined at the end of Section 3, from a representation of .F to a
representation of SL(2,R); this may be done by using the results of
Appendix B.

A — C
We take the standard basis (A, B, and D = — - — as defined in

Appendix B) for the Lie algebra of G0 = SL(2, R) and then invert (2.14)
to obtain the self adjoint basis:

S=- — D, T=-iB, Lμ=-i2μA. (4.10)

F is thus isomorphic to the subgroup of G0 generated by S and T (or
equivalently by B and D). Ansatz 13 suggests that on Λ0 = L2((0, oo), dλ\
a representation of G0 is obtained by representing S as λ, T as

Proposition B.3 and Theorem B.4, for the case h = 1, show that this does
indeed define a valid representation :

Theorem 15. \ — \/J.—-γ]/λ + 4μ2λ\ is essentially self adjoint on
\ dλ /

CQ(Q, oo ) C $V //we denote its self adjoint closure by hμ, then there exists
a continuous unitary irreducible representation, Uμ(g\ of G0 on Λ0,
such that

Vμ(Lμ) = hβ. (4.11)
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Uμ(g) is unίtarίly equivalent to the positive discrete representation U+(g, 1)
(as defined in Appendix B). The normalized eigenbasis of hμ is given by:

..), (4.12)
with

Δ.ιι — IV"
(4.13)

where L(^ is an associated Laguerre polynomial [23,/?. 1037].

We wish to extend the cocycle, δμ(z9 w) ΞΞ δμ(eizSeiwT)9 defined by (4.9)
from F to all of G0. According to (B.2) any g e G0 may be expressed as
ezDewBetA and we thus need only define δμ(g) for such a g and then show
that it is in fact a cocycle (with respect to the representation Uμ}. Now,
heuristically, δμ(z, w) is of the form (eizSsl™T — 1) cμ(λ\ and thus to extend
δμ, we should consider (e

ίzSeiwTeίthμ - 1) cμ(λ). Since our ansatz suggests
that we consider cμ as a kind of pseudo ground state of hμ with zero
eigenvalue, it is reasonable to replace eίthμcμ(λ) in the above expression
by cμ(λ). As the next theorem shows, this idea works.

Theorem 16. For g e G0 of the form ezDewBetA, we define

Then (δμ, Uμ9 ft0) is a cocycle for G0.

Proof. We first note that δμ(g) is well defined since, as explained in
Appendix B, the only ambiguity in the parametrization of g by z, w,
and t is in the value of t which does not enter into the determination of
δμ(g). It is also immediately clear that if g" has the special form g" = ezDewB,
then since δμ is already a cocycle when restricted to F9 we have Uμ(g") δμ(g)
= δμ(g"g) — δμ(g") as required. Since an arbitrary g' e G can be expressed
as g' — g"etA for some g" of the above form and some t e R, we need only
show that Uμ(etA) δμ(g) = δμ(etAg) - δμ(etA). But since δμ(etA) = δμ(09 0) = 0,
this reduces to the requirement that

l/>M)δμ(μz,w) = (5μ(μz',w'), (4.15)

where z, w, ί, z;, w', ί; satisfy βMezl)ewβ = ez>Dew>Bet'A .
To prove (4.15), it is clearly sufficient to show that for m = 0, 1, 2, ...

(<Fm, l/μ(eM) δμ(μz, w)) = (ίPm, δμ(μz', w')) . (4.16)

Using (4.12), we find that (4.16) is identical to the requirement that

ei(m + 1)t(Ψm, δμ(μz, w)) = (Ψm9 δμ(μz\ w')) . (4.17)
14 Commun math Phys., Vol. 26
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By using (4.9), (4.13), and the fact that for Reft > 0,

-j \ m + l \

0

it can be directly calculated that

ĵ
y(z>w)

1 + ew z
where y(z, w)= — h z—. A comparison of this last equation with

(4.17) indicates that it suffices to show that

) f/)<z,w)-lV»+ 1_/>(z>')--l

Since this final equation follows immediately from Proposition B.I, we
have completed the proof of the theorem.

Now that we have a cocycle for G0, a semisimple group, Theorem 10
would guarantee a corresponding P(g) and therefore an infinitely
divisible state on G0, if only G0 were simply connected. G0 itself, however,
is not simply connected and it is therefore necessary to consider Gc,
the universal covering group of SL(2, R), which is simply connected.
Since Gc is a covering group of G0, it follows that the representation
(l/μ, Λ0) °f Theorem 15 also yields a representation of Gc, and that
(<5μ, (7μ, Λ0) is also a cocycle for Gc. Since Gc satisfies all the requirements
of Theorem 10, we are guaranteed the existence and uniqueness of a
P(g) corresponding to δμ and thus a non-trivial infinitely divisible state
on Gc. This infinitely divisible state can be determined by considering the
positive discrete series of representations of Gc, as defined in Appendix B.
These representations, denoted by U+(g,h) for h>0, are defined on
certain Hubert spaces, §(h), of functions analytic on the unit disk in C,
with inner product <.,.>Λ. We then have

Proposition 17. U + (A, h) =
_ _

Ύt
+ (etA,h) is a skew adjoint oper-

t = 0

ator on §(h). Its normalized eigenbasis is given by

U+(A,h)Φnιh(y) = ί(n + h)Φn,h(y) (n = 0, 1,2, ...) (4.18)
where

Φh(y)=ί y. (419)
"'"W \ Γ ( 2 Λ ) Γ ( n + l ) j y ' { '

In addition, we have for g = ezDewBe'A, that

(Φ0th,U
 + (g,h)Φ0,h>h = e-2h(ίn(°°*hJ-ίe-~<2ϊ)~ίί). (4.20)
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Proof. U + (A,h) is of course skew adjoint. Formula (B.12a) clearly
shows that {ΦΠj J are the eigenvectors of U + (A, h) and (B.ll) shows that
they are properly normalized. Since Φ0,hCv) = 1> we see fr°m (B.12) that

(l/+(0, fc) Φ0.fc) 00 = e ί h 'e2 ί ω<z 'w>Λ(l - |y(z, w)|2)" (1 -f y(z, w) y)" 2 f t.

Since the first term in the Taylor series for (1 +γy)~2h is 1, it immedi-
ately follows from (B.ll) that

flf, h) Φ0jhyh = e2ih(^^+

By substituting (B.6) into this equation, we obtain (4.20), which completes
the proof of the proposition.

Theorem 18. The function on Gc,

E(ezDe™BetA) = e~ ̂  ( ln(coshτ - ί e ~ w / 2 f )~ ' l ) ? (4.21)

is the unique inβnitely divisible state corresponding to the cocycle,

(^^.fto).

Proof. If we write E(g) = exp(D(g)) in the usual way, then since

eaD(9) = <ΦQ ̂  v + fa fy φQ^yh for h = ̂ L9 we have by Theorem 1 that

eaD(β) js a state on Q^ j^g ijeing true for au α>o, it follows that E(g)

is an infinitely divisible state. D(g) corresponds to δμ(g) since it is easily
seen that ReD(0)= — \(δμ(g\ δμ(g))^0; since P(g) is uniquely determined
by Theorem 10, we must have P(g) = ImD(^f). By Theorem 7, (δμ, Uμ, 5\0)
is also uniquely determined (up to unitary equivalence).

Corollary 19. Let D^ be defined as

-ie-w / 2^j-iyj (4.22)

and let /, g, and k be real valued, bounded, measurable functions of
compact support; then

E*f(f, θ, k) = exp \K\2 IdxD, -, g(χ\ 2 μ k ( X ) j (4.23)

is a generating functional on G* which yields (by Theorem 3) a cyclic
representation in which

E*,κ(f, d> k) = (ΩμtK9 eiS^eiT^eίH^Ωμ>κ) (4.24)

wίthHμ(k)= $ H μ ( x ) k ( x ) d x .

This generating functional defines (neglecting temporarily the choice
of \K\2) the ultralocal free current theory for mass μ. In the next section
we choose \K\2 and then determine the relation of this current theory to the
ultralocal free canonical field theory.
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5. The Relation of the Free Currents to the Free Canonical Fields

We see from the form of £*#(/, g, k) given in Corollary 19 that the
representation thus defined for GJ has the property that exp(ίHμ(k)) Ωμ κ

= exp ίί\K\2 -£- J fc(jc) d xj ΩμtK; in other words, Hμ(x) Ωμ,κ = \K\2 ~ Ωμ,κ.

The choice of \K\2 therefore corresponds to a choice of vacuum energy
renormalization, since the renormalized Hamiltonian density clearly must

be Hμ(x) = iHμ(x)-\K\2-~\. Since Hμ(x) is heuristically equivalent to

the unrenormalized field theory Hamiltonian density, ̂ (n2(x) + μ2φ2(x)\
the proper choice of \K\2 is determined by a kind of correspondence
principle with respect to the ultralocal free canonical field theory. The
relation between (1.7) and (1.6) in the field theory case clearly indicates

that we must take Hμ(x) = \Hμ(x) -- 1 and we thus choose |K|2 = 1.

We therefore consider the representation of G£ defined by (4.24) with
|K|2 = 1 as the ultralocal free current theory with the corresponding
currents denoted by Sμ(x) and Tμ(x)9 the generating functional by E*9

and the cyclic vector by Ωμ. The work of this section is intended to
show that this choice of \K\2 together with the choices already dictated
by Ansatz 13, yield a current theory which is closely related to the
ultralocal free field theory (defined in Appendix A).

The first step in this process is to determine the relation between the
corresponding single degree of freedom problems. We note that the
choice of \K\2 = 1 is related, by Proposition 17, to the positive discrete
representation, U + (g, £), of Gc and to the ground state, Φ0,i> of U + (Lμ7 £)
in §(i). In particular, we have, for \K\2 = 1, that

(Ωμ, e
iS^eiτ^Ωμ) = exp(j Dμ(f(x\ g(x)) dx} (5.1)

with

The form of the generating functional, E^*, as given by (A.4) and (A.5)
shows that in an analogous way, the ultralocal free field theory is related
to the usual representation of p and q and to Φμ, the ground state of
i(p2 + μ2<?2). In order to relate the quantum mechanical harmonic
oscillator to the U + (g, £) representation of Gc, we need a realization
of this representation different from both (B.12) and (B.17).

We have from Theorem B.4 that C/μ(S, h) = λ and

λ
dλ dλ
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In order to compare these representations to the harmonic oscillator

problem, we need a representation in which S^q2/4 and T-»

on L2(R,dq). Toward this end, we consider the mapping,
Wε:R0^L2(R,dq) where, for ε = 0 or 1,

Wε is a unitary transformation from ft0 onto Z^ven = {ψ(q)\ψ(q) =+ψ(—q)}
C L2(R, dq), for ε = 0, and onto L2

odd for ε = 1. Moreover we have:

ά- d -1- pq+qp

If we neglect the "boundary conditions" used in defining Uμ(Lμ, h),
then heuristically we have

, (2Λ-i)(2Λ-f) , ,

in actuality, we have a certain self adjoint extension of this operator
(defined initially on functions vanishing near the origin). We note that for
h = τ or ft==f, the operator reduces to ^(p2 + μ2q2); in these particular
cases the boundary conditions are automatically satisfied by choosing
ε = 0 for h = £ and ε = 1 for h = f . We thus have

Proposition 20. On L2

even(R, dq\ the mappings,

(5-3)

define a representation of Gc, the universal covering group of SL(2, R),
which is unitarily equivalent to l/+ (#,£). On L2

Qdd(R,dq) the mappings,
(5.3), define a representation of Gc unitarily equivalent to U+(g,^).

We thus see that the infinitely divisible state on Gc which defines
the ultralocal free current theory (with \K\2 = 1), which was shown to be

£μto) = <Φo,i^ + to,i)Φ0fi>i, (5.4)

may also be given by replacing U + (g,%) in (5.4) with the representation
defined by (5.3) and Φ0 ^ with Φμ, the ground state of ^(p2 + μ2q2). If
\K\2 had been taken to be 3 instead of 1, we would use the first excited
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state of \(p2 + μ2q2) in place of the ground state. We have thus demon-
strated

Corollary 21. In the ultralocal free current theory representation
(defined by Corollary 19, with \K\2 = \) we have

(Q e ί SWι)g ί τ/Λ0ι)e ί HAΛ kι) eisμ(fN)eίτμ(9N)eiHμ(kN)Q \
μ' '" μ (55)

= exp(j dxDμ(fι(x), gι(x), M*λ ..., kN(x))) ,

where
e D μ ( z ί t W ί ί t ί t . . . ί t N ) = ̂ φ^eizίseiWίτeitίhfί _ eίtffh'ΦμyL2(Rtdq) (5.6)

with S = g2/4, Γ = — — — , = 2 +

This corollary is our first indication of the relation between the
ultralocal free current theory and the ultralocal free field theory, since
the analogous statement for the field theory case with φμ(x\ πμ(jc), q, and p
replacing Sμ(jc), Tμ(x), S, and T is also true. It is therefore clear that
the choice of \K\2 = 1 is not a trivial one; it actually happens that two
different choices of \K\2 yield representations of the (S, T) current algebra
which are not even locally equivalent to each other. An interesting
question is whether the other values of \K\2 (in particular 2, 3, and 4) have
any particular physical relevance.

To continue investigating the connection between the ultralocal free
current theory and the ultralocal free field theory, we will concentrate on
the relationship between the current, Sμ(jc), of the free current theory
representation and the field, φμ(x\ on the ultralocal Fock space of the free
field theory. In particular, we are interested in seeing whether Sμ(x) can

be interpreted as — — — in any sense. The analogous question in the

one degree of freedom case is answered affirmatively by Proposition 20
which shows that

The remainder of this section is devoted to analyzing the relation
between

E*(f) = < (Qμ, e
ίS^Ωμ) (5.8)

and

Ωφ

μ,e
 4 Ωφ

μj (5.9)
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where Qφ

μ is the ground state of the ultralocal free field theory Hamiltonian
and

ΦKf] = ί Φ2

μ(x)f(x) dx = f φμ(x) φ μ ( y ) f ( x ) δ(x - y) dxdy . (5.10)

Since the multiplication operator Mf, with kernel f ( x ) δ ( x — y)9 on
L2(Rs,dx) is not even compact, let alone trace class, it is clear from
Theorem A.I that (5.10) is a purely heuristic equation and that φ2

β(f)
does not really exist as an operator on the ultralocal Fock space. If
we nevertheless apply Theorem A.I formally in order to compute (5.9),
we find that since ln(l — iMf/μ) is the multiplication operator with
kernel ln(l — if(x)/μ) δ(x — y), we then have that formally,

Comparing (5. 11) with (5.8), we find that the heuristic relation between
Sμ(f) in the ultralocal current theory and φ*(f)/4 in the ultralocal Fock
space is a kind of renormalization which somehow "divides out" the
c>(0) infinity involved in the definition of φfa). The next theorem makes
this renormalization somewhat more precise and shows that (5(0) is
equivalent to the infinite volume of momentum space and is removed
by a kind of thermodynamic limit.

Theorem 22. In the ultralocal free representation of mass μ of the
CCR, let φκ(x) denote the momentum cut off field defined by

ΦM - \ ΦM g(χ) dx = Φμ(gκ) (5.12)

where qκ(κ] is defined by
. iff W, MS*

where Λ denotes the Fourier transform. Then for /e

Φl(f) = ί Φκ(x) Φ,Wf(x) δ(x - y) dx dy (5.13)

exists as a self adjoint operator on the representation space for allκ<co and

(5.14)

where V(κ) denotes the volume of the ball of radius K in Rs and ^(Rs) is
Schwartz space in s variables.

Proof. We denote by Pκ, the projection operator on L2(RS, dx)
which maps g into gκ. It follows from (5.12) and (5.13) that

}(JC, y) dxdy_______
6 / is chosen in Schwartz space purely for convenience; the theorem is clearly true

for more general test functions.
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where M'f(x, y) is the kernel of the operator PKMfPK, with Mf the operator
of multiplication by f ( x ) on L2(R\ dx). For fe ^(Rs\ PKMfPK is easily
seen to be trace class with a real symmetric kernel, and thus by Theo-
rem A.I, Φκ(f) exists as a self adjoint operator and

e ~ r n ~ ' . (5.15)

To complete the proof of the theorem, we need only show that for

- tr(ln(l - iPKMgPK)) = J dxln(l - ig(x)) .

This fact will follow from the next three lemmas.

Lemma 23. Suppose A is a self adjoint trace class operator with \\A\\ ^B.
Suppose F]_ and F2 are two functions on R such that |F1(r) — F2(r)| ̂ ε|r|
for all \r\^B. Then ^(F^-F^))! ̂ εtr|^|.

Proof. Let {λk} be the eigenvalues of A\ then \λk\ ^B for all k and

Σ
k=l

^ Σ

^ Σ εμk| = εtrμ|.

Lemma 24. Suppose /e ^(Rs) is real valued and Pκ is as above. Then,
N

if G is any polynomial of the form G(r) = Y cnr
n, we have

= ί d x G ( f ( x ) ) .
Rs

Proof. It clearly suffices to consider the case G(r) = rn(n ̂  1). A trace
class integral operator with kernel K(k, k') has trace J K(k, k) dk,

Rs

and thus by taking Fourier transforms and changing variables, we obtain

where χκ is the characteristic function of Oκ, the ball of radius K in
Let H be defined as

Then if m denotes Lebesgue measure on Rs and 0(p) for a set
O C Rs denotes the set translated by the vector p e Rs, we have
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H κ =— |— wίΓf| O(

K~pk)]nOKY Since m(Oκ)=V(κ) we clearly have
\ / \ \rC 1 / /

that 0 ̂  Hκ ^ 1 and it is easily seen geometrically that for fixed
Pi > Pi > > Pn - 1 '•> Iψ1 Hκ = l. We thus have by the Dominated Convergence

Theorem that

= $f(-Pn-l)f(Pn-l-Pn-2) f(P2-Pl)f(Pl)dp1 ...

= l ( f ( x ) Y d x .

Lemma 25. Let f and Pκ be as in Lemma 24, then

limsup - tr (\PKMfPK\) £ J

Proof. We decompose / into its positive and negative parts,
/(jc) = /+(x) — /_(jt) with /+ and /_ both positive functions. We may
then write Mf = M+ — M_ in the obvious way and using the fact that
for any two trace class operators A and B,
[24], we find that

since |PKM±PJ =PKM±PK. Since the proof of Lemma 24 shows that its
conclusions are still true even if / is only continuous (and rapidly de-

creasing) we have l imsup——ir(P K M ± P K )= § f + ( x ) d x . This com-

pletes the proof of the lemma.

Completion of Proof of Theorem 22. We first note that

is continuous on R and thus by the Weierstrass approximation theorem,
we can find for any B and ε>0 a polynomial G'B ε(r) such that

G'B ε(
r) < ε f°r aH M < #- If we let GB ε(r) = rG'B ε(r) thenγ , , ,

we have |ln(l — ir} — GB>ε(r)| <ε|r| for all \r\<B. Thus by Lemma 23, if
we choose B> \\Mg\\ ^sup ||PKMgPK||, we have

lim sup tr(ln(l-iPKMgPK))--V-- "^'^K,, v(κ)
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Now it follows from Lemma 25 that the right hand side of (5.16) is propor-

tional to ε, and from Lemma 24 that lim —— tr(Gβ E(PKMgPK)) exists

and equals j dx GB ε(g(x)). Thus we have that lirn —— tr(ln(l — iPKMgPK))
exists and equals

lim f dx GB9ε(g(x)) = f dx In (1 - i g ( χ ) ) .

This completes the proof of the theorem.
The relevance of Theorem 22 can perhaps be better understood by

considering the generating functional for φ^(f) in the relatίvistic Fock
space representation of the CCR. A calculation analogous to that of
Theorem A.I yields that in this case

(Ω eiφ^(f}Ω } = e-^tr(ln(1-ίA^MfA^
\ R"> .R/ '

where Mf is the multiplication by/operator and Aμ = (μ2 — A)~*. Here ΩR

denotes the relativistic no-particle vacuum. An expansion of
\n(l — iAμMfAμ) in a Taylor series shows, that in (s + l)-dimensional
space-time, the operators (AμMfAμ)

n are not trace class (although they
are compact) when n-^s while they are trace class for n > s. Thus, in
two dimensional space time, Wick ordering subtracts the first term in
the Taylor series and :</>#(/): is in fact a well defined operator. In higher
dimensions, Wick ordering is not sufficient and :φ|(/): is not a well
defined operator when smeared only in space; (s— 1) more renormaliza-
tions of some kind are needed to define ΦR(X) at fixed time.

In the ultralocal case, as we have seen, there are no momentum
damping factors and thus all terms in the Taylor series are divergent
with the same (5(0) = J dk momentum-volume divergence in each term.
Somehow the transition to the ultralocal current representation of
Sμ(x) simultaneously renormalizes all the terms by dividing away the
infinity (rather than by subtracting s terms as would be appropriate
in the relativistic case). It can certainly be said that the situation is not
unambiguous.

A final interesting question is whether this notion of "thermodynamic"
limit, as given in Theorem 22, has anything to do with thermodynamics.
One might expect that a statistical mechanics analysis of these repre-
sentations would be more hospitable to the fact that varying \K\2 yields
locally inequivalent representations of the (S, T) current algebra. This
would especially be true if the position locality in our present interpre-
tation became a momentum space locality in the statistical mechanics
interpretation. It would then be similar to the situation in representations
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of the CCR appropriate for statistical mechanics [25], in which different
densities of particles in position space often correspond to infinite
differences in numbers of particles in regions of momentum space.

Appendix A. The Ultralocal Free Canonical Field Theory

There are several equivalent ways to define φμ(x) and πμ(x), the ultra-
local free canonical fields of mass μ. If we let φ*(x) and π*(x) denote the
usual relativistic (Boson) Fock space representation of the CCR for mass μ
and P(μ} denote the positive operator (μ2 — V2} on L2(RS, dx), then we have

Φμ(f} = ΦR

μ(Pl)f) , nμ(g) = <(P(;?0) , (A.1)

where φ μ ( f ) = § φ μ ( x ) f ( x ) d x and the other smeared fields are defined
similarly.

This ultralocal representation of the CCR may also be defined in terms
of its generating functional [26]. We let Ωφ

μ be the ground state, in the
representation space, of the ultralocal free Hamiltonian,

where a?(k) and a(h) are the ultralocal creation and annihilation operators
defined in a standard way. The generating functional is then defined as

££*(/, 9) = (Ω£, eίφ-("eίπ^Ωφ) , (A.3)

and is of the form
£**(/, g) = exp(j dxD+μ(f(x), g(x))) , (A.4)

with
z2 w2

2 4μ ^ 4 '

We note that Dφ is also defined by the formula,

where Φμ is the ground state of \(p2 + μ2q2} on L2(R, dq).
This representation of the CCR can also be realized on an infinite

tensor product Hubert space in a simple way by choosing an orthonomal
basis of real functions, {/J^i? on L2(Rs,dx\ and defining qk = φμ(fk)
and pk = πμ(fk). The representation space is then the incomplete ITP
space containing the vector,

00

Φqμ= Π ®Φμ(^fc)> (A'6)
k=l
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and ίζf is realized on this space as

_ °° ι
HΪ= Σ -=j-(pϊ + μ2qϊ-μ) (A.7)

WhenF(jt, j) is of the form, £ ^/fc
we define k = 1

ί Φ,W Φμ(y) F(x, y) dxdy = £ rkφμ(fk) φμ(gk) , (A.8)
J e = l

and for more general F(JC, y) by taking limits of such finite sums. We then
have

Theorem A.I. // F is a trace class self adjoint integral operator with
a real symmetric kernel, F(x9y)9 then Q = j φμ(x)φμ(y) F(x, y)dxdy is a
well defined self adjoint operator and

(Ω+,ei<*Ω+) = e~itτ(ln(1~1^. (A.9)

Proof. We first choose an orthonormal basis of eigenvectors of F,
{gk}™= i . The gk may be chosen real because the kernel, F(x, y)9 is real. We let
qk = φμ(gk) and pk = nμ(gk) and realize the ultralocal Fock space as an ITP

00

space, as described above. F(x,y) is given by F(x,y)= Σ λkgk(x)gk(y)

with {λk} the eigenvalues of F, and thus Q = lim Y λkqk, if this limit
N -* QO ^~'

exists. oo / c~1

We note that £ |/y < oo since F is trace class and thus we also have
k = l

00 00

that ]Γ |<Φμ, λ f c #fcΦ μ >|<oo and £ KΛ k < 7 k Φ j i 5 Λ k(?kΦμ>l <°° Using
k = l k = l

certain results from the theory of ITP spaces [7, Cor. 2.5 and Thm. 2.6],
N

N^oo
we may define β0 as lim ]Γ Ak^ on vectors of the form

k = l

M

Π ®V»(9t) ® Π

with ψk E Dom(gf); it then follows that Q0 is essentially self adjoint on the
domain consisting of finite linear combinations of such vectors. We
define Q as the closure of Q0 and it also follows that eίQ = strong limit

Qxp(iλkqk)\. Thus

N

H <Φμ, e
iλkqkΦμy. (A.10)

k = l
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It can now be shown by direct calculation that

Combining this with (A. 10) and using the fact that Σ \λk\ < oo implies
oo λ = l

that £ |ln(l-U fe/μ)|<oo, we find that
k = l

-~ Σ
\ 2 fc = ι

This completes the proof of the theorem, since

tr(ln(l-if/μ)) =
k = l

Appendix B. 5L(2, /?) and Its Universal Covering Group

We first review some facts concerning the (abstract) group
G0 = SL(2,R), which we shall be using [27]. Considered as SL(2,R),
the Lie algebra consists of all real 2 x 2 traceless matrices. We choose
as a basis:

c-ι
^4 — C

If we define D = —-—, then any g e G0 can be expressed as

(B.2)

for some z, w, tzR. This expression is unique except that exp(M)
— exp((ί + 4πn) A) for all integers n. An alternative parametrization is

In this form the group multiplication is given by [27, p. 30] as (y, ω) (yr, ω')
= (/', ω"), where

y" = (y -)- yf e~2iω) (I. -f yy'e"2**0)"1 (B.4a)
and

ω" = ω + ω' + -~- log((l + yy'e'2i(0) (1 + yψe2^)'1) (B.4b)

with logx defined by its principal value and ω" taken mod2π.
The relation between the two parametrizations, (B.2) and (B.3), is

given by

ezDe™BetA = y(z, w), ω(z, w) + 4) (B 5)
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where

. w . -f z
— sinn — — ze z — -

y(z, w) - - - - * - , (B.6a)
ι w . 5- z

cosh-— +ιe z --

I w -— Z \
ω(z, w) = arg cosh — +ie 2 — , (B.6b)

and ω(z, w) -h —in (B.5) is understood to be taken mod2π. These formulae

may be used to obtain the following useful result.

Proposition B.I. In G0, w£ have

(0, ί) (γ, ω) - (yβ~2 ί ί, ί + ω) (B.7a)

(/,ωO(0,ί') = (/,ω' + f '), (B.7b)

vv/ί/z ί + ω and ω' + ί' taken mod2π. Thus for any t,z,weR

etAezDewB = ez'Dew/BetfA (B.8)

for some z\ w', t' e R, with

- l-y(z>^}

' f

I ί Λ , -where y(z, w) = - -f i — .

Proof. (E.I) follows immediately from the multiplication law for G0

given by (B.4). The parametrization of G0 given by (B.2) clearly implies the
existence of zx, w', t' satisfying (B.8), and then by (B.7) and (B.5) we see

1 — viz w)
that e~ίty(z, w) = γ(z', w'). Since y(z, w) = - - — '—-, the proof is
complete. y(z'w)

We next list the continuous unitary irreducible representations of G0

they were first classified by Bargmann [28] :
(a) The principal series, g -> Uh(g, s), h = 0, h = \, s e iR (excluding

Λ = i,s = 0).
(b) The complementary series, g -> Uh(g, σ), h = 0, 0 < σ < \.
(c) The discrete series, g -> £/+ (α, h), h = \, 1, f , . . .

0->E/-fo, fc) ,Λ = -i-l,-f,...
We will be exclusively concerned with the discrete representations.
We note that when h is an integer, U±(g9 h) also defines a representation
of S0(2, 1).
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We now review some properties of Gc, the universal covering group of
GO [27]. The Lie algebra of Gc is identical to that of G0 and we label the
corresponding elements again by A, J5, C, and D. In Gc, any g may be
uniquely expressed in the form (B.2). Gc may be parametrized in another
form as

{(y,ω) |y6C, |y |<l, -oo<ω< +00} (B.10)

with the same multiplication law (given by (B.4)) as for G0 except that ω" is
not taken mod 2 π. The canonical homomorphism of Gc onto G0 is given by
(y, ω)->(y, ω(mod2π)). The relation between these two parametrizations
is still given by (B.5) and (B.6) except that in (B.5), ω(z, w) -f t/2 is also not
taken mod2π. We note that Fc = {ezDewB} is a subgroup of Gc (and
similarly of G0) isomorphic to the group F defined by (2.5).

The continuous unitary irreducible representations of Gc have been
determined by Pukanszky [29]. The list is identical to the one given above
for GO except that in the principal series, we allow — i</ϊ^i; in the
complementary series, we allow — \ < h < \\ and in the discrete series we
allow h > 0 for U + (g, h) and ft < 0 for U ~ (g, h). We will again be concerned
with the discrete series of representations.

In the usual formulation, the positive discrete representation U + (g, h)
is realized on §(Λ), a Hubert space of functions analytic on the unit disk
in C. If /(y) and g(y) are two analytic functions in <r>(h) with Taylor series,

00 00

]£ any
n and ]Γ bny

n respectively, then the inner product in §(Λ) is
n = 0 n = 0

defined to be

«•»>- mr*-*-
+ (g, h) can be defined as follows on §(Λ):

U+(efA

9h):f(y)^eithf(eity) (B.12a)

+(^DewB

9 h) : f(y)~>e2iω(z w)*(l - \γ(z, w)|2)" (1 + y(zΓw) y)~2h

/ w
cosh — +

/ - u w

I - sinh y

w \
ie~Ύ τ)y+

- — z \
+ ίe 2~\y

ί u w

1 - sinh —

/ . w
+ cosh —

w \
• 2" ^ 1

W 7 \

-e"ττ)

(B.12b)
\ / 4. / \ / 4 / ι

In this realization, we see that U + (A, h) takes on a particularly simple
form while the subgroup Fc is represented in a considerably more
complicated manner. The remainder of this appendix is devoted to
obtaining different realizations of the positive discrete representations
in which Fc is represented in a simple manner. These realizations will
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utilize Λ0 = L2((0, oo), dλ) as the representation space. For each fixed

positive μ, D will be realized as iμλ and B as \ \λ —— + —— λ independent
\ dλ dλ /

of h while A will be of the form -*-. ( - 1/5 -ίL- 1/5 + ̂ "^ +4μ2 A
4μ \ v dλ2 v λ I

In order to define these realizations rigorously, we need some preliminary
results.

Proposition B.2. Let D0 = Cg>((0, oo))cft0 TΛen ffte operator Qc,
i2 /*^ \

— j/5 -ΓT 2~j/5 +-7- + 4 μ2λ\, is positive (as a quadratic
uλ λ I

form on D0 x D0j /or C^ — ̂ . Qc is essentially self adjoint when C^
and for — ̂ ^C<0, zί /zαs (positive) self adjoint extensions.

Proof. To prove positivity [30], we need only show that

for all g e D0. But for 0 6 D0 we have that

so we have, by integration by parts, that

Since positive quadratic forms have positive self adjoint extensions (for
example, the Friedrichs extension), it only remains to show that Qc is
essentially self adjoint when C j> 0.

To show that Qc is essentially self adjoint, it suffices to show that
Q*Φ = ± *'Φ nas no ^2(0, oo) solutions. By local regularity for differential
equations, such a Φ is C°° on (0, oo) and satisfies (on (0, oo))
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r ( y \Let /(y) = yy Φ —— then / satisfies the differential equation

,dy2 [ 4 y2 4μy_

The two independent solutions to (B.13) are fk(y) = ]/~yΦk[~ϊ—)> where

1 ±-^-,]/CTΐ ' 2 ±-/-,l/C + i
4μ 4μ

where M and fF are Whittaker's functions [31]. Asymptotically, as
y-* oo, Φx is not in L2 while Φ2 is in L2 when C ̂  0, Φx is in L2 near the
origin, but Φ2 is not. For — ̂  C < 0, Φ2(y) is in L2((0, oo)) and Qc is not
essentially self adjoint. This completes the proof of the proposition.

We define Rh for / i^ l as the self adjoint extension of ^Qh(h-i}>
We will now define a particular self adjoint extension of ^Qh(h-1} for
0 < h< 1, as h(h — 1) varies between 0 and — £, by adding a vector to the
Domain D0. Let #(A) be in Cg>([0, oo)), such that g(λ) = 1 on [0,1), g(λ) = 0
on [2, oo) and 0 g #(/l) ̂  1. Let 0ft(/l) - λh~^g(λ) for fc > 0. Then gh(λ) e ft0

for all h > 0, and we define Dh as {φ | ip = cgh(λ) + Φ for some Φe D0 and
some complex c}. To extend Qh(h-1} from D0 to Dh, we need only define it
on gh we therefore define

n,gh(λ),

and jRiΦ = i6Λ(Λ_i)Φ, for all ΦeD 0 ; JRJ, is thus defined on Dh. It is
easily seen that R'h is symmetric on Dh x Dh and in fact, letting R'h = τQh(h- D
and Dh = D0 for /z ̂  1, we have,

Proposition B.3. R'h is essentially self adjoint on Dh for all h>0.
The normalized eίgenbasis of Rh, its self adjoint extension, is given by

RhΨm.h(λ) = 2μ(m + h)Ψmιh(λ) (m = 0, 1,2, ...) (B.15)
with

Ψm,h(λ) = ( - 1Γ

where I^(y) is an associated Laguerre polynomial [23, p. 1037].

Proof. We must show that R'^Φ=±iΦ has no solutions
Φe Domain (#;,*). We are again led to the differential equation (B.13)
and the solutions, /ί? of (B.14), with ]/C + £ = \h — %\. Again Φl has
exponential growth at oo for allh>Q and is therefore not in ft0, let alone

15 Commun math Phys., Vol. 26
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Dom (#;*). It thus suffices to show that for 0 < h < 1, Φ2 Φ Dom (#;*). This
follows from the fact that near y = 0, for 0 < h < 1 (h Φ i),

while

4μ"

It is easily seen that (near y = 0)9y
 (h ^φΌom(R't*) (for /iφi) and

Iny φ Όom(Ry) and the proof of essential self adjointness is completed.
The determination of the eigenbasis is done in a straightforward manner
using the small z behavior of the Whittaker function, W. Alternately,
one can directly verify that the Ψmh are indeed eigenvectors of Rh

Ί

and that they form a complete basis.
We are now in a position to prove the main result of this appendix.

Theorem B.4. For each h>0 and μ > 0, there exists a continuous
irreducible unitary representation, Uμ(g, h), of Gc, the universal covering
group of SL(2, R), on L2((0, oo), dλ) such that

Uμ(D,h)=iμλ.

Uμ(g, h) is unitarily equivalent to the positive discrete representation,
U + (g, h). The normalized basis of Rh is as given in Proposition B3.

Proof. Sally has constructed the "normalized discrete" repre-
sentations, R+(g,h), of Gc on §(^} which are unitarily equivalent to
U + (0, h) on §(Λ) [27, Ch. 4]. These representations have the property that

R+(e 2 e wβ, h) is independent of h. We will transform these
representations of Sally onto Λ0 to yield Uμ(g, h).

Define F±:ξ>(^Λ0 by Φnι±(y)^Ψ^(λ)9 where Φn,±(y) = y" and
ψ^(λ) = ]/2(-l)ne-λL(P(2λ). Then, since F± maps one orthonormal
basis onto another, it determines a unitary operator between ί̂  and ft0.
We then define R + (g,h) = F±R + (g, h) FΓ l as a representation realized on

5 0̂ . We are not yet finished since we require that Uμe
 2

be independent of h. To obtain this, we use the fact that in Gc,

1 It is easily shown that there is no difficulty with "boundary conditions" at λ = co.
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We thus define

V(g, h) is then unitarily equivalent to U + (g, h) and has the property that
V(B, h) and V(D, h} are independent of h as desired. The only remaining
difference between V and Uμ is a scaling which is accomplished by
defining

Uμ(g, h) = V(e(ln(2μ}}B, h} V(g, h) v(e-
{ln{2μ))B, h ) .

Uμ(g, h) is clearly unitarily equivalent to U + (g, h).
Using the results of Sally, it is easily seen that

'(τ)λ

>e{2) Φ(λ)

B, h) : Φ(λ)~>e+ΎΦ(ewλ)

and that R + (etA, h) has the (unnormalized) eigenstates Ψ'nth(λ)
= e~λ(λ)h~iL{2h~1](2λ) of eigenvalue e

it(n+h\ These facts immediately
yield, with the help of Proposition B.3, the results of the theorem for
the representation of the infinitesimal generators A, 5, and D.

Acknowledgement. The author wishes to thank Prof. A. S. Wightman for serving as
his dissertation adviser and for his consistent advice and encouragement in carrying out
this research.

References

1. von Neumann,J.: Math. Ann. 104, 570 (1931).
2. Carding,L., Wightman, A.S.: Proc. Nat. Acad. Sci. U. S. 40, 622 (1954).
3. Araki,H.: Princeton Thesis 1960, chapter V.
4. Streater, R. F.: Lectures at Karpacz winter school (1968).
5. Klauder,J.R.: Commun. math. Phys. 18, 307 (1970).
6. — Acta Phys. Austr. Suppl. VIII, 277 (1971).
7. Reed,M.: J. Funct. Anal. 5, 94 (1970).
8. Newman, C.M.: Princeton Thesis 1971.
9. Dashen,R., Sharp,D.: Phys. Rev. 165, 1857 (1968).

10. Sharp,D.: Phys. Rev. 165, 1867 (1968).
11. Callan,C., Dashen,R., Sharp,D.: Phys. Rev. 165, 1883 (1968).
12. Sugawara,H.: Phys. Rev. 170, 1659 (1968).
13. Araki,H.: Publ. R.I.M.S. (Kyoto) 5, 362 (1970).
14. Goldin,G.: Princeton Thesis 1968.
15. For a thorough discussion of states on locally compact groups, see: Godement,R.:

Trans. Am. Math. Soc. 63, 1 (1948).
16. Parthasarathy,K., Schmidt, K.: Manchester-Sheffield School of Probability and

Statistics Research Report 17/KRP/4/KS/2 (1970).
17. — Probability measures on metric spaces. Chapter IV. New York: Academic Press

1967.



204 Ch. M. Newman: Ultralocal Quantum Field Theory in Terms of Currents

18. See, e.g., Linnik,Y.V.: Decomposition of probability distributions, p. 90. London:
Oliver & Boyd 1964.

19. In another context, certain infinitely divisible states on SL(2, R) have been constructed
in: Gangolli,R.: Ann. Inst. H. Poincare Sec. B (N.S.) 3, 121 (1967). This work, which
came to our attention after our results had already been obtained, is concerned with
states on SL(2, R) with certain extra symmetry properties; the examples given there
do not include the one which we construct in Theorem 16. Moreover, Gangolli does
not analyze his states in terms of cocycles.

20. Parthasarathy,K.: Multipliers on locally compact groups. Berlin-Heidelberg-New
York: Springer 1969.

21. Ramachandran,B.: Advanced theory of characteristic functions, p. 49. Calcutta:
Statistical Publ. Soc. 1967.

22. Tucker, H.G.: Trans. Am. Math. Soc. 118, 316 (1965).
23. Gradshteyn,!., Ryzhik,!.: Table of integrals, series and products. New York:

Academic Press 1965.
24. Gelfand,!., Vilenkin,N.: Generalized functions IV, p. 49, New York: Academic Press

1964.
25. Araki,H., Woods,E.J.: J. Math. Phys. 4, 637 (1963).
26. For a discussion of generating functionals for the CCR, see: Araki,H.: J. Math.

Phys. 1, 492 (1960).
27. Sally,Jr.,P.J.: Analytic continuation of the irreducible unitary representations of

the universal covering group of SX(2, R). Providence: Amer. Math. Soc. (Memoir
no. 69)1967.

28. Bargmann,V.: Ann. Math. 48, (2) 568 (1947).
29. Pukanszky,L.: Math. Ann. 156, 96 (1964).
30. This proof is based on a proof given by: Nelson,E.: Unpublished lectures on topics

in dynamics. Princeton 1969.
31. Slater,L.J.: Handbook of mathematical functions (M. Abramowitz and I.Stegun,

Eds.). New York: Dover 1965.

Charles M. Newman
Courant Institute of Mathematical Sciences
New York University
New York, N.Y. 10012, USA
(present address)




