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Abstract. Representation formulas for the vertex function are derived which are valid
for arbitrary complex values of two of the scalar variables inside the corresponding domain
of holomorphy, while the third variable is evaluated in a neighbourhood of positive real
values (the corresponding physical-region singularities). The analyticity domains always
include at least the corresponding "axiomatic" Kallen-Wightman domain.

Two alternative versions are given. In the first formula the occurring weight functions
are the boundary values of the vertex function along the real axes of the scalar variables.
The values of the arguments are such that the boundary values can be expressed in terms
of the causal respectively time-ordered functions, which in a well-known way via reduction
technique are related to the different form factors of the underlying field theory. In the
second formula the weight functions are just the on-mass-shell matrix elements of the
field operators which completely describe the dynamics of the theory and e.g. contain
explicit information (in their support properties) on the mass spectrum of the field theory.

The assumptions behind the results are the very general physical assumptions of
Kallen and Wightman, i.e. essentially Lorentz-covariance, translation-invariance, "rea-
sonable" mass- and energy-spectrum, and local commutativity. We further need some
moderate integrability- and boundedness-properties of the vertex function. It is shown that
the formalism can be extended to cover all cases of at most polynomial increase of the
vertex function in asymptotic directions inside the Kallen-Wightman holomorphy domain.

The kernel functions in the representation formulas can be explicitly seen to result
in possible singularities only along the physical-region-cuts, i.e. from the contributions
of the corresponding physical states, as well as along the more complicated Kallen-Wight-
man boundary-surfaces of the holomorphy domain, which correspond to the so-called
"anomalous cuts".

The kernel functions in the second version above are closely connected to simple
perturbation theoretical functions.

1. Introduction

The notion of causality, in more or less sophisticated mathematical
formulation, has had far-reaching implications on elementary particle
physics.

Thus assumptions of causality, combined with some further physical
hypotheses and formulated in field theoretical language, imply analyticity
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properties of different physical quantities such as e.g. scattering- and
production-amplitudes, form factors etc. The analyticity properties can
then be explored to relate the parameters of different processes to each
other. The methods employed in that connection can usually be traced
back to the use of (complex) contour-integrals of the analytic functions
in question.

Well-known examples of such procedures are different integral
representation formulas, e.g. the dispersion relations for the forward
scattering amplitudes. As a rule the integrand of the representation
formula in question can be factorised unambiguously into a "kernel
function" and a "weight function"; or, anyhow, it can be written as a
sum of terms with that general appearance. Then the kernel function
will contain, broadly speaking, the analyticity properties derived from
the above-mentioned general physical assumptions, while the weight
function will contain the dynamical parameters of the specific process.

In the case of the forward dispersion relations the kernel function
is as is well-known, actually a "Cauchy denominator" and the weight
function is essentially the measurable cross section for the process.

It is further known that many physical quantities may be continued
analytically as functions of more than one variable and that the func-
tions may exhibit analyticity in large domains in the product space of the
complex planes of these variables.

Due to the complications, met in the theory of analytic functions of
several variables, the rather far-reaching implications of such analyticity
properties have as of now only been partly available. For the case of the
vertex functions, which via field theoretical reduction technique are
related to different form factors, Kallen and Wightman have explicitly
constructed a domain of holomorphy [2]. The basic assumptions of
their paper are essentially that the field theory in question should admit

1. Lorentz-covariance and translation-invariance.
2. A "reasonable" mass spectrum.
3. Causality in the form of local commutativity.

The third assumption is of fundamental importance both because
of its necessity for the interpretation of the reduction formulas and for
its far-reaching implications.

In an earlier paper, hereafter called I [1], we have used the results
of Kallen and Wightman [2] to construct representation formulas,
"one-dimensional dispersion relations", for particular values of the
arguments of the vertex function. The domain of validity of these represen-
tation formulas can be described as neighbourhoods of the "axiomatic"
boundary of the analyticity domain, i.e. the above-mentioned Kallen-
Wightman domain (hereafter called Dκw). To be specific the vertex
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function is considered close to the intersection between one of the
physical-region-cuts, i.e. close to positive real values of one of the con-
ventional scalar variables, and one of the "complicated" Kallen-
Wightman boundary surfaces. The physical-region-cuts occur as
reminiscences of the corresponding two-point-function boundaries
(cf. Section 7). The more complicated Kallen-Wightman boundaries are
often referred to as "anomalous cuts".

The dispersion relations constructed in that way are "one-dimen-
sional" in the sense that the occurring integrals are effectively one-
dimensional. In this case, too, the kernel functions are Cauchy denomi-
nators, while the weight functions are for the momentum-space function
the on-mass-shell matrix elements of the field operators. In that way
both the detailed dynamics and e.g. the mass spectrum of the field theory
enter directly into the representation formulas.

In this paper we will extend the results of paper I to more general
situations.

Thus the vertex function will be described by representation formulas,
"two-dimensional dispersion relations", which are valid for arbitrary
complex values of two of the three conventional scalar variables. The
third variable is, just as in paper I, evaluated just above or just below the
corresponding physical region cut, i.e. close to an arbitrary — but fixed —
real value.

The term "two-dimensional" is used to indicate that the formulas
contain integrals along different two — (real) — dimensional "contour
surfaces" in the product of the complex planes of the conventional scalar
variables of the vertex functions. We use the Lorentz squares of the
three external energy momentum vectors (fulfilling energy-momentum
conservation) as momentum space variables and the Lorentz squares
of the coordinate-differences between the field-points as the corre-
sponding coordinate-space variables. We will in this paper give several
alternative versions of the two-dimensional dispersion relations.

The first sections, i.e. Sections 2—5, are devoted to the derivation
of a "basic" representation formula, in the sense that the resulting
relation contains all the information that can be inferred from the
above-mentioned "axiomatic" analyticity properties of the vertex
function. The occurring kernel functions in the integral representations
can be explicitly seen to exhibit possible singularities only along the
above-mentioned physical-region-cuts, i.e. for positive real values of the
scalar variables, as well as along the "anomalous cuts", i.e. the above-
mentioned more complicated boundary surfaces of the Kallen-Wightman
domain.

The weight functions in the "basic" representation formula are
combinations of different boundary values of the vertex function along
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the real axes of its arguments. The occurring boundary values are
actually physical in the sense that in all cases of interest the momentum-
space boundary values can, e.g., be expressed in terms of the causal
(i.e. the retarded and the advanced) or the time-ordered functions.
These (distribution valued) functions may then via conventional reduction
technique be related to the different matrix elements of the operators
of the theory. Such connections are discussed in some detail in Section 4
of paper I.

It should, however, be noted that the momentum-space weight
functions in the "basic" formula do not explicitly exhibit e.g. the mass
spectrum of the theory. This is so because the causal and time-ordered
functions in their property of "interpolating quantities" between the
different matrix elements of the theory, are non-vanishing also for values
of the arguments, which do not correspond to a physical process.

In Section 7 it is shown how to exchange the above-mentioned
weight functions to the same kind of weight functions, i.e. the on-mass-
shell matrix elements of the field operators, that are met in the formulas
of paper I. The properties of the weight functions in that way describe
the dynamics in detail and we note especially that their support properties
mirror the mass spectrum of the theory. Some straight-forward integra-
tion then results in a "new" dispersion relation and this representation
formula is also two-dimensional, in the same sense as above. The
occurring kernel functions turn out to be closely related to different
(simple) perturbation theoretical functions. This is made evident in
Section 8 where some further comments and extensions are included.

We would like to stress the great similarity between the above-
described results for vertex functions, i.e. three-point functions, and the
well-known Kallen-Lehmann [11] representation formula for two-point
functions. In both cases, the occurring weight functions are the on-mass-
shell matrix elements of the field operators and the kernel functions are
simple perturbation theoretical functions.

We have made some simplifying assumptions on the "asymptotic"
behaviour of the vertex function in connection with all the formulas
mentioned so far. Thus the vertex function is supposed to fulfil certain
boundedness conditions in different directions "around infinity" in the
variable space (inside the holomorphy domain) in order that the occurring
integrals should converge. In Section 6 it is shown that the same kind
of representation formulas can be derived as long as the vertex function is
asymptotically at most polynomially increasing. Such relations are of the
kind usually called "subtracted dispersion relations".

Due to the similarity between the properties of the momentum space
vertex function (here called G) and the corresponding coordinate-space
vertex function (F) the same kind of relations are valid in both cases.
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We will for convenience use momentum-space concepts in the
derivations of the formulas and only in the end comment on some
differences in case the corresponding coordinate-space notions are used

We will further just as in paper I only consider a scalar field theory
in order to simplify the notations as much as possible. On the other hand
this "model theory" will in order to spell out the most general situation
for the three-point function contain three different scalar fields.

2. The Methods used in Deriving the Dispersion Relations

In this section we will give a brief survey of the methods employed
in the following sections, Sections 3-5.

The dispersion formulas will be derived in two steps. In each step
we will rely upon the explicit appearance and the properties of the
axiomatic holomorphy domain Dκw constructed by Kallέn and Wight-
man. In Section 2 of paper I we have briefly discussed the appearance of
the boundaries of the domain Dκw and both in the original paper [2]
and elsewhere [3] there exist extensive pictorial descriptions of it.

The first step of the derivation will be to give representation formulas
which describe the vertex functions along different parts of the above-
mentioned axiomatic boundary. To that end we will use very similar
methods to those employed in paper I. Because the domain Dκw exhibits
a complete symmetry between the three scalar variables of the vertex
function [2], it is only necessary to investigate a few specific cases in
detail. The remaining results can then be achieved by obvious permutation
of indices. We will here in some detail investigate the case when the third
variable (Z3) is kept fixed close to the corresponding physical region cut
(the "Z3-cut") The boundary region that we are interested in is then a
hyper-surface of three real dimensions that actually divides the two-
(complex)-dimensional (i.e. four-real-dimensional) domain of variation
of the two remaining scalar variables into two (disjoint) parts. The
situation is depicted in Figs. 1 and 2 where we have shown the boundary
of the Kallen-Wightman domain Dκw for two arbitrary but fixed
(complex) values of the first scalar variable (Z t) in the complex plane
of the second variable (Z2). The boundary then appears as the two curves
marked (I) and (II) in these figures. In Figs. 1 and 2 we have further
marked out another curve, denoted (III). The curve (III) consists in both
cases of parts of a circle with the radius R.

It is clear that by a suitable combination of the curves (I), (II) and
(III) we can in all cases create a "Cauchy-contour" C(R,ZX) with the
following properties:

(i) The curve C(R, Zx) is closed and continuous and only encircles
points inside the corresponding analyticity domain of the vertex function.
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Thus in the case of arbitrary but fixed value of the variable Zλ in the upper
(Fig. ί) or the lower (Fig. 2) half complex plane, only such values of the
variable Z 2 which are inside the domain Dκw (the unshaded areas) are
encircled.

(ii) In the limit when the radius R tends to infinity, the limiting curve
C(oo, Zx) in particular encircles all such points.

(iii) The curve C(R, Zx) is oriented in a positive sense by means of the
arrows indicated in the figures.

Then the second step in deriving the dispersion formulas is to
represent the vertex function for arbitrary values of the variable Z2

inside the respective curve C(R,Zγ) by means of a complex contour-
integral along C(R, Zx). To that end, we only need the values of the vertex
function G along the curves (I), (II) and (III). In the special case when
we can neglect the contribution from the curve (III) in the limit when R
tends to infinity we deduce that we only need the values of G along the
curves (I) and (II), i.e. just the values of G along the "finite" parts of the
Kallen-Wightman boundary. These values are, however, the same as
those which are achieved in the above-mentioned "first step". We can
consequently by combining the integral relations from the first and the
second step achieve a resulting formula for the vertex function in which
only the boundary values on the real axes of its arguments occur.

Some details for the first step in the program is given in Section 35

and the corresponding discussion for the second step occurs in Section 4.
The above-described formalism is, however, unsatisfactory in two

different ways. We first of all note that a certain asymmetry between
the arguments Zx and Z 2 results out of the very method of derivation.
Such an asymmetry must of course due to the above-mentioned actual
symmetry of the domain Dκw be only fictitious. Secondly, we note that
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the resulting formulas actually seem to imply the existence of possible
singularities not only along the positive real axis of the variable Zx

(i.e. the corresponding physical-region cut) but also for negative real
values of the same variable, irrespective of the values of the variable Z 2 .
According to the results of Kallen and Wightman there are no such
singularities and a closer investigation tells us that these anomalies also
stem from the method of derivation.

In Section 5 it is shown that the "symmetrisation procedure" which
solves the first-mentioned difficulty also results in a final formula for the
vertex function which explicitly exhibits the "correct" analyticity
properties.

3. The Vertex Function along the Boundary
of the Kallen-Wightman Domain

In this section we will give a few details of the first step in the deriva-
tion of the dispersion relations.

We will show how to represent the vertex function for values of the
arguments in the neighbourhoods of the boundaries of the domain Dκw.
The resulting dispersion integrals will contain the boundary values of
the vertex function solely along the real axes of the variables. The methods
which are employed are very similar to the ones exhibited in some
detail in paper I.

In paper I we used the results of Kallen and Wightman to prove
that the four functions Γ ± ( 3 ) and y± ( 3 ) are analytic in the whole complex
plane of the variable Z l 5 except for the real axis:

,C3±) r>0, C3>0
ι ' (i)

α + j8=l ,α>0, j8>0,C 3>0

(cf. Sections 3 A and 3B of paper I).
The functions Γ ± ( 3 ) and y± ( 3 ) are equal to the vertex function G

evaluated for particular values of the three scalar arguments.
The third argument of the vertex function is in all cases above chosen

to be close to positive real values, in particular just above respectively
just below the corresponding physical region-cut (the infinitesimal
quantity ε will be chosen to be positive).

The second argument is further chosen in such a way, that we
actually consider the vertex function just inside the boundaries of the
axiomatic analyticity domain Dκw derived by Kallen and Wightman.
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In paper I it was pointed out that the choice in Eq. (1) is such that
the vertex function is, e.g., evaluated just "above" (inside Dκw) the inter-
section between the Fi2-snΐίaces respectively the ^-surface oϊ Kallen
and Wightman and the Z3-cut in case we consider the function Γ + ( 3 )

in the lower respectively upper half complex Ci -plane. For the function
Γ~(3) the situation is the same but with the roles of the upper and lower
half complex ζ1 -planes reversed. Finally the functions y±{3) describe in
a similar way the vertex function close to the intersection between the
same physical region-cut and the "axiomatic" singularity surfaces called
F[z and F ^ by Kallen and Wightman. In ail cases the limit ε-+0
corresponds to the values of G just on the boundary. The above-described
analyticity properties of the functions Γ ± ( 3 ) and 7 ± ( 3 ) can because of
Cauchy's theorem be employed to carry through different contour-
integrals. Thus the following formulas are e.g. valid for the functions
Γ± ( 3 )(cf. Eq.(ll) of paper I):

r 1 Ί Γ ^ d ζ 1 ^ ( ζ 1 r ^
2πι Λo ζi-Zi \ r - ζ

= Γ ± ( 3 ) (Z l 5 r ,C 3 ) lmZx>0 ( 2 )

- 0 I m Z j < 0 .

We have in connection with Eq. (2) assumed that the limiting relations

are fulfilled for n = 0. This is, however, not a severe restriction. According
to the construction in connection with Eqs. (18) and (19) in paper I
similar formulas, subtracted dispersion relations, can be derived as long
as the limit relations in Eq. (3) are fulfilled for a finite integer n. The
corresponding formulas do not contribute much more than a certain
notational complexity to the situation and vre will heie foτ simplicity
only discuss the case when Eq. (3) is fulfilled for n = 0. A more general
case is discussed in Section 6.

If the parameter r in Eq. (2) is varied inside the "allowed region"
from r = 0 to r = oo Eq. (2) represents the vertex function along the curve
marked I in Fig. 1. This is the relevant boundary of the domain Dκw for
the case lmZ1 > 0 , I m Z 2 > 0 . The argument Z 2 is then defined by the
relation (cf. Eq. (1)):

{Zί-r)(Z2-r) + rζ3 = 0; r > 0 (4)

which is, actually, the analytic expression for the curve I in Figs. 1 and 2.
With a similar limit-assumption as in Eq. (3), the following formulas are
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valid for the functions y±(3) (cf. Eq. (26) of paper I):

T ί -7
i ^ i

= 0 I m Z ^ O .

If the parameters α and j8 are varied (fulfilling the conditions α + β = 1,
α>0, β > 0 (cf. Eq. (1))), Eq. (5) describes the vertex function along the
curve marked II in Fig. 1, i.e. the corresponding relevant boundary of
Dκw for the case ImZ1 > 0, ImZ2 < 0. The argument Z 2 is then defined by

(xβζ3~aZ2-~βZ1=0; α>0, β>0 α + j8=l. (6)

Eq. (6) is the analytic expression for the curve II in Figs. 1 and 2. Eqs. (2)
and (5) give a complete description of the vertex function along the
relevant boundaries of Dκw for the case lmZι >0, i.e. for the situation
depicted in Fig. ί.

We note that the integrals in Eqs. (2) and (5) on the other hand
vanish in case lmZί < 0, because there is in that case no pole-contribution
from the interior of the integration curve.

Completely equivalent formulas can be developed for the case
lmZί <0, i.e. for the case depicted in Fig. 2.

The formulas corresponding to Eq. (2), i.e. to values of the arguments
along the curve I in Fig. 2, are (cf. Eq. (12) of paper I):

{7)

= -Γ±(Zι,f%ζ3)=-G(Z1,Z2,ζ3±iε) ImZ 1<0;Z2 = r + - / % -
r-Zi

= 0 I m Z ^ O .

The formulas for the vertex function along the curve II in Fig. 2 are in
that case (cf. Eq. (5) of this paper and Eq. (26) of paper I):

= -y±(Zua,β,ζ3)= -G(Zl9Z29ζ3±iε),

= 0 ImZ^O.
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We note the appearance of the minus signs in Eqs. (7) and (8), which
stem from the fact that all complex integrals must be performed in the
"positive sense". The weight functions occurring in the formulas above
are all of them physical in the sense that they can be expressed in terms
of the causal and time-ordered boundary values of the vertex functions.
This is proved in some detail in Section 4 of paper I, where the well-
known connections between these boundary values and reduction
formalism is briefly touched upon.

4. The Vertex Function for Arbitrary Values of the Arguments Inside
the Kallen-Wightman Domain

The second step in the derivation of the dispersion relations is to
represent the vertex function for arbitrary values of the complex variables
Z x and Z 2 inside the domain Dκw by means of its values along the
boundary surfaces, i.e. by means of the functions Γ ± ( 3 ) and y± ( 3 ) of
Section 3.

We will start by fixing the variable Z1 in an arbitrary position in the
upper half plane. Such a situation is described in the complex plane of Z 2

in Fig. 1. We note that by varying the parameter α from the value α = 0
(β = 1) to the value α = 1 (β = 0) the curve II is traversed from infinite
values of Z 2 up to the origin. This defines a direction which coincides
with the positive orientation according to the arrows in Fig. 1, i.e. the
requirements of property (iii) in Section 2. Similarly the curve I is traversed
in the corresponding positive direction by varying the parameter r from
the value r = 0 to the value r = GO. We may now introduce the Cauchy-
contour C(R,Z1) described in Section 2 with the properties (i)-(iii).
With a self-explanatory notation we write for an arbitrary value of Z 2

inside the curve C(R,ZX) when lmZ1 > 0:

G+ = G+(I) + G+(II) + G+ ( Π I ) . (9)

We will here assume that the contribution from the circle III can be
neglected in the limit when the corresponding radius R tends to infinity
(cf. property (ii)):

G+ ( Π I ) = 0. (10)

In Section 6 it is shown how a more general situation can be incor-
porated inside the formalism.

22 Commun math Phys., Vol. 25
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Then we may write in the limit R-^oo

r-Z,
-Z,

-2 Mdζ1dζ2κKζ1,ζ2,ζ3;z1,z2)G(ζ1 + ie',ζ1
±iε), (11)

(2πί)2

We have here in order to simplify the notation introduced the kernel-
functions Kι and Kn defined by:

K" =

' V r-Z,

((r-Zι)(r-Z2) + i

— a — β) δ(aβζ3 — aζ2 — βζt)

, (13)

(14)

In the second lines of Eqs. (11) and (12) we have introduced the representa-
tionformulas in Eqs. (2) and (5) for the functions Γ ± ( 3 ) and y± ( 3 ).

We note that the right-hand side of Eq. (9) defined by Eqs. (10), (11)
and (12) actually vanishes unless I m ( Z 1 ) > 0 and the couple (Zί,Z2) is
chosen inside the corresponding Kallen-Wightman domain Dκw (i.e. the
unshaded region of Fig. 1). The reason is that unless both of these con-
ditions are fulfilled there is no polecontribution from the interior of the
corresponding "contour-surfaces" (cf. the second lines of Eqs. (2) and (5)):

Consequently we may write

(15)

Z2;ζ3±iε) if

and {ZuZ2)eDκw

0 in other cases .
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Very similar formulas can be developed for the case when \mZγ < 0.
A typical such situation is described by Fig. 2. We note, however, that
in order to keep the positive orientation for the corresponding Cauchy-
contour C(JR, Z x ) the curves I and II must be traversed in the opposite
direction compared to the situation depicted in Fig. 1. The formulas
corresponding to Eqs. (9), (11) and (12) are then for the case IVΆZ1 < 0

Gt-) = G~JV + G-Jl) (16)

ί 7

(17)

Γ JJ dζx dζ2 Kι(ζu ζ2;ζ5;Zu Z2) G(ζλ - iε\ ζ2 - iε\ ζ3 ± iε)

We have also in this case assumed that the contribution from the curve
(III) can be neglected in the limit when the radius R tends to infinity
(cf. Eq.(lO))

G;<UI> = 0. (19)

We note the appearance of the minus signs in the first lines of Eqs. (17)
and (18) as compared to Eqs. (11) resp. (12). These minus signs are due
to the fact mentioned above that the integration curves in order to
keep the positive orientation have to be traversed in the opposite direction
compared to the earlier case. Due to the minus signs in Eqs. (7) and (8)
there is, however, a compensation in the second line of Eqs. (17) and (18).
In that way the only difference between Eqs. (17) and (18) respectively
Eqs. (11) and (12) is the appearance of boundary values of the vertex
function G with different signs of the limiting imaginary parts. That is,
however, enough in order for a relation similar to Eq. (15) to be valid also
for the function G(~} defined by Eqs. (16) and (19):

G ί - ) ( Z 1 , Z 2 , ζ 3 ± t ε ) - G ( Z 1 , Z 2 , ζ 3 ± i ε ) if imZ, < 0 ; {Zί,Z2)eDκw

= 0 in other cases . (20)
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From Eqs. (16) and (20) we finally deduce that we may write for the
vertex function G for all (non-real) values of the arguments Zί and Z 2

inside the domain Dκw, i.e. the axiomatic analyticity domain of the vertex
function, when the third argument is close to real positive values:

G(ZUZ2, C3 ± iε) = G{+)(ZUZ2, ζ3 ± ίε) + G{~){ZUZ2, ζ3 ± ίε)

± *ε) + G(Ci - iε\ ζ2 + ίε", C2 ±

5. The Symmetries and the Singularities of the Dispersion Relation

In Eq. (21) we have exhibited the vertex function by means of integrals
containing on the one hand combinations of (physical) boundary values
of the vertex function and on the other hand the two kernel functions,
Kι and Ku which are defined in Eq. (13) respectively Eq. (14).

The method of derivation has, however, introduced a certain asym-
metry between the indices 1 and 2, i.e. between the occurrence of the
arguments Zx and Z 2 , respectively the integration variables ζλ and ζ2.
This asymmetry, which appears in the expressions for the kernel func-
tions Kι and Ku, but not in connection with the occurring boundary
values of the vertex function, is of course only fictitious.

There is a further anomaly in the expressions for Kι and Ku in the
fact that the "Cauchy denominator" (ζ1— Z 1 ) ~ 1 can be seen to occur
also for negative values of the integration variable ζγ. Consequently
the integrals of Eq. (21) may exhibit singularities also for negative values
of the variable Zx irrespective of the values of the variable Z 2 .

In this section we will show that the kernel functions Kι and Kn can
be rewritten as the sums of several terms. One of these terms for each
of the kernel functions exhibits explicitly both the expected symmetry
between the indices 1 and 2 as well as the "correct" analyticity properties.
The remaining terms will be proved to give vanishing contributions to
the representation formula in Eq. (21).

We will investigate this problem in some detail for the kernel function
Kι. To that end we note the following equalities which stem from a
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partial-fraction-expansion in the variable Zγ:

321

1

•ίi)

(r-Z1)(r-Z2)

r C1C3

(22)

z2

C s Z 2
r 7

r-Z,
r-Z,

|

C 2 -Z 2 ( r-Zi)( r-Z 2 ) + K

1
+( ς 1 - Z 1 ) ( ζ 2 - Z 2 )

To go from the second to the third line in Eq. (22) we have repeatedly
made use of the relation between the integration variables ζ1 and ζ2

coming from the ^-function in the integrand of Eq. (13):

rζ3 + (r-ζι)(r-ζ2) = 0. (23)

We further note the equality:

r-Z,-
r-Z, ζ3-Z1 1

r-Zι

(24)

as well as a similar one with index 1 exchanged to index 2.
By a combined use of equalities like the ones occurring in Eqs. (22)

and (24) we can write the integrand in the defining Eq. (13) for the kernel
function K1 as a sum of three terms, S1, R\ and R\:

{r-Zί){r-Z2

= S1 + ΛΊ + R\ .

The quantity Sι is then defined by

:!-r)β(r-C2)

(25)

S —
:x-r)©(r-C2) C 3 - Z 1 - Z 2

-r)
(26)
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We note that the term Sι is obviously symmetric under the permuta-
tion of indices 1 and 2. The term Sι further, because of the occurring step
functions, exhibits possible singularities only for non-negative real
values of the arguments Zi and Z 2 and for values of the arguments on
the boundary curve I of Eq. (4).

The remaining two terms R), j = 1, 2 in Eq. (25) are defined by:

Λ 2r + ζ3-Z,-Z2
1 V {r-Z1){r-Z2) + rζ3 r-Zj (27)

-r)Θ{r- ζ2) - Θ{r - ζ,) Θ(ζ2 - r)] ,

^Mrτ *(£> - ') θ(r - cx). (28)
) ( ς Z )

We will now show that the integral in Eq. (21) actually does not get
any non-vanishing contribution from R)j = 1, 2. We start by investigating
R\. We note that the quantity R\ only depends upon the integration
variables ζ1 and ζ2 through the step functions in the last parenthesis of
Eq. (27). The contribution from R\ to the integral in Eq. (21) will be
called J\ and we get:

(2πί)2 i [2 (r~Zί)(r-Z2) + rζ3 r-Z,

(29)

+ G(ζ1- iε\ ζ2 - iε", ζ3 ± is) lθ(ζ1 - r) Θ(r - ζ2) - Θ(r - ζx) Θ(ζ2 - r)] .

In a few earlier papers [4-6] we have investigated the consequencies
of certain boundedness properties for the vertex function combined with
the Kallen-Wightman analyticity properties. The results can be
formulated in terms of relations of the kind usually called sum rules.
Comparing Eq. (29) to the sum rules of Eqs. (14) and (15) of Ref. [4]
(cf. Eq. (Al) of appendix A in Ref. [5]) as well as to the sum rules of
Eqs. (26) and (27) of Ref. [6] (cf. the remarks made in connection with
Eq. (16) of I) we note that the sum rules imply the vanishing of the integral
J\ under the same boundedness conditions that make Eq. (21) into a
well-defined expression.

The contribution from the quantity Rι

2 to the same integral vanishes
for different reasons and partly due to a compensating term from the
kernel function Ku. We note that the integration domain for ζx and ζ2 in
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connection with Rι

2 in Eq. (28) can be described as the intersection
between the surface in Eq. (23) (because of the δ-ϊuncύon) and the two
(non-overlapping) domains D2 and Tλ:

D ? : ί 3 > 0 , Ci >0, C7>(

T1:C3>0, C^O, £2>0.

We may then replace the step functions Θ(ζ2 — r)Θ(r — ζ1) in the
expression for Rι

2 in Eq. (28) by the sum of the characteristic functions
for the domains D2 and 7i which we will call χ(D2) respectively #(7^).

The integration variable r occurs in connection with JR2 in the δ-
function with the argument of Eq. (23) and in the combination
(2r + ζ3-ζx-ζ2).

We then get as contribution to the integral for Kι in Eq. (13) from the
integrand Rι

2:

J dr δ((r - d ) (r - ζ2) + rζ,)R\ = J dr\_χ{D2) + ^(7,)]
o

( ζ 1 - Z 1 ) ( ζ 2 ~ Z 2 )

To reach this result we note that the two roots of Eq. (23) with respect
to the variable r, r+, which may contribute according to the <5~function,
fulfil

In the integration range D2 both roots contribute because in D2

r + > 0 , r _ > 0 (33)

but in the integration range Tx only the root r+ can contribute because
in Tt

r + > 0 , r _ < 0 . (34)

Due to the well-known fact that the boundary values of the vertex
functions are the same above and below the negative real axis of the
arguments we conclude that in the integration range T l5 where the
variable ζt is negative according to Eq. (30), the following equality
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is valid:

χ{Tx) {G(ζι + iε', ζ2 + iε", ζ3 ± iε) -I- G(ζι — iε', ζ2 — iε", ζ3 ± iε)}
(35)

= χ(Ti) {G(Ci — iε', C2 + iε", C3 ± iε) + G(ζx -f iε', ζ2 — iε", ζ 3 ± iε)} .

The combination of boundary values in the last line of Eq. (35) is, however,
the same combination that occurs together with the kernel function Ku

inEq. (21).
An investigation of the kernel function K11 along the same lines as

we have done for the kernel function Kι above will reveal a contribution
to the integration range Tx which apart from a negative sign is equal to
the one in Eq. (31).

We may, consequently, deduce from this fact and from the equality
in Eq. (35) that the sum of these contributions vanishes. Consequently,
the only non-vanishing contribution to the kernel function Kι comes
from the term S1 in Eq. (26).

The corresponding "symmetric" non vanishing contribution to the
kernel function K11 is S":

Su(ζuζ2;ζ3;oc,β;ZuZ2)

Γ 7 RY ΓJ 7 (17 C\f\\

C 2 -Z 2 aβζ3-aZ2-βZι '

We note that according to the step functions in Eq. (36) the function Sn

may exhibit singularities only for values of the arguments Z1 and Z 2

along the positive real axes as well as along the boundary curve II of
Eq. (6). The resulting representation formula for the vertex function G
is then finally:

G(Z,,Z2;ζ3±iε) = - ^ j Γ f f <*Ci ^ 2 {J drδ(rζ3 + (r-ζj(r-ζ2))

• S'(Ci, ίi C3 '•; ZUZ2) [G(d + iε', ζ2 + iε", ζ3 ± iε)

G(ζ1-iε',ζ2-ic",ζ3±iε)] ( 3 7 )

Hdadβδ{l-u-β)δ(aβζ3-aζ2-βζ1)SP{ζ1,ζ2;ζ3;a,β;Z1,Z2)
0

• [G(d + iε\ C2 - iε", C3 ± iε) + G(ζι - iε', ζ2 + iε", C3 ± iε)] \.
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6. Subtracted Dispersion Relations

We have implicitly assumed certain asymptotic boundedness
properties of the vertex function in connection with all the formulas
derived so far. Thus the vertex function must vanish "sufficiently fast"
in asymptotic directions (inside the domain Dκw, however) in order that
e.g. Eq. (3) should be fulfilled with the power n = 0. Similar requirements
are also implied by our neglect of the contributions from the integrals
along the curve III to Eqs. (9) and (16) in the limit when the circle radius
R-+QO (cf. Eqs. (10) and (19)).

We will now show that the formalism can with minor changes be
extended to cover more general asymptotic behaviour of the vertex
function G.

To that end we consider the set of related functions gnι + 1>M2 + x defined
for all positive integers nί and n2 by

0nί + i,n2+i(ZuZ2, ζ3 ± iε; ξ1,ξ2)

(38)
Z2,ζ3±iε)

-G(ξί9Z2,ζz±iε)-G(Zl9ξ2,ζ3±iε)

It is convenient to extend the definitions in Eq. (38) to all non-negative
integers by

0 o o ( Z l 5 Z 2 , C3 ± iε; ξu ξ2) = G(ZUZ2, ζ3 ± iε)

9oi(ZuZ2, C3 ± iε; ξί9 ξ2) = {G(ZUZ2, ζ3 ± iε)- G(ZU ξ2, ζ3 ± iε))

*{Z2-ξ2Y
ι (39)

9io(Z1,Z2,ζ3±iε;ξuξ2)^(G(ZuZ27ζ3±iε)-G(ξί,Z2,ζ3±ίε))

We will consider the functions gnurϊ2 only for values of the "subtraction
points" ξ1 and ξ2 on the negative real axis. The reason for this choice is
that when one of the arguments (in our case the third argument) is fixed
close to real positive values and one of the arguments is fixed and negative,
then the vertex function, considered as a function of the remaining third
scalar variable, is analytic in the whole complex plane, cut along the
positive real axis. This is a consequence of the analyticity properties
proved by Kallen and Wightman [2].
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The following two properties of the function gni + lfn2 + 1 are then
immediate results from the defining Eq. (38) and the remark made above:

1. If the parameters {ξl9ξ2) are arbitrary negative numbers then
for all positive integers nx and n2 the functions gnuΆ2 are analytic in the
variable Zγ and Z 2 in the same domain as the vertex function G, i.e. a
kind of "generalized vertex functions".

2. In the case when the vertex function G is at most polynomially
increasing in asymptotic directions inside the analyticity domain, then
by a suitable choice of (i.e. for sufficiently large) integers nί and n2 thδ
related function gnuni can be made to vanish in the same directions.

Consequently, we deduce that even when the dispersion relations
for G do not exist due to lack of convergence of the integrals, the
representation formulas may have a meaning for one of the related
functions gnutl2 with the integers nί or (and) n2 larger than zero. We will
from now on assume that this is the case and that we may represent the
function gnutl2 by an application of the formula in Eq. (37). We further
note the following recursion relations, that can by straight-forward
algebra be proved to be valid for all non-negative integers n1 and n2:

9 n i ί n 2 ( Z l > Z 2 > ί 3 ± * ε ; ί l , ξ l ) = g n ί t n 2 ( ξ u Z 2 > C 3 ± ™\ £ l > £ 2 )

+ Q n u n J Z u ^ ί 3 ± i ε ; ξl9ξ2) - gnun2{ξu ξ29 ζ 3 ± i ε ; ξl9ξ2) ( 4 0 )

(we note the similarities between Eq. (40) and Eq. (38)).
Due to the remark made after Eq. (39) and property 1 above, we

conclude that e.g. the function gnun2(ξί,Z29ζ3±iε;ξί9ξ2) = gnun2{Z2)
is analytic in the whole complex plane of the variable Z 2 ? cut along the
positive real axis, if the parameters ξί and ξ2 are negative. This property
can be used to represent the function gnun2 by means of a complex
contour-integral in a similar way as we have done repeatedly in Sec-
tions 2-5. Neglecting for the moment all questions of convergence we
may write:

1 AY

β n i , n 2 ( Z 2 ) = ^ T ί ζ _ Z (gnun2(ζ2 + ίε)-gnun2{ζ2 - i ε ) ) . ( 4 1 )

The occurring weight function in the integral of Eq. (41) has actually
a simple interpretation in terms of the vertex function G. To see that in
some detail we will start to consider the case nι = n2=l, and from that
case the general situation becomes evident.
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The discontinuity of the function gn(Z2) across the positive real
axis of the variable Z 2 is easily seen to be

0u(£i> C2 + iε, C3 ± *ε; £i, £2) — ̂ n(<Si, C2 ~ *ε, C3 ± iε; £1, £2)

(42)

C / C ± ^ ) )

The discontinuity is consequently, except for the (non-singular) denomi-
nator, a derivative of the discontinuity of the vertex function itself
across the same physical-region-cut. In this case two of the three argu-
ments of the vertex function take on positive values in the limit, while the
third one is negative. According to the considerations in Section 4 of
paper I the indicated boundary values are physical in the sense that they
can be expressed in terms of the causal respectively the time-ordered
functions. The discontinuity in Eq. (42) has actually a simple expression
in terms of the matrix elements of the underlying field theory. The result
for the general case with arbitrary integers nί and n2 can be immediately
derived from Eq. (42) by a suitable number of derivatives (cf. Eq. (38)).

In case Eq. (41) should need a "larger convergence power" in the
integrands the corresponding procedure can instead be carried out for
e.g. the function gniNl with a sufficiently large integer JV2. In that case
the following recursion relation, valid for all non-negative integers mι

and ra2, is of interest:

9mum2{Zl) = Qmumittl) + (Z2 ~ ξ2) 9mitm2+l(Z2) • (43)

By means of Eq. (42) and if necessary a repeated use of Eq. (43) the
function gnin2(ξ1,Z2, £3 ± iε; ξuξ2) in the recursion relation of Eq. (40)
can be written as the sum of a polynomial in the variable Z 2 and a
dispersion-integral only containing physical values of the vertex function.

The same procedure can be performed to express the function

9nίtn2(
zi>ζ2>ζ3±ίε'>ζι>ξ2) i n E c l ( 4 0 ) i n t e r m s o f a corresponding

polynomial and a similar dispersion relation.

It is now clear that by a repeated use of Eq. (40) and the procedure
described above we may represent even a polynomially increasing vertex
function G for arbitrary complex values of the arguments Zγ and Z 2 .
The resulting expression is the sum of a polynomial in the variables Zγ

and Z 2 , together with "one-dimensional dispersion relations" as in
Eq. (41) and "two-dimensional dispersion relations" as in Eq. (37). This
is the general representation formula for all vertex functions which are
at most polynomially increasing in asymptotic directions.
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7. Dispersion Relations with On-Mass-Shell Matrix Elements
as Weight Functions

The representation formula of Eq. (37) does in principle exhibit all the
analyticity properties of the vertex functions which are derived in the
paper by KaΊlen and Wightman.

Thus, the kernel functions in these relations contain possible
singularities only for values of the arguments along the boundary
surfaces called I and II of Eqs. (4) and (6) respectively, as well as along
the positive real axes of the variables Zx and Z 2 . We note, especially,
that these latter singularities, which are generally known as "physical-
region-cuts", do seemingly start at the origins, i.e. at Zj = 0 j=l,2.

Such physical-region-singularities do, broadly speaking, correspond
to contributions from the different physical states of the theory. In that
way the statement that the physical-region-cuts start in the origins is a
reflection of the generality in the Kallen-Wightman spectrum condition,
i.e. the sole requirement that the occurring masses and energies in the
theory are non-negative numbers.

In a theory containing no zero-mass particles we would, however,
expect that the corresponding physical-region singularities start with an
isolated pole-singularity corresponding to the one-particle-state situated
at the square of the particle mass. Only "further up", i.e. further along the
positive real axis would branch-points for the physical-region cuts occur,
corresponding to the thresholds from the different scattering states.
There is, consequently, a ''mass gap" in the general case. This property is,
however, not obvious in the formula of Eq. (37) because the weight
functions in the dispersion relations, i.e. the different boundary values
of the vertex function G are in general non-vanishing also for values of the
arguments that do not correspond to physical states.

In paper I we have shown however, that particular combinations of
such boundary values have these physical and dynamical support
properties.

In this section we will show how to express the boundary values
required in connection with Eq. (37) in terms of the on-mass-shell
matrix elements of the field operators which do explicitly exhibit the
mass spectrum of the field theory. We will be satisfied, just as in paper I,
to discuss a theory which contains three scalar fields A, B and C and we
will not specify any dynamical relations between the fields.

More general cases as e.g. spinor-, vector- and higher tensor-fields,
can be discussed in a similar way but with a corresponding increase in the
complexity of the notation.

There are two particular on-mass-shell matrix elements of interest
in connection with the investigations in paper I, i.e. the quantities
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GB(a1,a2, α3) and GA{aι,a2, a3) defined by

GB(-Pi,-(Pi+P 3) 2> -Pi)

= (2π)6 X {β(-p

• < 0 | C | m > < m | β | π > < « μ | 0 > } ,

Λ-(P2 + p3)
2>-pi, -pi)

(2π)6 X { β ( - p 2 ) © ( P 3 ) ^ ( P 2 + P » ) 5 { p 3 - p J
| n > | m > (45)

)

<0|C|m><m|/t |n><n|J3|0>}.

We note that the two terms occurring inside the respective parenthesis
{...} are CPT - conjugate terms and that they both occur because of the
well-known CPT — invariance properties of a scalar field theory fulfilling
the physical assumptions of Kallen and Wightman mentioned in Section 1.
The indicated sums in Eqs. (44) and (45) should be performed over
complete sets of states \n} and |m> with energy-momentum-vectors pn

and pm respectively. We use the notion of discrete sums in connection
with such states because in order to avoid the well-known difficulties
implied by Haag's theorem the "conventional method" with a finite
quantisation volume with periodic boundary conditions is introduced.

The step function with a vector argument is used to indicate that the
vector belongs to the forward light-cone.

The occurrence of such step functions in Eqs. (44) and (45) is a reflec-
tion of the above-mentioned spectrum conditions of the theory.

The reason for the use of negative-light-cone vectors is our wish to
keep the symmetrical energy-momentum conservation relation:

ΣPj = 0 (46)

We note that the vector ±p3 (with the sign chosen in such a way that
the energy component is positive) occurs only as the energy-momentum
vector of a state with the quantum numbers of the C-field in both Eqs.
(44) and (45). In the same way the vectors ±px and ±p2 are related to the
field A and the field B in Eq. (44) respectively Eq. (45). We therefore
deduce that the distribution-valued functions GA(aί9a2,a3) and
GB(aί,a2, a2) have support only for such values of the mass variables
(α2, a3) and (α1? α3) respectively that correspond to physical states with
the "correct" quantum numbers.
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The third scalar variable, i.e. the variable aλ in connection with GA

and the variable a2 in connection with Gβ, corresponds to a momentum
transfer. There is consequently an upper limit of variation for physical
values, e.g. in connection with GB we have the inequality a2 ̂  (j/tfϊ — ya3)

2.
In paper I the discontinuity across the positive real axis of the third
variable of the vertex function is represented in terms of the above-
described matrix elements GA and GB. The formulas are valid for values
of the arguments Zί and Z 2 along the boundary surfaces I and IT of
Eqs. (4) and (6).

For values of the arguments Zγ and Z 2 along the curve I we can
write according to Eq. (69) of paper I:

δGι(Z1,Z2,a3) = G(Z1,Z2,a3 + iε) — G(Z1,Z2,a3 — iε)

= 2πί J daί da2 δ(ra3 + (r- aγ) (r - a2)) I GB(aί, α2, a3) \ - ^ l L

x Θ{a1 — r)Θ{r —

y a1 —

% \ Θ(a
a2-Z2

Correspondingly we can write for values of the arguments Z1 and Z 2

along the curve II:

1 , Z 2 , a3) = G(ZX, Z 2 , a3 + iε)— G(Z 1 ? Z 2 , a3 — iε)

daγ da2 δ(ota2 + βax — aβa3) <GB(a1, a2, a3) ——Θ(a^) (48)

I a Z
+ GA(au α2, a3) L Θ(a2)\ .

We will now investigate the corresponding difference for arbitrary values
of the arguments Zγ and Z 2 inside the Kallen-Wightman analyticity
domain for the vertex function. This quantity will be called Δ G and from
Eq. (37) a representation formula for ΔG can be constructed with

Γ ί ί dζx dζ2 { J dr δ(rζ3 + (r - Ci) (r - C2))
1) [ 0

d + iε', ζ2 + iε", ζ3 + iε) - G(ζt + iε', ζ2 + iε", ζ3 - iε)

+ G(ζι- iε', ζ2 - iε", ζ3 + iε) - G{ζ1 - iε', ζ2 - iε", ζ3 - iε)] (49)

•Sι(ζι,ζ2;ζ3;r,Z1,Z2)+lldadβδ(ί-a-β)δ(aβζ3-oiζ2-βζ1)
0

• [G(d + iε', ζ2 - iε", ζ3 + iε) - G(d + iε', ζ2 - iε", ζ3 - iε)

+ G(ζί - iε', ζ2 + iε", ζ3 + iε) - G(ζx - iε', ζ2 + iε", ζ3 - iε)]
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The main observation is now that the weight functions, i.e. the expressions
inside the square brackets in Eq. (49) can be expressed in terms of the
matrix elements GA and GB by means of Eqs. (47) and (48).

This is so because the required combinations of boundary values in
Eq. (49) are easily seen to be:

==δ(rζ3+(r-ζ1)(r-ζ2))4πi$da1da2da3δ(a3-ζ3)δ(ra3+{r-a1)(r-a2))

GB(a1, a2, a3) \ ι 1 - — Θ(a1 - r) Θ(r - a2) + GA(a1, α2, α3) (50)
\a\ ~ Slip

( _
\a2

respectively

= δ(otβζ3-aζ2-βζ1)4πi$daιda2da3δ(a3-ζ3)δ{aβa3-βaι-aa2)

(G B (α 1 ; f l 2 ; α 3 ) ^ " Θ(r - - ' ^

To get the results of Eqs. (50) and (51), the following well-known relations
for the principal-value distribution are used repeatedly:

i f 1 + 1 ΐ =

 1

 ( 5 2 )
2\a-ζ-ίε a-ζ + ίεj (a-ζ)P'

 { }

If the results of Eqs. (50) and (51) are introduced into Eq. (49), the integrals
over the variables ζί and ζ2 can be carried out. During that process a
few formally undefined expressions occur, stemming from the lack of
sufficient damping in some integrals. A repeated use of relations similar
to the ones in Eq. (29) results, however, in the vanishing of all such
expressions. There is a further problem connected to the use of Eqs. (50)
and (51). In the proof in Section 5 (Eqs. (30)-(35)) that the kernel function
Rι

2 gives a vanishing contribution to the representation integrals, some
specific assumptions are made. Thus among other things we have actually
implicitly assumed that the occurring boundary values of the vertex
function depend only on the scalar variables ζx, ζ2 and ζ3 and that they
are independent of the integration parameters r, α and β.

The expressions for the boundary values occurring in Eqs. (50) and
(51) do seemingly not have these properties and therefore the above-
mentioned proof does not function. It is, however, evident that the
whole question is rather a problem of whether certain changes of orders
of integration are permissible or not. The right to perform such changes
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can be seen to be directly connected to different assumptions on the
properties of the matrix elements GA and GB. We will, however, not
discuss the relations between GA and GB which are implied by the use of
Eqs. (50) and (51) in this publication.

The resulting formula for the function zlG is a two-dimensional
dispersion relation in the same sense as above with the matrix elements
GA and GB as weight functions:

AG(ZuZ2y C3) = ~τy-ψί daι da2{QA(ZuZ2, C3 aua2) GA(aua2, C3)
1 } (53)

+ QB{Zl9 Z 2 , C3 aί9 a2) GB{aua2, (3)}

The kernel functions QA and QB in Eq. (53) turn out to be completely
symmetric in the sense that

QA(ZUZ2, C3 aua2) = QB(Z2, Zuζ3\ a2, ax). (54)

The explicit expression for e.g. the kernel function QB is conveniently
divided into three terms. Each one of the terms is related to one of the
different boundary surfaces of the analyticity region and we will in a
self-explanatory notation call them QB, Qι

B and Qc

B

ut:

4πz °°
Q\ = — f dr δ((r - ax) (r - a2) + r

aι ~ z i o

(55)

(56)

o. dβ δ(ί-a- β) δ(aa2 + βa, - aβζ3)

(57)
*βζ3-«ZΛ (β^βZ "l o (*βζ3«ZΛ _

\ βZ I 8

a1—Zι fl2"^2L o

ίr-ZΛ *
• (ax +a2-ζ3- 2r) log - + \$ dtfdβ <5(1 - α - β)

(58)

• δ{aa2 + βaι - α^ζ3) β(α t ) (αζ3 - — ) x (log
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From a comparison between Eq. (56) and Eq. (26) respectively
between Eq. (57) and Eq. (36) we deduce that the main difference between
the kernel functions of Eq. (37) and the kernel function of Eq. (53) is the
occurrence of some logarithmic factors, as well as the "new" term Qc^\

The results of Eq. (58) are based upon the formulas in Eq. (37) and
these contain intrinsic assumptions on the behaviour of the vertex
function in different asymptotic directions. "Subtracted" versions of
Eq. (53), which are valid for more general asymptotic behaviour of the
vertex function can be developed in the same way as in Section 6. We will,
however, not give any explicit examples because such formulas will in
order to cover the general case contain such a complicated notation that
they will only be of interest as a curiosity. For a particular case, however,
the derivation is straight forward along the lines of Section 6.

8. Concluding Remarks

1. We note that there is a completely different and somewhat more
abstract way to derive such representation formulas for the vertex
function that we have given in Eq. (37) in this paper.

In the mathematical literature there is a procedure called the Berg-
man-Weil integral formulas which is applicable to the specific case under
investigation.

The conditions for the applicability of that procedure are that the
domain of holomorphy of the function should be bounded by analytic
hyper surfaces and that the vertex function should exhibit certain
boundedness properties in asymptotic directions. The first condition is
actually fulfilled for the Kallen-Wightman domain and particular
examples of analytic hypersurfaces are the boundary surfaces I (Eq. (4)),
II (Eq. (6)) and the physical-region-cuts, i.e. the positive real axes of the
variables. The second condition is of a similar nature as the one which
was used as simplifying assumption in Sections 2-5, i.e. that the vertex
function must actually vanish sufficiently fast around infinity.

2. By an explicit use of the above-mentioned Bergman-Weil for-
malism [8] Kallen and Toll [9] have given a representation formula for
the vertex function which is valid when all the three scalar variables are
arbitrary complex numbers (inside the domain of holomorphy, of course).
These authors have given several alternative versions of the representa-
tion formulas. In one of these versions, the kernel function of the integral
formula is the perturbation theoretical function corresponding to the
so-called Mercedes graph [9]. Subsequent investigation has shown that
this particular perturbation theory function can actually be written as a
superposition of functions corresponding to simple perturbation
theoretical graphs [10]. One of the unsolved problems in that connection

23 Comraun math. Phys , Vol 25
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is, however, that the weight functions in these alternative versions of the
Kallen-Toll results have a rather distant and clumsy relation to the
original functions.

It is interesting to note that in our dispersion relations where the
weight functions are known to be the on-mass-shell matrix elements of
the field operators, i.e. Eq. (53), the occurring kernel functions i.e. the
functions QA and QB can likewise be written as the sum (Eq. (55)) of
functions related to perturbation theory functions. Thus, the term Qι

B

in Eq. (56) is closely connected to the perturbation theory function
corresponding to the graph of Fig. 3. In the same way we find (by making
the change of variables ζ3ot = ρ and ζ3β = σ respectively) that the two
terms in Ql

B of Eq. (57) are similarly related to the graphs of Figs. 4 and 5
respectively.

The contribution which we have called Qc

B

ut in Eq. (57) is in turn
related to the "Tripod graph" of Fig. 6.

3. It is immediately clear that the results of Eq. (37) respectively
Eq. (53) can be generalised to the analogous case in which we consider
e.g. the discontinuity across the physical-region-cut for the variable Z x

with the variables Z 2 and Z 3 arbitrary complex. The permutations of
indices, necessary to find the results for that case from the derived one,
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is straight-forward (note in that connection the Remark 2 in Section 6
of paper I), and we will not give the details.

4. Representation formulas for the coordinate-space vertex function
F, similar to the ones derived above for the momentum-space function G,
can be derived in the same way. The main difference is that in the equation
corresponding to Eq. (53) the occurring weight functions are non-
vanishing for all non-negative values of the integration variables. Thus,
even in theories only containing particles with non-zero mass, we expect
to find "light-cone singularities" in connection with the coordinate-space
function.
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