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Abstract. We investigate the problem of a microscopic definition of the surface of
separation between two phases in the special case of the 2-dimensional Ising model. We
show how this leads to a definition of the surface tension which appears, in this context, as
the logarithm of a partition function over a set of random surfaces. We also discuss the
more general problem of defining the surface tension in an Ising ferromagnet with arbitrarily
extended attractive interaction.

1. Introduction

The problem of giving a statistical-mechanical definition of surface
tension does not seem to have been even posed in a completely satis-
factory way mainly as a consequence of our inability to give precise
meaning to the surface of separation of two pure phases and, even worse,
to the very concept of coexisting phases. It is well known that we even lack
a proof of the existence of a phase transition for a continuous system.
However, for lattice systems one can rigorously show that phase-transi-
tions occur under certain conditions, and the phenomenon of phase
separation has recently been so deeply investigated that, as we are going
to show, it is much more hopeful to investigate the problems connected
with the surface tension in these systems.

In fact in a fundamental paper Minlos and Sinai [7, 8], hereafter
referred as MS, have considered a v-dimensional Ising ferromagnet
enclosed in a box Ω surrounded by a layer of spins up and with a fixed
total magnetization:

M = (αm*+(l-α)(-m*)) |Ω| 0 < α < l (1.1)

where m* is the spontaneous magnetization. They have proved that if
the temperature is very low and one picks up at random a configuration
of spins out of the canonical ensemble defined by fixing the total magneti-
zation as in (1.1), then with very large probability (tending to 1 as \Ω\ -• oo)
this configuration will consist of a "drop", roughly square in shape, with
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volume ~(1 — α) |Ω| and with average magnetization ~ — m* surrounded
by a complementary region with volume ~α|Ω| and with average
magnetization ~m*. Furthermore the boundaries separating the spins
up from the spins down are very "short" (i.e. their lengths do not exceed
c0log|Ω| with c 0 a certain positive constant) except one which is the
boundary of the drop with down spins. They have also shown that the
average correlation (suitably defined [3]) inside the drop is the cor-
relation of the pure phase with magnetization — m*, and that the average
correlation outside the drop is the correlation of the pure phase with
magnetization m*.

As a consequence of the MS result it is quite clear that one has to
interpret the large boundary of the drop with volume ~(1 — α) |Ω| as the
surface of separation between the two phases. One also has to conclude
that this separation into pure phases is due to the fact that all the spins
on the boundary of Ω are up (i.e. that there is an infinite magnetic field
acting on the boundary of Ω which favors the formation of the up-
magnetized region near the boundary).

The MS result also makes it possible to give a very natural definition
of surface tension which seems to be quite general, at least for lattice
models, since the MS result holds for a much larger class of models on a
lattice. This definition is the following (see also [6]): "compute" the
partition function Z+(Ω, m, β) of the system enclosed in a box Ω sur-
rounded by spins up and with magnetization m = (2α — l)m*, and
suppose that one can show the following asymptotic form of Z+ (we
denote by/(/J) the free energy of the system):

Z + ( f l m / 0 (1.2)

= exp(/?/(/J) |Ω| + 2vτB\Ω\^ + 2vτ((l - α) | Ω | ) ^ +

for all 0 < α < 1. Then in view of the MS result the quantity 2vτB would
correspond to the effect of the external boundary while 2vτ would in a
natural way correspond to a phase separation effect (since it is α-inde-
pendent).

Though (1.2) provides a very natural definition of surface tension we
shall however follow a slightly different approach based on the same
philosophy which allows an easier solution of some mathematical
problems.

The essential idea of the above construction was the use of a boundary
condition which produces a separation of the two phases into two disjoint
regions with a "well defined" boundary. One can expect that this phase
separation is produced also by the following boundary conditions: con-
sider for simplicity y = 2 and let Ω be a cylinder with N columns and H
rows, and suppose that on the upper base of Ω there is a layer of spins up
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while on the lower base there is a layer of spins down. We may then
expect that in the two phase region a phase separation occurs in the
following sense: a configuration randomly chosen out of the canonical
ensemble with magnetization given by (1.1) will consist of two distinct
pieces separated by a closed line λ going around Ω and such that the region
above λ has volume ~α|Ω|, and the average magnetization in these two
regions is ~ m * and ~ — m* respectively. The lines of separation between
the regions with spin up and the ones with spin down above and below
the separating line should be very small (i.e. should have length not
exceeding c0log|Ω|).

If we "compute" the partition function of the canonical ensemble with
the magnetization and the boundary conditions we are considering, we
should find an expression of the form:

Z + ~(Ω, m, β) = exp(j8/08) |Ω| + 2τ β N + τN + o(N)) (1.3)

where 2τB should be the contribution of the bases, and τ should be the
contribution coming from the (random) line λ separating the two phases.
It should be m-independent (as τB).

One can wonder how to distinguish between τB and τ since now there
is no α-dependence in front of τ. This point will become clear later: by
now we only remark that a possible criterion to distinguish between τB

and τ is to compare (1.3) with the partition function Z + + (Ω, m*, β) with
magnetization m* and boundary spins all up ("partition function of a
pure phase"). If the above picture of the phenomenon of phase separation
is correct Z + +(Ω, m*, β) should be:

Z + + (Ω, m*, β) = expOS/08) |Ω) + 2τ 5 N + o(N)) (1.4)

with the same τB as in (1.3), and so (1.3) together with (1.4) would provide
the definition of τ as:

Γ 1 Z + ~(Ω,m,β)
τ = ̂ ^lo^Ύ^iΩ^7β)' ( L 5 )

We mention that the surface tension in the two dimensional Ising model
with nearest neighbour interactions has been calculated by Onsager,
but his definition is not a priori equivalent to ours because he works with
a boundary condition for which it has not been proved that there is a
strict phase separation [4,10], so, a priori his τ could contain some extra
contribution coming from the fact that the two phases might be mixed.
We shall not be able to solve the interesting problem of comparing (1.5)
with Onsager's value. This is as frustrating as the fact that there is no
proof that Onsager's value for the spontaneous magnetization is the
correct one and not a lower bound to it. Finally we remark that Onsager's
way of defining the surface tension seems to be "ad hoc" for the nearest
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neighbour Ising model, while (1.5) can clearly be generalized to other
models (not necessarily with nearest neighbour interactions) [1].

In this paper we carry out the program of showing that there is a
phase separation if we use the above described boundary conditions on
the 2-dimensional cylinder and if β is large (Section 3). In Section 4 we
show that the limit (1.5) exists and that (1.3), (1.4) hold. In Section 5
we give some concluding remarks about how the results could be
generalized to Ising models with interactions with range larger than 1.

As a consequence of the rather heavy technical work to be done and
to distinguish between the physics and the mathematics involved we
have preferred to write the proofs of most of the statements in appendices
so one can get a clear idea of the meaning and the motivation of the various
steps and results by just reading the text without the appendices. To them
we refer the interested readers and the sceptical ones.

2. Notations

Let Ω be a N x (H + 2) square lattice. We shall think of Ω as wrapped
on a cylinder with base N along the rows.

Suppose the spins on the two bases are fixed and identical: i.e. all the
spins on the upper base are + and all the ones on the lower base are —,
or else all the upper base spins are + and the lower ones are + etc. We
shall refer to these boundary conditions as ( + ,—),( + , + ) , etc.

The Ising model is defined through the energy assigned to each spin
configuration. This energy is obtained as a sum of terms of the form
+ J each coming from a bond in Ω. A bond will contribute + J if the two
spins at its extremes are parallel and will contribute — J if these two spins
are antiparallel.

Fig. 1. A configuration with boundary conditions ( + , —)
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For a fixed boundary condition and a fixed spin configuration we
draw at the midpoint of every bond contributing — J to the energy a
perpendicular segment of length 1 (see Fig. 1). We obtain in this way a
family of lines lying on a lattice shifted by (1/2,1/2) from the original one.

A vertex of this lattice will belong to either 0, 2 or 4 segments of the
lines drawn. The last case can happen when the four spins around it are
arranged as:

- -f- + -

Fig. 2a

Suppose we deform the lines around each of the four-fold vertices as
follows:

+J- - U
-F '

Fig. 2b

It is easy to realize that after this operation the set of lines splits into a
set of several separated closed self-avoiding contours y1 ?..., yn (see
Fig. 2b). These lines separate the spins up from the spins down and, if
\yt\ denotes the perimeter of yt the number of bonds which contribute
— J to the total energy is simply £ \yt\. (Here and in the following a self-

i

avoiding walk is allowed to touch itself or an other walk as in Fig. 2b,
but not in any other way.)

Therefore the energy of a configuration to which is associated a set
of contours yt,..., yn is:

£(Vi > > yn) = J ( # o f b o n d s i n Ω) ~ 2J Σ M ( 2 !)

From now on we put 2J = — 1.
We observe that, given the boundary condition, the set of contours

uniquely determines the configuration from which they come.
However not all the sets of contours on Ω are compatible with a

given boundary condition. In fact if we use the ( + , —) boundary condition
there must be an odd number of contours encircling the cylinder, while
the ( + , + ) boundary condition implies that there must be an even
number of such contours. These are the only restrictions to be imposed
on the allowed sets of contours. The correspondence between the con-
figurations and the allowed contours is one-to-one, so we shall use the
two concepts in an interchangeable way.
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Let yjixy(Ω\ x,y = ± , be the set of contour configurations which are
allowed by the boundary condition (x, y). We shall regard yjlxy(Ω) as an
"ensemble" in which the relative probability of a configuration (y1,..., yn)

is given by the Boltzmann factor e ι . More generally, if SDΪ is a set of
configurations compatible with a given boundary condition we shall
consider it as an "ensemble" in which the relative probabilities are

-βΣbλ
defined by e

We define the average magnetization of a configuration X e 9Jl*y(Ω) as

m(X) = ((# of spins + in X) - ( # of spins - in X))/NH (2.2)

where we do not count the spins on the bases of Ω (which are thus con-
sidered as external fields acting on the boundary spins). NH is the volume
of Ω which we shall also denote by |Ω|.

The ensemble 9Jtxy(Ω, m) will denote, for |m| ^ 1, the set of con-
figurations X in mxy(Ω) such that m(X) - m. 9W*y(Ω) and mxy(Ω, m) are,
respectively, to be thought as the grand-canonical and the canonical
ensemble with boundary condition (x, y).

If yjl is an ensemble of configurations )SlcMxy(Ω) we shall denote
Z($R, β) the "partition function" relative to 901, the quantity:

βΣM
Z(3W,j8)= Σ * ' ( 2 3 )

xeaπ

To complete the set of basic notations we divide the contours into
different classes. We call "big" a contour y which goes around the cylinder.
We call osmall the contours y such that |y| ^ clog|Ω| which are not big,
and we call olarge the other contours.

In the paper MS a particular role is played by the value c = c0 = 1/333
(Moser's constant). In this paper whenever we shall talk about large and
small contours without a c in front we will mean co-large or co-small
where c 0 = 1/333.3333... (modified Moser's constant).

3. The Phase Separation

Consider the ensemble

m+ ~ (Ω, m), m - am* + (1 - a) (-m*) = (2a - l)m* ,

where m* is the spontaneous magnetization as defined in Appendix A
and 0 < α < l . (Here and in the following we write m = (2α — l)m*
instead of m = \Ω\~λ x the integer having the same parity as |Ω| which is
closest to (2α — 1) m*|Ω|. Of course we want m to be a possible value of
the average magnetization. Likewise we are tacitly going to ignore some
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unimportant rounding off effects due to this inaccuracy in order not to
burden the presentation too heavily.)

Suppose Ω is a N x (H -f 2) cylinder such that H = N ,̂ δ > 1. We have
mentioned in the introduction that we hope that one could say that
there is a phase separation in 9JΪ+~(Ω, m), i.e. that in some sense one
could think that the ensemble )ϋl+~(Ω, m) describes the coexistence of
two phases with magnetization ~ ± m* respectively the first being on
top of the other and each occupying a volume roughly of the order of
α|Ω| and (1 - α) |Ω| respectively. We have taken H to grow faster than N
in order to avoid the possibility that the surface of separation comes too
near to the bases of the cylinder thus causing further boundary effects
which are spurious as far as the surface tension is concerned.

Here and below we shall have to consider functions of β which will
have a different asymptotic behaviour as /?->oo (i.e. as T->0). We shall
consistently denote δ(β), η(β\ ξ(β) etc. functions of β which approach zero
exponentially as β->oo (i.e. functions which are bounded above by
exp - Cβ for some C > 0). We shall denote by a(β), t(β), /(β) etc. func-
tions which approach zero as β-^oo only as a power. Finally we will
denote by Λ(β), B(β), D(β) etc. functions for which we are not interested
in emphasizing the behaviour as /?->oo.

Let us now discuss in detail in what sense we have phase separation
in the ensemble $R+~(Ω, m).

Consider the set of configurations SKj"(Ω9m)CS0l+"(Ω,m) con-
sisting of the configurations Xe$0l+-(Ω, m) such that the conditions
1-4 below are verified:

1. X contains just one big contour λ and λ is such that:

μ | ^ N ( l + / ( £ ) ) . (3.1)

2. Calling Ωλ the region above the big contour λ associated to X we
have: (for some p with 3/4<p< 1)

\\Ωλ\-a\Ω\\^κ(β)\Ω\»

| |Ω-Ω λ | -( l-α) |Ω| |^κ(j8) |Ω|P.

3. Calling m+ the average magnetization of the configuration in Ωλ

and rrΓ the average magnetization in Ω — Ωλ we have:

\m+\Ωλ\-m*a\Ω\\Sκ(β)\Ω\*

m" |Ω - Ωλ\ + m*(l - α) |Ω|| g κ(β) \Ω\P.

4. The set of the co-large contours in X has a total length which
does not exceed N^(j5).

In view of the mentioned results of MS [7] one can hope that the set
of configurations tffro ~ (Ω, m) has probability very close to 1 if N is large
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enough (and β is fixed to be large enough). In Appendix B we prove in
fact that:

provided β is large enough (almost ridiculously large from a numerical
point of view) and provided the functions /(/?) in (3.1), κ(β) in (3.2) and
d(β) in 4. and p are suitably chosen.

Formula (3.4) says that picking up at random a configuration out of
the ensemble 9Jt+~(Ω, m) we shall almost surely obtain a configuration
in$Wί"(Ω,m).

The above picture could be improved by showing that not only
9Ko ~(Ω, m) has a probability in 9W+ ~(Ω, m) tending to 1, but also that
the same happens if property 4 is strengthened to:

4'. There are no co-large outer contours in X.
We shall not, however, give the proof of this stronger result since we

do not need it.
From the physical point of view (3.4) says that if we look at a sample

of our system which is enclosed in Ω and subject to the ( + , - ) boundary
condition, then we shall find that it looks like two "seas" of up and down
spins, the first on top of the other, separated by a rather well defined
surface λ at height ~ ( l - α ) H (see (3.1), (3.2)). Furthermore the sea of
up-spins will have a lot of small holes in it which contain down spins
and these holes are in such a number as to give to the sea of up-spins an
average magnetization ~ m * (see (3.3)). A similar picture holds for the
sea oΐ negative spins. The dimensions of the holes are very small

In the next section we shall show how the partition function
Z(9Jl+~(Ω, m), β) can be written as in (1.3) where the surface term
2τB + τ appears naturally split into two parts: one (2τB) coming from the
bases of Ω and the other (τ) from the big contour which is present in
every configuration of 5KQ ~ (Ω, m). This fact will provide further evidence
to the interpretation of the phenomenon we are describing as phase
separation and of λ as a (random) phase-separating surface. At the same
time we shall have succeeded in providing a natural description of surface
tension on purely statistical mechanical grounds.

The technique used to prove (3.4) is essentially the same as that of
MS. In appendix B we report the necessary modifications (most of which
are rather trivial for the reader familiar with their pioneering work).

We have written Appendix A mainly to provide some necessary
definitions and also to describe a slightly different way of deriving the
contour correlation functions which seems simpler than that of MS.
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4. The Surface Tension

To establish the asymptotic formulas (1.3) and (1.4) and to prove that
the limit (1.5) exists we are going to compare the two partition functions
Z(m+ ~ (Ω, m), β) and Z(9Jί+ + (Ω, m*), β) to that of the ensemble 9Wί + (Ω)
of configurations without big contours using a method similar to that
used by Bellemans [2] to extract the surface contributions. In Appendix B,
Lemma 3, we prove that

lim Z(ΪR+ + (Ω, m*), jϊ)/Z(SR+ + (Ω, m*), β) = 1 (4.1)
N->oo

and in Lemma 1 that

+ (Ω, m*), j8)/Z(3Wj + (Ω\ β) £ Ό(β) \Ω\-ll2e-RW)f>ί/2. (4.2)

These relations imply that in (1.4) and (1.5) we can replace 50Ϊ+ + (Ω, m*)
by 9Wo + (Ω) without changing τ or τB. We first show that

τ = lim N " ι logZ(9M+ ~ (Ω, m), β)/Z{3R^ + (Ω), β)
N->-ooN->-oo

exists and is independent of m for |m| < m*. The proof proceeds in
several steps in each of which the partition functions are replaced by
simpler objects. At the end of the process τ will appear as the limit of
a partition function of a certain "one-dimensional" system. Formula (1.4)
will be obtained as a byproduct in the proof of (1.5).

The reader who wants to keep in touch with the physical meaning of
the various steps should keep in mind that the results of Appendix A are
essentially a rigorous form of the droplet theory of phase transitions.
From this point of view all the steps of the proof of (1.5) will appear very
natural. In fact the droplet theory was for us the guide to understanding
what results we should try to prove.

Let us first remark that we can use the ensemble ΪRo ~ (Ω, m) intro-
duced in the previous section instead of 9K+~(Ώ, m) to compute the
limit (1.5) because of (3.4).

If λ denotes the big contour of a configuration X e 9Wo " (Ω, m) we
can write:

Σ im^bΛ (4.3)Σ

where the first sum runs over the set of big contours λ for which there is
at least one configuration Xe9Jίo~(Ώ, m) containing λ as the big
contour.
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We can write (4.3) as:

Z(m+

0-(Ω,m),β)

= £e-/»W Σ Z(mZ + (Ωλ,m
+),β)Z(<m;-(Ω-Ωλ,m-),β)

λ m+, m~

where the magnetizations in the two regions are restricted as in (3.3):

_ m*αlθl |fl|* m*(l-α)|fl | \Ω\>
+ε\Ω\> m " \ΩΩ\ 8 ( 4 5 )~ \Ωλ\

 +ε\Ωλ\> m " \Ω-Ωλ\
 8\Ω-Ωλ\

 ( 4 5 )

with |ε| ^ κ(β).
A lower bound on Zίβl^ ~ (Ω, m), β) can be obtained by restricting

the sums on the r.h.s. of (4.4). For each big contour λ appearing in (4.4)
consider the set of its vertical translates. If we translate λ one step in the
vertical direction the area of the region Ωλ above it changes by N. There-
fore, for each big contour we can find a congruent one λ, such that:

0 ^ | Ω λ | - α | Ω | < N . (4.6)

We construct a lower bound on (4.4) by summing only over λ : 5 fulfilling
(4.6). We also restrict the summation over ε by requiring that

m~ = - m * (4.7)

or equivalently, if we define ρ by:

|Ωλ| = (l + ρ)α|Ω|, (4.8)

p . (4.9)

+ m*For this choice of ε we get m + = m* . This choice is allowed if |Ω|
1-ρ

is large enough, because |ε| ^ m*α|Ω|1~pN(α|Ω|)~1 = m * N 1 ~ p ( 1 + ^ )

/ 2 so |ε|gκ(j8) for N large. (We have used the fact that

Let us compare the lower bound Z(ΪRo ~(Ω, m)) on (4.4) obtained
as indicated above to the quantity:

Σ ( t )(-(Ω-Ωλ\β) (4.10)
λ

where the sum in (4.10) is also restricted by (4.6), (3.1).
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Let Zγ be defined as Z o but with the less stringent restrictions (3.2),
(3.1). We then have:

-(Ω, m))

Z Q Z Q Zγ ZQ

,β

(4.11)

. . Λ l l τ r F ) ) " J z ( W o - - ( 0 - 0 i , - . ) , a
- λ Z(9Jί0

+ + (Ωλ), β) Z(93ίό ~ ( β - Ωλ), β)

> D (^)

where we have used the fact that |ρ| ^ N/α|Ω| and Lemma 1 in Appen-
dix B. Formula (4.11) shows that in the computation of (4.2) we can
replace Z(m+'(Ω,m\ β) by Z o if N " 1 logZi/Zo^O as N-^oo. Next
we prove this and show how to compare Z o to Z(3RQ+(Q\ β).

In Appendix A we prove that one can define a function φΓ(X) defined
for finite contour configurations X on the infinite cylinder such that the
following "virial expansion" is valid:

Z(9Jί0

+ + (Θ), β) = exp Σ φτ(X) (4.12)
XCΘ

for any region Θ. (XcΘ means that all the different contours in X lie
in Θ) Moreover, φΓ(X) satisfies the estimates:

yeX (4.13)

peX
qeX

where p and q are two points at distance d (see (A.21), (A.25)). The im-
portance of (4.12), (4.13) lies in the fact that φΓ(X) does not depend on Θ.
(Neither does it depend on the diameter of the cylinder unless X encircles
it. φΓ(X) is also translation invariant, see (A.20).)

Using (4.12) we can write:

J + £ φτ(X), (4.14)
XCΩΛ

Σ ΨT(X) ( 4 1 5 )
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hence:

(Ωλ), β) Z(m-0 - (Ω - Ωλ), β)
+ X φτ(X)

Xiλ
XCΩ

(Here Xiλ means that X intersects λ, and we have used the fact that
φΓ(X) = 0 if X consists of two non-overlapping pieces (A.20).) Therefore
if we define:

μa(λ)= Σ ψτ(χ) ( 4 1 7 )
Xiλ

XCΩ

we have proved that:

Z o = Z(2K0

+ + (Ω\ β)(Σ e-βW~'la{X>) (4.18)

and similarly for Zγ. We now observe that in these sums the distance of
any λ to the bases of Ω is larger than const N^ because of the restrictions
(3.1), (4.6) and (3.2), so that if we define:

μ{λ)= Σ / ( X ) (4.19)
Xiλ

we find (using (4.13)) that:

\μ(λ)-μΩ(λ)\ = o(N) (4.20)

uniformly in λ. We have therefore found that:

Z o - Z(2)l0

+ + (β), β) (X e-
pW-μ<λ))er™ (4.21)

and similarly for Z1. We now remark that μ(λ) depends only on the shape
of λ. Therefore if we say that two contours are equivalent when they are
congruent modulo a vertical translation and denote the equivalence
class of λ by (λ) we find that:

Z o ^ Z(ΪR0

+ + {Ω\ β)( X e-β\λ\-μ«)yw 9 (422)

X γ (4>23)
(A)

\λ\^N(l+Πβ)) I

and similarly for Zγ. We thus see that 1 ̂  ZJZQ ^ Ueo{N\ so that
lim N " 1 \ogZ1/Z0 — 0, and we can also conclude that in computing the

N-> oo

limit (4.2) we can not only replace Z(9Jl+ ~(Ω, m), β) by Z o but also by:

(4.24)
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(4.24) proves that the limit (4.2), if it exists, is m^independent and is
equal to:

To prove the existence of (4.25) we proceed as follows. Consider a contour
λe(λ). Since λ is wrapped around the cylinder Ω with base N there
must be at least N(l -/(/})) columns of the cylinder Ω which intersect
the contour in just one point. (The columns we are talking about are
columns of the lattice in Ω where the spins are sitting. Therefore each
column intersects the contour in the middle of a straight portion.)

For each such "regular" column consider the N 1 / 3 columns which
are adjacent to it (N1 / 3/2 to the left and N1 / 3/2 to the right). Call the
shortest length of λ contained in any of these strips 1. If M is the maximum
number of disjoint such strips then 1M ^ total length in the strips
S N(l + /(/?)). But a maximal family of M strips, centered at the columns
c l 5 . . . , cM say, has the property that any regular column has a distance
at most N 1 / 3/2 from it, so the union of the strips of width 2N 1 / 3 centered
at c l 5 . . . , cM contain all the regular columns, and we can conclude that
M(2N 1 / 3) ^ # of columns in this union Ξ> N(l - J(β)). We thus see that
M ^ N ( l - / ( / ? ) ) / 2 N 1 / 3 and

^ 2iV1/3(l + /(β))/(l - ί(β)) < N 1 / 2

if N is large, so we can always pick one regular column whose associated
strip contains not more than a portion N 1 / 2 of the length of λ. This can be
done for any λ.

Suppose that instead of considering the set of big contours on a
cylinder we consider the set of contours CN which walk on a planar
lattice from the origin to the point (N, 0) through a selfavoiding walk
with :gN(l+/(/?)) steps, starting horizontally and not leaving the
vertical strip with base from (0,0) to (N, 0) and such that the strips of
width N 1 / 3/2 to the right of (0, 0) and to the left of (N, 0) do not contain
more than a portion N 1 / 2 long of λ. To each λeC^ clearly corresponds
a class of big contours on the cylinder with base N. The number of
elements λ e CN which give rise to the same class is at most N.

Define for λeCN;

μϋ(λ)= X φΓ{X) (4.26)
Xίλ

XCλ+ u l -

where λ+ and λ~ are the regions into which λ divides the strip with base
(0, 0), (N, 0). If λ denotes also the big contour on the cylinder associated
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to λ we see that:

\μ{λ) - μ°{λ)\ ^ O(N 1 / 2 + e-βNV2) (4.27)

(we use here (4.13)). Hence:

Z0(N)= Σ e~βW-^λ) (4.28)
AeCN

is such that: e°{N)Z0 ^ Z o g N ^ ( N ) Z 0 and therefore to study the limit
(4.25) we can use Z o instead of Z o .

We do this by relating Z 0 (N + M) to Z 0(N) Z0(M). This product is a
sum of terms corresponding to pairs ( l N , l M ) e C N x C M . To each such
pair we can associate a λ in C N + M by the following construction: Join
AN and λM to form a big contour on a cylinder with circumference N + M.
By the above argument there is a regular column on this cylinder such
that the restriction on the length in its associated strip of width (N + M) 1 / 3

is fulfilled. If we choose such a regular column according to some rule
and open the contour at its location we get a λ = F(λN,λM) in C N + M .
This mapping is such that at most N 4- M pairs are mapped on the same
λ, and also μ°(λ) is "almost" the sum of μ°(λN) and μ°(λM):

|μ°UN) + μ°(λM) - μ°(λ)\ £ O(N + M)1'2.

We then get

^ c N + M (4.29)
^ (N + M)<?O(N+M)1/2Z0(N-f- M)

which implies that the limit (4.25) exists using the well known techniques
to prove the existence of a thermodynamic limit (using subadditivity
arguments).

We also observe that if we define:

Q(ε,j8)= Σ e~^λ) (4.30)

then for small ε (εg/(/?))

(Λ)
|λ|=N(l+ε)

limJlogQ(fi,j8) (4.31)
N-+CC N

exists (as a consequence of a subadditivity argument very similar to the
one discussed above), and

τ(β)= sup (^(εj)-ββ)-β. (4.32)
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Since ̂ (ε, β) « — ε logε for small ε (see Appendix C, and use \μ(λ)\ ^ \λ\ δ(β)
following from (A. 17)), we realize that the maximum is attained at
ε0 = O(e~β) and one could check that in the region of β in which our
estimates allow a proof of (4.25) /(/?) > e~β. This fact could be used to
improve quite strongly the picture of the typical configurations by
proving that in 9Jl+~(Ω, m) the length of the big contour is such that
\λ\/N->l + ε0 in probability.

Finally formula (1.4) for $RQ + {Ω) follows from (4.14) by replacing
there Ωλ with Ω and by using (4.13). We do not perform the straight-
forward calculation.

5. Concluding Remarks

As we have just remarked the maximum in (4.32) is obtained for
= O(e~β) when β is large. Formula (4.32) therefore implies that:

β). (5.1)

This is in agreement with Onsager's result for:

τ=-j8-logth|-. (5.2)

It would be interesting to find a "Mayer" expansion for τ(β) in powers
of e~β. This would allow a more precise comparison with Onsager's
result.

The way Onsager defines and computes (5.2) is the following. Con-
sider instead of a ferromagnetic Ising model with coupling + J an anti-
ferromagnetic model with coupling — J consider the model in a periodic
box. Let N and M be the length of the sides of this box and assume M is
even and N is odd. Since the model is antiferromagnetic and N is odd
there is going to be somewhere in Ω a mismatch in the antiferromagnetic
arrangement of the spins (we are assuming that the temperature is low
enough so that the system is in an antiferromagnetic state). Since the
interaction is nearest neighbour the situation should be the same as
the one obtained by putting together two oppositely magnetized phases
in the ferromagnetic Ising model. Therefore one will be able to interpret
the difference in free energy when N is even and when N is odd as due to
the phase separation and therefore as a surface tension. Using this
definition Onsager computed the value (5.2) for τ.

Onsager's derivation is very natural, however one cannot yet prove
that when N is odd and J > 0 the situation is really the same as when
J < 0 and two oppositely magnetized phases are in contact in the sense
of this paper. A technical difficulty for such a proof is the lack of a MS
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type of result valid for periodic boundary conditions. A more serious
difficulty seems to be the fact that in Onsager's formulation one works in
the grand canonical formalism, and therefore the partition function is the
sum of canonical partition functions with arbitrary magnetization. In
particular there will be contributions from the magnetizations very close
to + m* and, as we have seen in the preceding sections, this complicates a
proof of the equivalence of Onsager's definition of surface tension and
our definition. (We observe that we have not dealt with the phenomenon
of the interference of the surface of separation and the boundaries of the
box Ω, which are very close to each other when m is very close to ±m*.)

Finally we mention that the MS type of results, if appropriately
reformulated, hold also for more general Ising models (for instance for
finite range interactions of negative strength). It is probably possible to
generalize the results of this paper to this more general situation. In
particular one can define in general the surface tension as:

where Ω is a cylinder with base N and height of the order N\ δ > 1. The
ensembles 9Jί+ " {Ω, m) and 9Jΐ+ + (Ω) are obtained by putting all the spins
above Ω = + and all the ones below = —. Ω has to be taken with hori-
zontally periodic boundary conditions. Using the more general MS
results one can probably prove the existence of the limit in (5.3) and the
fact that it comes from a surface of separation of two phases (i.e. the
results analogous to Section 3 and 4 of this paper). Although the MS
results on the phase separation and the estimates for the contour cor-
relation functions extend rather directly to the 3-dimensional case we
do not think that the extension of the proof of the existence of the surface
tension is as straight-forward because the "joining operation" used in the
proof, which is simple for lines of separation, becomes more complicated
for surfaces of separation.

Appendix A

In this appendix we shall deal with a number of technical points.
Although the technique is rather standard and the results are essentially
the same as the ones in Ref. [7] we give here the derivation in some detail,
because the method we use seems to be considerably simpler than the
one used by MS in [8] (although the starting point is their integral
equation for the contour correlations) and also because it seems easier
than pointing out the several slight changes needed to adapt the MS
results to our case.
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Consider a space F of functions defined on the finite sets of contours
small or large but not big contained in a infinitely long cylinder. The sets
of contours we are considering here are not subject to the restriction that
the contours should not overlap; we even allow them to coincide. If
φeF then φ associates to every set X of contours a number φ(X). If
φ e F then we call \φ\n = sup \φ(γx,..., yπ)| and we suppose that \φ\n < oo

for all the functions in F. We call N(X) the number of contours in X.
If φί,φ2eF we define their convolution product φ1 φ2eF as:

(φ1 φ2)(X) = Σ Φ I ( X I ) Φ 2 ( X 2 ) (A.I)

here X is a general set of contours and is determined by the set of different
contours in it and by their multiplicities. The sum Σ is to be

regarded as the sum over the ordered couples X1, X2 which decompose
X into two sets of contours.

Let us now define the exponential of a function φeF0 where

(Expφ)(X) =

where we have put φ°'{X) = 1(X), 1(X) = 0 if X Φ 0, 1(0) = 1. So:

(Expφ)(X) = 1(X)+ Σ ~T Σ <P(Xi) ••• Φ(XJ (A3)
w^l n i yXχ = X

The exponential is well defined since the sum runs over a finite set of
indices.

One can define an inverse function to the exponential over the set

(A.4)

Observe that, again, the sum runs over a finite number of indices. We
have also that Exp L o g ^ = φx.

We define on F the operation D x as:

Y). (A.5)

8 Commun. math. Phys., Vol. 25
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This operation has the property that:

Dy(ψ\ ' Ψl) = (DyΨl) -Ψl + Ψl ΦyΨl)

Dy(Expφ) = (Dyφ) Expφ (A.6)

Dχ(Expφ) - ( X - i - X (DXlφ)...(Dχnφ))'Έ.xpφ.

Finally we find that the important formula below holds:

Σ (Expφ) (X) χ(X) = exp£ <p(X) χ(X) (A.7)

if ^ |φ(X) χ(X)| < oo and if χ is multiplicative, i.e. if χ(yi, ...,yπ)
x

= z(7i) ••• x(yn)- Especially we are going to use (A.7) when

f 1 if -y lies in some region Θ

\θ otherwise

so that (A.7) becomes:

(A.8)
X C Θ X C Θ

Consider now the particular function φ e Fγ:

φ(X) =

-βΣ\vι\
e if X consists of mutually

compatible contours, X = (<y1,..., yn) (A.9)

0 otherwise

φ(0) = 1; therefore φ τ = Logcp is defined.
We now wish to investigate the X dependence of φτ(X). Consider for

this purpose the function φ~x e F and the functions:

Λx(Ύ) = (φ~1 Dxφ)(Ύ) (A.10)

where X and Fare sets of contours: φ~ι is the inverse in the sense of the
product (A.I), i.e. φ'1- φ = φ φ'1 = 1, ( φ " 1 is well defined if φ(0) + O).

Let yuX be a set of contours without overlappings. Then we can
write an equation for zlyuX(Y) for Y arbitrary and X without over-
lappings along the lines of Ref. [5]:

Δγ^x(Y) = e-^ Σ*(-l) N < s >/l X u S (Y\S). (A.11)
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Here Y\S denotes the complement of S in Y. Σ* indicates that the
summation is extended over all subsets S of Y such that all the contours in
S intersect y and Xu S is a set of contours without intersections. (^X(Y) = 0
if X has intersections, which can be seen from (A. 10).) The set S = 0 has
also to be included in the summation, and Δ0(Y) = 1(Y).

Put:

4 = sup Σ \Ayu_yn(Ύ)\e^]γ\ (A.12)
y\, ,yn Y

m^n^l N(Y)=m-n

Then we deduce from (A. 11) that for some c > 0 :

Σ ι
Y

N(Y)+N(X)=m

s Σ Σ*M(YW < w + l x l ) " w

Y sc Y
N(Y) + N(X)=m

Σ ^'
σinters-y

e exp Σ Σ e

V p e y p e σ / \ Z = 4

if β is not too small. (Here and repeatedly in the following we use the
fact that the number of different contours of length 1 that go through a
point is less than 31.) Because \y\ ^ 4 we can thus conclude that:

if β is large enough. Since:

k = Sup|zly(0)| e2 = SupKφ-1 Dyφ)(0)\e

A M A ( ί |

= Sup\φ(y)\e2 = Supβ 2 = e~2β

7 1^4-

we deduce from (A. 14) that:
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Furthermore ( φ " 1 - Dyφ)(X) = φΎ{yκjX\ which follows from (A.6), and
this implies (if β is large enough):

Σ
peX peγ X peγ m = l N(X) = m - l (A 17)

^ Σ Σ\ψ(y^)\^ Σ Σ Σ

peγ m = l 1 = 4

where p is any fixed point and δ(β)->0 exponentially fast.
Another result which can be proved from (A. 11) by induction is that:

Hence ( - l ^ " 1 φτ{X) ^ 0. (A.19)

We can obtain a formula for φΓ(X) from the expression for the Ursell
functions in terms of connected graphs usually used in the theory of the

-flΣlv.l
Mayer expansion, φ can be written φ(y1, ...,yn) = e ι J~[ @(y£,Tj)?

with ΐ < j

(1 if 7, y' compatible

[0 otherwise.

The product can be viewed as a Boltzmann factor of a pair interaction
between the y: s. φτ can then be expressed in terms of the functions

0 otherwise

φτ(y1,...,yn) = e β V y ί l Σ Π / ( / > / ' ) ,
C {y',y"}CC

where ]Γ denotes the sum over all connected graphs C with vertices
c

y1 ?..., yn (Ref. [11]). If we construct the graph G with edges only between
incompatible y : 5 having weights — 1, we can write:

0 Σ l v i l
φ τ ( 7 l , . . . , 7 n ) = const e ι £ ( - 1 ) * o f e d ^ e s m C . (A.20)

CCG
CConn.

From this expression we see that φτ(y1,..., yn) = 0 if G is not connected,
i.e. if (y1,..., yn) consists of two groups such that every y in one is com-
patible with every y in the other. We also see that φΎ is translation
invariant and φτ(X) does not depend on the fact that X is situated on a
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cylindrical lattice and not on a planar one unless X encircles the cylinder.
Formulae (A. 12), (A. 16) imply the next (A.21):

-An
Σφτ(yuX) ^£ |φ Γ (yuX) | :ge 2 e~2β(l - e ^ ) " 1 . (A.21)

Next we need an upper bound on:

β(p,Q)= Σ \ΦTW\ (A.22)
peX
XΪQ

where p is a point and Q a set of points on the lattice and XiQ means
that X intersects Q.

Let d be the distance between p and Q. We divide the sum in (A.22)
into two parts according to wether N(X)>d1/2 or N(X)<Ξd1/2. The
first part can be estimated as in (A. 17) using (A. 16):

first part g £ £ \φτ{γυX)\£ Σ e " M ~ 2 ' £ e~mβ

peyN(X)^ί/1/2 pεy m^d1/2 (A 23)
2 ^ d l / 2

If N(X) ̂  d112 we can conclude that the longest contour in X, y, has a
length 1 ^ dί/2 if φτ(X)φ0. This is true because if φΓ(X)φ0 it follows
from (A.20) that the contours in X form one overlapping group so that
d ^ length of X ̂  1N(X)^ ld1/2, and l^d 1 / 2 . We also have d(p,y)
:g 1N(X) :g Id1'2 for the same reason, so y must intersect the square with
side 21d1/2 centered at p. The second part can therefore be estimated as
follows using (A.21):

second part ^

d(P,^idV 2 ~ ( A > 24)

/ -A\di/
2

^ const e~2β\4e 2)

if β is large enough, and we have proved that for some constant F:
/ _£\d(p,Q)i/2

£?(P>Q)= Σ \φτ(X)\^Fe-2β[4e 2) (A.25)
peX
XiQ

if β is not too small. Formulae (A. 16), (A. 17), (A.20), (A.21), (A.25) embody
the main results of this appendix.
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Inequality (A. 17) together with (A.8) allows us to write:

z(wί£+(Θiβ)= Σ φ(χ) = e χ p Σ ΦΓ(χ) (A 2 6)
XCΘ XCΘ

An important application of the above calculation is the following
estimate for the probability πΘ(y) in 9JΪQ +{Θ) that a given contour y is
an outer contour of a configuration X e 9Jlo + (®) (Let Θ' and Θ" be the
regions inside and outside y respectively, and use (A.7) with χ'(y') = 1 if
y'CΘ', χ'(y') = 0 otherwise and χ"(y") = l if y"CΘ" and 7" does not
surround 7, χ"(y") = 0 otherwise):

πΘ(y) = P(y is a contour and is not surrounded by any other one)

= Σ φ(yuX'uX")χ /(X')χ"(X / ')/Σ <?(χ)
X',X" XCΘ

= e-""'Ί(Σφ(X')χ'(X'))fΣ<p(χ")z"(X")VΣ <p(χ) ( A 2 7 )
\X' / \X" ' XCΘ

= exp (— /J|y| + Σ Φ T ( χ / )+ Σ ΦT(X") x"( χ")~ Σ (

\ X'CΘ' X"CΘ" XCΘ

= exp/-j8|y|- Σ <P Γ W" Σ <PΓC
Xiy Xsy

\ XCΘ XCΘ

(Xs7 means that X does not intersect 7 but some contour in X surrounds 7).
The first sum in the exponent can be estimated using (A. 17)

Σ Σ \φτ(X)\S\y\δ(β). (A.28)Σ
Xiy

p e γ peX

Σ e 2 1 7 " ' (A.29)

X C Θ

For the second we get using (A.21)

Σ ΨTO
Xsγ

XC Θ

To estimate the last sum we make an auxiliary construction. Let 1 be the
largest horizontal or vertical distance between any pair of points on 7
(realized in the horizontal direction say). Let L be a straight line to the
right from a point of 7 furthest to the right. Then any y" surrounding 7
intersects L at some point p, whose distance from 7 we call d. We then have,

using the bound I2 ̂  the area inside 7 Ξ> ——:

y i"2{yΊ < y y e~
ΎlyΊ < Y Y

L e = L L = La L \-~ / /A i(Y|
γ"sγ peLpey" d^0«^2(l + d) \n.j\jj

γ"sγ

-—\y\1/2

< conste'β ι < conste 2
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Combining these two estimates we finally get:

(The first inequality follows from the third line of (A.27) because every
term in the numerator is contained in the denominator too). Several
other applications of the results of this appendix will be found later.

We remark that if we had considered the ensemble 9Jίo *(Θ) con-
taining only c-small contours, the formula corresponding to (A.27) would
still be true and the estimate (A.31) would be true for the analogous
probability π0?c(y) with the same δ(β). Furthermore by comparing the
two expressions (A.27) one can show that

\*e,c(y)My) -MS \Θ\ δ(β) (3e-0 c l θ 8 | Ω | (A.32)

if y is c-small and β large enough. We also remark that all the above
results would also be true if we had considered configurations on an
infinite plane lattice instead of on an infinite cylinder.

Let Θ be a region bounded by two big contours separated by a
distance of order N. We shall now show that the average magnetization
in Θ converges to its expected value as N—>GO in the ensemble SOΪQ ~(Θ).
To this end we study n, the number of spins up, and show that j Θ Γ ^ n )
has a limit as N->oo and that the variance of n, D(n), is bounded by
const IΘI.

For each configuration X in ΪRQ ~ (Θ) we can identify the outer
contours, and n(X) can be written as a sum of contributions from the
regions bounded by them. If the outer contours are fixed these contri-
butions are independent random variables. If y is an outer contour the
corresponding contribution n(y) has a distribution determined by the
ensemble 30ΐ+(y) of configurations in the region enclosed by y which
have the spins adhering to y from the inside all -f (these spins are included
in n(y)). If we write n(X) = £ n(y) χy{X) with n(y) distributed as just

y C Θ

indicated and χy(X) = 1 if y is an outer contour of X and = 0 otherwise
we get the following expressions for the mean and variance of n(X):

<n>= Σ <n(7)>πΘ(y) (A.33)
y C < 9

D(n)=
ycΘ (A.34)

+ Σ M )

To study these quantities we need to estimate the difference between
nΘ(y) and its limit π(y) and the difference πβ(y1 ? y2) — τιΘ(yί) πΘ(y2). From
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the formula (A.27) we get:

n&(y) = QXV ί-β\y\- V φT(X)\ (A.35)
Xbγ

\ XCΘ I

where Xby means X blocks y, i.e. X intersects or surrounds y, and we see
that πΘ(y) converges to

π(y) = exp(-/J|y| - £ φτ(X)) (A.36)
\ Xbγ I

as N-»oo. In (A.36) the summation is over all configurations X on an
infinite plane lattice. The difference between πΘ(y) and π(y) when y is not
too long can be estimated as follows: Suppose e.g. that |y| < N, and con-
sider also the plane region Θ obtained by cutting the cylinder along a
vertical column C as far away from y as possible and making it plane.
The distance d(y, C) is > N/4 if \y\ < N. Define π(y) by:

π(y) = exp(-β\y\- ξ φτ(X)\ . (A.37)

\ XCΘ

We then have:

|logπβ(y) - logπ(y)| £ £ \<P (x)l ( A 3 8 )
Xbγ
XίC

and

[y) - log π(γ)\ ί Σ I^X(X)! + Σ \ψΎ(χ)\ (A.39)
X&y Xby

XidΘ XίC

because only overlapping configurations have φτ(X) φ 0. To estimate the
sums in (A.38), (A.39) we use (A.25). It implies that

Σ \φΎ(X)\SFe-^{4e 2) (A.40)
peX
Xsγ

because we can take Q to be yu (a path from y to oo) in (A.25) and use
the fact that X/Q if Xsγ. In (A.38), (A.39) we thus get:

Xiy
XidΘ

2) 2 (A.42)
Xiγ
XiC
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To estimate Σ |φτ(X)| let L be the shortest path from y to dΘ,
Xsy

XiδΘ

d = d(y, dΘ\ and use the fact that XzL if Xsy, so that:

Σ IΦT(X)I ^ Σ Σ lφτ(*)l ^ Σ Σ I
Xsy peL peX peL peX

XiδΘ Xsy d(ρ,y) £d/2 XiδΘ

XidΘ

+ Σ Σ I<PT(X)I
peL peX

d(p,y)>d/2 Xsy

l = d/2

if jS is large. (We have used the fact that d(p, dΘ) + d(ρ, y) = d if p e L.)
£ |φτ(X)| can be estimated in the same way. Combining all these

Xsy
XiC

estimates we get:

|logπΘ(y)-logπ(7)|^conste-2/?|y|l\4^ Ί +W 4) 2 ) (A.44)

and remembering that πθ(γ) ^ e~β^\

Using this estimate one can show that if we define ρ* by:

Σω ( A 4 6 )
(y)

where the summation is over all possible shapes of a contour on the
infinite plane lattice, then we have:

|<n> - ρ*|Θ|| g constβ~^|aΘ| (A.47)

so that
l im |ΘΓ 1 <n> = ρ*. (A.48)

JV->oo

To study nΘ{y1,y2) — π ^ ^ J nΘ{y2) we use a formula analogous to (A.35):

Σ ψτw+
\

b y ί u γ 2 Xbyι Xby2

XCΘ XCΘ XCΘ

= exp/ Y φ τ(X)\.
Xby/ (A.49)

\xbγ2
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The sums in (A.49) can be estimated as above:

Σ \φΊ(X)\^Fe-2%\(4e~ψ/2{yi'72\ (A.50)
Xίyi
Xiγ2

XSV2

To estimate £ |φΓ(X)| let L be a straight line to the right from the right-
Xsyi
Xsy2

most point on yx u y 2 (lying on yx say). Then if Xsy1 X intersects L at some
point p at distance d from yγ. Then because d(p, y2) ̂  d + d(y1 ;y2)

 w e

have:

Σ I<PT(X)I^ Σ Σ ^ τ ( x ) i ^ Σ
X . , , p « L p . X , , 0

We thus finally get from (A.49):

\logne{yt, 72) ~ l o g M y J - logπΘ(y2)|

and

+ w{exp{<x)nste-fi(\yi\ +

Using (A.54) and the estimate πΘ(y)^e~β^ it is easy to show that

^|Θ| (A.55)

so that | β | - 1 n converges to ρ* in probability. (A.47) and (A.55) imply the
corresponding estimates for the average magnetization m = 2n|<9|~1 — 1
(in the ensemble 9KQ "(Θ)):

Γ 1 , (A.56)

l l (A.57)

where m* = 1 — 2ρ* is the spontaneous magnetization. The correspond-
ing result for the ensemble ΪRQ + (®) follows by symmetry. (We use the
name spontaneous magnetization for m* although we only use the fact
that it is the limit of the average magnetization in $RQ + (Ω) In fact MS [9]
have proved that m* is also the limit of the magnetization in a small
positive magnetic field.)
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Appendix B

In this appendix we shall prove the basic mathematical statements
used in the paper. We formulate them in a series of lemmas. The knowledge
of the results of Appendix A is essential for reading this appendix. Let us
start by proving the following lemma:

Lemma 1. Let ΘcΩ be a cylinder with bases not necessarily flat.
Suppose N is the diameter of Θ and that the distance between the two
bases of Θ grows as N*5 (as N->oo). Suppose also that the length of the
bases of Θ does not exceed N(l + /(/?)). Then the probability in 9MQ 4 (Θ)
of the set of configurations with magnetization exactly equal to M, where
M is a number such that 0 ^ m * | ( 9 | — M ̂  AN, A > 0 , is given by

+ + ( 0 , M | θ | - 1 ) , jS)/Z(9JΪ0

+ + (0), β) and is such that:

. P..)

Proof Let us first remark that in the ensemble WIQ + (Θ) the mag-
netization has an average value of the order of m*|Θ| within η(β)\Θ\1/2

and a variance η (β) \Θ\, (see (A.56) (A.57)). We have to distinguish between
two cases. In the first case we assume that M = m*|Θ| — ε with 0 £Ξ ε :g |Θ | 1 / 3

and in the second M = m*|<9| — ε with \Θ\1/3 < β g AN.
Consider first the case 0 ^ ε ^ | 6 > | 1 / 3 . The proof is very similar to

the proof of Lemma 3.1 in the MS paper, so we repeat it only for com-
pletness. One first calls K(y) the number of outer contours contained
in a configuration of SERQ + (Θ) which are congruent to a given contour y.

The average of K (γ) is:

<K(y)>= X πΘ(y') (B.2)
γ'e(γ)
γ'CΘ

so that one can see (using (A.45)) that:

<K(y)> - π (γ) \Θ\\ £ const \y\ \Θ\ll2e'^ . (B.3)

Similarly one can see that the variance D(K(y)) is such that

(B.4)

The Chebyshev inequality implies then that the probability that for
ally:

\K(y)-π(y)\Θ\\^B\y\\Θ\1'2e-^ (B.5)

is larger than 1/2, for some B if β is large enough.
Let SRc9Jϊo +(Θ) be the set of configurations for which (B.5) holds.

Let X be a set of outer contours and let 501 (X) be the set of configurations
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in SCR which have X as the set of outer contours. The number N o of spins
down in a configuration of ΪR(X) is a sum of independent variables and:

(B.6)
(y)

where < > is taken in the ensemble 9Jl(X) (see (A.33) (A.46)). (B.5) implies:

<No>-|6>|Σ<n(y)>π(y) = |<N0> -ρ*|6>| |
(y)

and Ό(N0)£η2(β)\Θ\.

(B.7)

(B.8)

We now single out among the contours in X those that are translates
of a square γ0 with side 3. (B.5) implies that there are ~π(yo)|<9| such
contours (π(yo)Φ0 see (A.31)). The number N o of spins enclosed in
these contours is a sum of K ( y o ) ~ π ( y o ) | θ | identically distributed
random variables each assuming relatively prime values (i.e. 8 and 9).
Therefore the local central limit theorem applies, and we can say that if

| | 2 e.g. then

P(N 0 = 1) = const (D(N0))~ m (exp

( 1 + 0 ^ const

l - < N o » 2

D(N 0 )

l/tΛl-l/2 (B.9)

because |6>|~ 1 D ( N 0 ) is bounded from above and below away from 0.
Denoting the remaining contribution to N o by N o , which is independent
of N o , we then get the following estimate in the ensemble 3R(X) if

P(N 0 = k ) £ P(N 0 + N 0 = k , | N 0 - <N 0>| ^

Σ P(N0 = l)P(N0 = k -

kconst

= const

^ const

| - 1 / 2 P ( | k - N 0 - < N 0 > | ^ 4 f ; | 6 > | 1 / 2 ) (B.10)

| - 1 / 2 P ( | k - < N 0 > + < N 0 > - N 0 | ^ Φ / | 6 > | 1 / 2 )
1 / 2 P (|N 0 - <N 0>| ^ 2η \Θ\112)

^ const |6>|-1 / 2(1 - D ( N o ) / V |6>|) ̂  const |6>|~ 1/23/4

because if | N 0 - <N 0>| ^ 2η |6>|1/2 then

| k - < N 0 > + < N 0 > - N 0 |

(B.ll)

and because
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The bound is independent of X. Now, if M = m*|Θ| — ε with 0 g ε S \Θ\
\\then because M = \Θ\ — 2N 0 and m* = 1 — 2ρ* we have
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so |k — ρ*|<9|| S η \Θ\1/2 for |<9| sufficiently large, and Lemma 1 is proved
because the r.h.s. of (B.10) is independent of X, and P (2R) ̂  1/2.

Suppose A N ^ ε > |<9|1/3. Then we can draw a little square with
side (ε/2m*)1/2 in the middle of Θ. Since ε > \Θ\lβ the side of this square
tends to oo as N-> oo, but not faster than N 1 / 2 . Call Θε the region out-
side this little square. Clearly in the ensemble ΪRQ +{Θε) we can say
that the probability to find exactly k spins down with k such that
| k - ρ * | 0 e | | ^ | < 9 ε | 1 / 3 is not smaller than const |6>ε |~

1/2.
Let us consider the ensemble 9Jlε of configurations of MQ+(Θ)

which contain the inner boundary of Θε as an outer contour. \Θε\ has
been chosen so that the number of spins down ^ρ*\Θε\ + (1 - ρ*)
• \Θ - Θε\ Ξ N d , if M = m* |<9| - ε. Let N o and N x be the number of
down spins in Θε and Θ — Θε. They are independent in 9Jlε, and it is clear
that \<Nι>-(l-ρ*)\Θ-Θε\\£η\Θ-Θε\

ί/2, Ό(N)Sη2\Θ - Θε\. The
probability in 9Jlε of having N d spins down then has the lower bound:

0 = k ) P ( N 1 = N d - k )

^ const \Θε\~ 1 / 2 P (|Nd - Ni - ρ*|6>ε|| ^

- const |β e | - 1 / 2 P (jNi - (1 - ρ*) \Θ - 6

^ const I

^const |6) |" 1 / 2 (l-4D(N 1 ) |6) |~ 2 / 3 )

-O(ε|6>|"2/3))

= const |Θ|" 1 /^\l-O\N 1 ^^ j

^ const |6)|~1/2

I/Ql1/3

for N large because if |NX — <NX>| ^ - ^ — then

I/Ql 1/ 3

(B.13)

11/3

1 + 0

if N large, and because D (NJ ^ 0 (ε).
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The probability that the boundary of Θ — Θε is an outer contour is
estimated in (A.31). So we finally get Lemma 1 with R(β) = const (β + <5 (/?)).
Let us now prove the following lemma:

Lemma 2. Let m* be the value of the spontaneous magnetization and
let m = αm* + (l-α)(-m*) = (2α-l)m*, 0<α<l. Then if β is large
enough we have:

where N is the number of columns in Ω.

Proof. To prove this lemma we first evaluate the probability in
9M+ ~(Ω) that there is more than one big contour present in a randomly
chosen configuration. Let λί9..., λ2n+ι be the big contours present in a
configuration. The probability of this configuration is not larger than:

Σ Σ e "fA'(ΠZ(

+-ViVZ(aR+-(ί2),jϊ)S(Same)/Z(9Kί-(Ω),j8)
n £ l λ i , . . . , λ 2 n + i \ i I

(B.15)

where Z^\t denotes the partition function in the ensemble of contours
located between λi_i and λh while SDΪQ ~(Ω) denotes the ensemble of
configurations in 9Jl+~(Ω) containing only one big contour. From the
result of Appendix A (formula (A. 17)) we easily deduce that the numerator
in (B.I5) does not exceed:

V),β)Σ Σ e (B.16)
n 2ΐ 1 A j , , λ 2 n + i

while the denominator is larger than:

Z{m++(Ωlβ)e-{β + δ m N . (B.17)

The series in (B.16) is majorized by:

< Y (\Ω\ Y (2>e'iβ~δ{β)))k\2n+i

(B.18)

< const \Ω\3e 2
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provided N is large enough. Hence (B.I5) is not larger than:

const | Ω | 3 < τ ( ! - H N

and thus goes to zero as N-> oo.
The next step for the proof of Lemma 2 is the evaluation of the prob-

ability in 9Jίo ~ {Ω) of the set of configurations 9Jί which contain a given
big contour parallel to a row of Ω. If A is the big contour in the configura-
tions of 501 and if Ωλ is the region above λ we can write:

Z (9K, β) = e~βNZ CIR0

+ + (Ωλ\ β) Z(W^ ' (Ω - Ωλ\ β). (B.19)

We can also write:

Z (2>ϊ0

+ - (Ω), β) = £ e - ' W Z (STC0

+ + (Ωλ), β) Z(9M0- " (Ω - Ωλ), β) (B.20)
λ

where StRj+, N3Ko denote the ensembles of configurations (with the
boundary condition ( + , + ) or ( —, —)) which are without big contours.

Using formula (A.26) we can write:

Z (2R0

+ + (Ωλ\ β) Z{m~0 -(Ω - Ωλ\ β) = Z(9Ko "(Ω), β) exp - Σ φ τ(X).
Xίλ

(B.21)
Hence, using (A. 17), the following bound holds:

Σ { p δ i p m

where (A) denotes the equivalence class of 2, which is arbitrary provided
it wraps itself around the infinite cylinder which is determined by Ω.
To evaluate £ ξlM'N we call:

(A)

-rrlog # (inequίvalent big contours with length \λ\)
N

(B.23)

It is easy to show (see appendix C) that if ε = — — ^ ε0 with ε0 small

enough:

l i ( ) ( ) + oo
N-> oo

(B.24)

^ —3 εlogε.
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Using (B.24) we can write: (ξ = e~
β+

-N v £|A|-N j _ v

(λ) |λ|-N^εoN |Λ|-N>ε0N

= Z J X - \ c / i > \ χ τ / ' \ XT / - - < = " / • ^ " ' /r> o ς \

L/N>l+ε0 (15.20 J
Π A

Max ( —

for β large. Hence if C is a large enough constant (independent of β):

(B.26)
(A)

Therefore from (B.22) we deduce:

Coming now to the proof of Lemma 2, let m = (2α — l)m*, 0 < α < 1 and
consider the set 9Ji C 9JΪ(J~ ~ (Ω) of the configurations which contain just
one big contour λ which runs parallel to the base at height (1 — α)Na. If
X e 5DΪ then the contour configurations X' and X" above and below λ
are in $RQ +(Ωλ) and 9WQ ~(Ω — Ω A ) and in the ensemble SCR they are
statistically independent :

p^(X) = p + + (χ r) p _ (X") (B.28)

The bases of Ωλ and Ω — Ωλ are far from each other and at a distance of
the order N*5. At this point we can use Lemma 1 to prove that in the
ensemble $R the probability of finding a configuration with magnetiza-
tion exactly equal to m = (2α — 1) m* is not smaller than

Ό(oL,β)\Ω\~ιe

This estimate allows us to study the probability (B.14):

Z(m+~ (Ω, m), β) Z (SIR (m), j8) Z (2R, β)

Z(9M0

+-(Ω),i8) =

| | ( δ l / 2 (B.29)

and since we already know that Z {m+-{Ω), β)/Z{m+-{Ω% β)-+l we
have proved Lemma 2.

It is also clear that the above estimates allow us to prove:

Lemma 3. // β is large enough the probability of $JIQ ~ (Ω, m). i.e. of
the set of configurations with magnetization m and containing just one
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big contour, tends to one in the ensemble 9M+~(Ώ, m). Similarly, the
probability of 9M^ + (Ω, m*) in 3Jl + + (Ω, m*) tends to 1.

Proof. In fact if P is the complement in 2R+ ~(Ω, m) of 2Rί "(Ω5 m)
we have:

Z (P, jϊ)/Z (m+ ~(Ω), 0) ̂ (B.15) ^ const jθj3β~(4 ~δ{β))N (B.30)

and comparing the rate at which (B.30) goes to zero with (B.14) we
realize that the lemma is true. The proof of the second assertion is
similar using (B.I).

Lemma 4. The probability that a configuration X e 9JΪ+ + (Ω) is without
big contours tends ίo / as N ^ o o . Similarly the probability O/SKQ ~(Ω)
tends to! inm+~(Ω).

Proof. Observe that after the proof of the preceding lemmas only
the first part needs a proof. However it is also clearly implicit in the
preceding ones.

We now estimate the length of the big contour λ of a configuration
in9W<j"-(Ω,m):

Lemma 5. // C is a large enough constant the probability that
λ\S^(l+C β"1) in Wl£-{Ω9m) converges to 1 α s N ^ o o . (If β is large
enough and m = (2α — l)m* with 0 < α < 1.)

Proof Using (B.19), (B.20) and (B.21) we find that the probability
that |λ| > N (1 + C β~x) in 9JΪ+ "(Ω) is majorized by:

< |Ω | (3 e-β+δWf^1 +c/?- l)Q _ 3

Hence the corresponding probability in 9JΪQ ~(Ω, m) is not larger than:

(B.31) Z {m+ - (Ω), β)/Z (SKί - (Ω, m), β)
(B.32)

' { β ) c 1 + β ~ ί N

So we see that it converges to 0 for all β large enough if C is large enough.
Let us define the small phase-boundary as follows: let X e SERQ ~ (Ω)

and let yι,..., yn be the co-large contours of X which are not enclosed
in a co-small contour. The set y 1 u. . .uy / l is called the small phase
boundary. The set y 1 u. . .u / y n u (big contour) is called the phase
boundary.

Lemma 6. In the ensemble ΪRQ ~ (Ώ, m) the probability that the length
of the enlarge contours exceeds N / P 1 goes to zero as N—•GO (If β is

9 Comraun. math Phys , Vol 25
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large enough), and hence the same is true for the length of the small phase
boundary.

Proof. Consider the set of configurations having precisely k co-large
contours and let their total length be T. Let 30ϊτ k be this set of configura-
tions. The number of ways the yl9... ,yk can be arranged is not larger

Σ l v i l

than \Ω\k3ι = \Ω\k3Ύ and the number of ways of writing T as T = Σ|yi
is not larger than 2T. Furthermore the probability in $RQ~(Ω) that a
configuration contains given y1,...,yk as contours does not exceed

-βΣ\vA

e ' . (This follows from an argument like that proving πΘ(y)^e~β^
from (A.27)). So:

Pm$-w^)φ\k2τ3τe-'τ. (B.33)

Since the contours are co-large the number k must be such that
k^T/c0log\Ω\. Thus the probability in WHQ~(Ω) that the co-ίarge
contours have length Tdoes not exceed:

S (6 e ^

Therefore:

Pm+ - (O) (length of the co-large contours > t)
0 ίB 35)

<e-(β-2/C0)tn _e-β + 2/coyi <2β-(jβ-2/c0)t V ' }

Let t = Nj5" 1 . We find that:

Pm+ -(Ω) (same as (B.35))S2 e-
{β-2'c^β'γ =2e-

N + 2N/βc° (B.36)

which gives the desired result after comparison with (B.I4).
Let us now consider the regions into which the phase boundary of

X e SDto ~ (Ω) divides Ω. We shall call d-magnetized the regions having
down spins adjacent to the boundary from the inside. Likewise we call
ι/-magnetized the regions which have up spins adjacent to the boundary
from the inside. Notice that as a consequence of the presence of the big
contour the two notions in a sense exchange their role above and below
the big contour. Let Θ be a set Θ C Ω with volume |Θ| > k \Ω\ (for some
k > 0). We can consider the set of contour configurations S0ϊc(Θ) in Θ
defined by the requirement that all the outer contours are c-small We
make 9Jlc(Θ) an ensemble by introducing on it a relative probability

0ΣlJJ
e ι (as usual). The region Θ is not necessarily connected and can
go around the cylinder Ω.

MS have proved the following lemma (Ref. [7.], Lemma 4.6).
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Lemma 7. Let X e Wlc(Θ) and call N (X) the number of points in X
which are "red" if we colour the points of Θ starting with white outside Θ
and then use red after we meet the first contour and so on, alternating
the colours. Then if c ^ 2/3/?:

(x) - <N> M c ( β ) | R S h 2 exp ( -

(B.37)

for l^.Rίie~β - hί,h2 are positive numbers.
This lemma needs not to be proved if we remark that it says something

different from the corresponding lemma of MS only if Θ goes around
the cylinder. In this case however the allowed contours are enclosed
inside contours of length ^c log |Ω | . So for |Ω| large none of them goes
around Θ, and so the proof goes as if Θ were open. The fact that in our
case Ω is not square but elongated is of no consequence for the proof
since this fact is never used in the MS paper. (It is of course necessary
that the two sides of Ω go to oo.)

Consider now the ensemble MQ ~ (Ω) and consider the configurations
which have a fixed phase boundary X, and for which the ^-magnetized
region Θd is such that |<9d| > k|Ω|. Let the ensemble of such configurations
be2Ri-(Ω).

The contour configurations inside Θd will of course have only
co-small outer contours and have probabilities determined by 2RC0(Θd).
Hence:

- (β)(|Nu(<9d) - <Nu(<9d)>™ ( Θ J > R β d | 3 ' 4 )
4-β (B.38)

Also:

(y)

(B.39)

where \dΘd\ = |big contour| + Σ N + N = (length of the phase boundary
ί

+ length of a base of £2) and |μ(jB)| ^ const e~^. Hence:

- n i e 3 R 2(k

(B.40)

which implies

l i f t } •+ — (Ω)\

4β

- h i e

3 R 2 (k |Ω |) 1 / 2

(B.41)
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If X e MQ ~ (Ω, m) then, as shown in Lemma 6 and Lemma 5

l + β-1 + l)^^3^ (B.42)

with probability -> 1 as N-> 1. Therefore:

M. \
e 3 R2(k|Ω|)1/2J (B.43)

for suitable constants h 3, h 4 because N/|Ω|3/4->0 and \μ(β)\/R ^ const.
Similarly:

^

- h 4 e 3 R 2 (k |Ω|) 1 / 2 j . (B.44)

From (B.43), (B.44) MS ([7], proof of Lemma 4.2 and 4.3), through
purely algebraic steps which do not change in our case (though we
have a different setting), deduce a result which in our language would
read:

Lemma 8. In SOΪQ ~ (Ω, m) consider the set of configurations

WIQ ~(Ω, m) such that:

| (B.45)

\Nd(Θu)-ρ*a\Ω\\Sκ(β)\Ω\^

\Nu(Θd)-ρ*(l-a)\Ω\\Sκ(β)\Ω\^

where Nd(6>u) is the number of spins down in the u-magnetized region
and vice versa for Nu(Θά). The set 9JIQ ~ (Ω, m) has a probability in
9Jί^ ~(Ω, m) which tends to 1 as N-^ oo if β is large enough.

Since by Lemma 6 the area included inside the small phase boundary
does not exceed N 2 β ~ 2 it is finally easy to realize that the properties
of the phase separation formulated in Section 3 are true:

Lemma 9. Let $Ro ~ (Ω, m) C SPto ~ (β? ni) he the set of configurations
such that the following conditions are fulfilled:

( B 4 6 )

\co-large contours ^ N β
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where λ is the big contour, Ωλ the region above it and N~ (Ωλ), N + (Ω — Ωλ)
the number of down spins above λ and up spins below λ respectively. Then
the probability of $RQ ~ {Ω, m) converges to 1 as N -• oo for all β large
enough ifκ(β) = e~βB and ifB'1 and C are chosen large enough, and p is
chosen so that N 2/|Ω|P = N 2 ~ P ( 1 +δ)-+0 andl>p^ 3/4. (If 2/(1 4-δ)<3/4
we can choose p = 3/4, and otherwise we can e.g. choose p = (1 + 2/(1 + <5))/2).

Appendix C

In this appendix we study the number of shapes of a big contour of
given length |λ| = N (1 +1) on an infinitely long cylinder. We first study
how this number grows with N and then estimate it when t is small.

Consider an equivalence class (λ) of contours λ which go around
the infinitely long cylinder Ω, and suppose that |Λ . |=N(l+t) , t < l .
Each column of the lattice intersects at least one horizontal segment
of λ. As before we call "regular" those which intersect only one. There
are at least N (1 -1) pairs of adjacent regular columns with no vertical
segment between them. (Because for each other pair of adjacent columns
at least one unit of "excess length" is needed). If we open λ between such a
pair we can construct a corresponding walk on a plane lattice from
(0, 0) to (N, 0) starting and ending horizontally and not leaving the
strip with base (0,0) - (N, 0). Let the number of such walks with length
N (1 +1) be W (N, t). If we choose the cutting point according to some
rule we get a mapping from the (λ): s onto the walks such that at most
N (λ): s correspond to one walk. Therefore, if expN^N(t) is the number
of (A): 5, we get the estimate:

W (N, t) g exp N^ N (t) p W ( N , t ) . (C.I)

By a simple subadditivity argument using the fact that

W (N, t) W (M, t) ̂  W (N + M, t)

one can easily prove that:

^ (t) = lim N ~x log W (N, t) (C.2)
N-x»

exists and that ^(t) = sup N " Mog W (N, t).

We thus see that

^ ( t ) = lim^N(t) (C.3)

and that

(C.4)
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We now show that

^ ( t ) = - t l o g t + o(t) (C.5)

for t small by exhibiting an upper and a lower bound for N~ Mog W (N, t)
of this magnitude.

An upper bound can be obtained by observing that W (N, t) ̂  the
number of unrestricted random walks from (0,0) to (N, 0) in N(l + t)

steps. This number is \^τ,\ t / i j , which can be seen by writing each

independent step (cch yt) of such a walk as {uiΛ-i>i—\,ui — <u^ with
ux and u{ independent Bernoulli variables. The conditions £ ^ = N,

i = 0 then become £ ^ f = £^i = N (1 +1/2). The binomial coefficient
i ί i

can easily be estimated using Stirlings formula and we get

lim N " 1 log W (N, t) g - tlogt + o (t).
N > o

N->oo

A lower bound can be obtained by estimating a suitable subclass of
the walks. We consider those walks that never go "backwards". Such
a walk consists of N — 1 vertical jumps a>u...ya>^^x with £ ^. = o and

X l̂ ίl = N t between N horizontal jumps. Introducing a>^{cc, ^ ) = ^ 1

we thus have ^ N _ ^0, N t) g W (N, t). ^N(o, y) can be estimated by the
well known method of using a "conjugate distribution". Consider the
two dimensional "canonical" probability distribution defined by

1 —- D

~f if \&\=zy = integer ^ 0

otherwise

depending on a parameter p, 0 < p < 1. If (cch yt) i = l , ...,JV are

independent and all have the distribution p (&, y) then the sums
N N

cc = Y a>i, u = Y u: have the distribution

1 —n \N Σl*>l /I o \

= Σ ( T ^ - ) P1 = ( I T F ) P " ^ ^ ' ^ ( C 7 )
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pNfa ψ) can be estimated using the local version of the central limit
theorem, and thus also w^fa ^). We have

<^> = 0, (¥ίy = τ

2 ^ τ , Cov fa, ¥ι) = 0 (C.8)
1 — p

and put D fa) = <τ*, D (¥i) = a* .
Then:

p N ( ^ ) = const N - (exp - { ( ^ + ̂ ^ ) ) (1 + 0 (N"'/'))

(C.9)
uniformly for x1 + ̂ 2 = 0 (N) in the support of PN.

Putting x = 0, ^ = (N + 1) <y> we get

(CIO)

If we now choose p so that <^> = - — ^ - = t we get:
1 —p

(N + 1)- Mog ̂ N(0, (N + 1) t) = log ί-]^] ~ t log p + 0 (N- Hog N).
P / (Cll)

For t small we get p = t/2 + 0 (t2) and thus finally:

lίm N- rlog W (N, t) ̂  - 1 log t + 0 (t) (C.12)

and ^ (t) = - 1 log t + 0 (t). (C.5)
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