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Abstract. Recently a certain class of homogeneous world models filled with perfect
fluid have been discussed, [1, 2]. The corresponding results when anisotropic stresses are
included are now examined.

This paper discusses general-relativistic spacetimes admitting a
3-parameter group of motions acting simply-transitively on spacelike
surfaces of homogeneity such that the tangent vectors of the normal
congruence are Ricci eigenvectors. In previous papers [1,2] the normals
ua were further assumed to be the fluid flow vectors for a perfect fluid,
and the aim of this paper is to investigate the validity of previous results
when this restriction is relaxed. Physically this will allow us to consider
a fluid with 4-velocity ua and anisotropic stresses, but with no net energy
flux relative to the fluid flow.

The calculation techniques and group classification follow [1]. The
results of [1], Section 2, remain valid, and in particular, ω = ύ = 0 and da

applied to any covariantly defined quantity gives zero. The energy-
momentum tensor has the form [9],

where πab = π(ab\ πa

a = πabub = 0. Tab must have the form (1) because ua

is assumed to be a Ricci eigenvector. If we interpret ua as the mean fluid
flow vector then μ is the energy density, p the pressure, and πab the an-
isotropic stress measured in the rest frame of ua. The contracted Bianchi
identities Tab.b = 0 read,

/ 1 \
= 0, (2)

(3)
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(The form of (3) arises from the fact that ύa = dap = d y π ( x

y = 0 for the
reason given above.) The only alteration to the field equations is the
addition of a term πβδ to the right hand side of Eq. (3.4) in [1], and equa-
tions derived from it. First we discuss the modifications of the results
of [1], without making any physical restriction on Tab, i.e. from a purely
geometrical standpoint.

Lemma 1 (4.1)1. In all the spacetimes of Class A except those of
Bianchi types I and II, there exists an orthonormal tetrad {ea} with u = e0

and such that the vectors {eβ} are Fermi-propagated shear and stress eigen-
vectors of the flow congruence, and Rίcci eigenvectors of the surfaces of
homogeneity. The Weyl tensor is then type I or its specialisations D or 0.

In Bianchi types I and II such a tetrad need not exist. However in
these cases the tetrad can be chosen either as shear eigenvectors or as
stress eigenvectors or to be Fermi-propagated, and if there is a tetrad
having any two of these properties then it has the third.

Lemma 2 (4.2). In all spacetimes of Class A except Bianchi types I and
II there exist coordinates xl such that the metric tensor takes the form of
[1], (4.8).

These results follow since the proofs of [1] hold except where the (caβ)
field equations (α φ β) are required.

Lemma 3 (5.1). The only Class B spacetime in which aβ is not necessarily
a Fermi-propagated shear and stress eigenvector is that with a group of
type VIh with h= - 1/9.

The information regarding stress follows from (3).

Lemma 4 (5.2). A spacetime of Class B has n2 = n3 on an open neigh-
bourhood if and only if there is a group of type V.

The proof follows [1] except where it is asserted that d0σ23 = Q
=>σ12σ13 = 0. However if n2 = n3 φO, [1] (3.3) implies (T12 = σ13 =0 and
so Lemma 4 follows.

We can no longer assert that when there is a group of type V σΛβ = 0
(α φ β). The argument concerning the case σ2 3 — 0 similarly fails and so
do the proofs of Lemma 5.3 and Theorems 6.1 and 6.2.

If in Class A the eigenvectors of naβ, σaβ and πα)3 coincide and are
thus Fermi-propagated, we have the metric form [1] (4.8). For the πα

α = 0
cases except Bbii we can similarly obtain the metric form [1] (6.6),
provided Theorem 6.1 holds, and that in type V tf23=^23 = 0. When
these metric forms are available we can write the stresses as derived from

1 The numbering in brackets refers to the corresponding result in [1].
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a potential (cf. [3]). We have,
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1/302
2 2

0ι =(/ι)7/ι,β 2 = ('2)7/2, »3 = (/3) 7/3,

Substituting in (2) we obtain

πα/J = diag(π1? π2, π3).

where /3 = / t /2 /a = e~ 3Ω. Thus in a frame of invariant reciprocal vectors
with lv~

2=gv\

o μΦv)
(4)

In the (Ωβiβ2) parametrisation introduced by Misner and used by
others, [5-8], we may express the Einstein equations in the following
form,

4O"2

-3β o \
Pi;

-3Ωβ \ _
Pa;

μ

4

e~β

2

β-β

2

3Ω*(μ +

3Fi

δF,

^2
3

P)+ 4

' 4- /?*2N>ϊ~P2

1 δK2

2 δjβ!

2 δj62

Pi ίi o ^

2R*

3

3 „. dV2

4 ^j^2

(5)

where V1=-2^R^e~2Ω, V2 = 4μβ, R* being the curvature of the
surfaces of transitivity. The form (6) is of course not very useful unless
some physical assumptions allowing us to calculate V2 are made. One
could now proceed by writing in the notation of [8],

0-6β

(Φ is Misner's Λ, cf. [6]), and an analysis similar to [6] and [8] could be
developed, but this will not be studied here.
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We now discuss possible prescriptions for the shearing stress. If
microscopic collisions occur and the relativistic Boltzmann equation
can be applied, an initial value problem can be formulated. This could
be used to describe the early stages in the Universe at temperatures above
1010 °K. (See also [11].) We shall assume that ua is parallel to the total
rest mass flux vector of the particles. Apart from a very short period
immediately after initial conditions have been imposed, the Boltzmann
equation will have a "normal solution", that is the distribution function
depends only on the rest mass density ρ, the mean 4-velocity ua, the
temperature T, and their first derivatives, [3]. The homogeneity of our
models implies that the stress tensor πab can be written as a function of
the shear tensor σab, and in fact we find from kinetic theory, [3], that,

π

ab= -λσab, λ a scalar. (6)

Clearly from (6), πab and σab can be simultaneously diagonalised except
for a very short period immediately after the imposition of initial con-
ditions, and therefore [1] Theorems 4.1 and 4.2 hold in their original
form, so that Bianchi types I, II are no longer exceptional. The arguments
concerning type V and the case σ2 3 = 0 also hold. If πab has the form (6)
Lemma 6.1 and Theorem 6.2 hold in their original form. When a normal
solution of the Boltzmann equation is applicable the heat flow vector qa

will take the form [3, 9]

q*=-ηhab(Tb+Tύb),

where T is the temperature and η is a scalar. The homogeneity of our
models implies that qa = 0. A similar argument applies to diffusion flows
in the case of a multicomponent fluid, and these two results justify our
choice of the energy-momentum tensor (1).

If collisions do not occur, the above remarks do not apply. It is no
longer possible to apply normal solution theory, and the stress tensor
depends not only on the current values of the fluid variables but also
on the Cauchy data for the initial value problem. This type of behaviour
would occur for example with collision-free neutrinos (photons) after
the temperatures of the radiation in the Universe had dropped below
1010 °K (104 °K) respectively, (see e.g. [3, 5, 10]). Misner has shown that
(4), (5) hold for homogeneous collision-free radiation in Bianchi type I,
[5] and Stewart [10] has given an explicit integration for locally rota-
tionally symmetric Bianchi type I models. These authors have suggested
that (6) can be expected to hold in cases where the shear anisotropy is
small. However it is difficult to find solutions in general because there
are an insufficient number of homogeneous constants of the motion to
characterise all of the homogeneous distribution functions [4].
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