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Abstract. A self-interaction with damped off-diagonal coefficients is used to
illustrate techniques for dealing directly with Hamiltonians in strange representa-
tions of the CCR.

Introduction

It is clear by now that the existence of many inequivalent represen-
tations of the canonical commutation relations (CCR) is both the hope
and the bane of the Hamiltonian approach to Quantum Field Theory.

[oe]

Since even the simplest Hamiltonians (for example: Y w,(pf + ¢3)
k=1
+ a,qy + bppr — 4 if the sequences of real numbers {a,} and {b,} are

large enough) do not make sense in the Fock representation one can

hope that everything would be all right in another representation.
However, the problem of finding the “right’’ representation and carrying
through the analysis of the Hamiltonian in it does not seem, to say the
least, to be easy. The usual approach to these problems is first to cut-off
the Hamiltonian and develop a well-defined theory on Fock space and
then to try to remove the cut-off (using the vacuum expectation values
and/or the algebraic approach of Segal) and thereby recover a limiting
theory and the “right’” representation.

In this note we will sketch how the theory of infinite sums of self-
adjoint operators on infinite tensor product spaces developed in [5] and
analytic perturbation theory can be used to analyze directly the operator

A =k21 (0 @PF+ a3 — 0xT) + Y Dkimn 959 Do O -

kElmmn=1
There will be no restriction on the on-diagonal d,,,; except that they
be positive, the off-diagonal d;.;,, , must be small. We will find a represen-
tation of the CCR such that 4, is well-defined and self-adjoint (for an
appropriate choice of the renormalizing sequence {z;}). We show that
A, is bounded below and has point spectrum of unit multiplicity as
lowest point in its spectrum. We determine sufficient conditions on test
functions so that when the field and its conjugate momentum are
smeared with them in this representation they are self-adjoint. Finally,
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we show that if one developes a cut-off theory in this representation then
the physical vacuum (the eigenfunction corresponding to the lowest
spectrum of 4,) is the limit in the Hilbert space of the cut-off physical
vacuums.

§ 1. Self-adjointness

We begin by writing the formal operator 4, in the form

(oo} ‘l [oe] ,
Aoo: Zwk(p%"{"%%‘!"?qu_fk)"*' 2 d’klmn?kfll%n%z
k=1 x kl,m,n
(wk = ]/k2+ m?, dy, = dy x> 0, the dy,,, are real and the prime means
the sum is only over the off-diagonal %, I, m, n)
The following two lemmas give information about the differential

2
operator B = — %2— + a? 4 cat, ¢ = 0. Proofs may be found in § 5.

Lemma 1. B is essentially self-adjoint or & (R), and it has discrete
spectrum, its eigenvalues have multiplicity one, and the corresponding
eigenfunctions are in & (R).

Lemma 2. Let A be the lowest eigenvalue of B, A, the next highest eigen-
value. Then A, — Ay > 3/2 (independent of ¢) and A3 < 2 (3/2)3 (1 + ¢).

2

We now define 7;, to be the lowest eigenvalue of — e T+ ;f« xt
k

and let y.(x) be the corresponding normalized eigenfunction. Set
2x=1I & xi(x) and let H(y) be the infinite tensor product Hilbert
E=1

space generated by the Cg-vector 4 (voN NEUMANN’S terminology [4]).
If we let g; be the operator which acts by multiplication by z on the

k'™ component of vectors in H(y) and p, the operator which acts as

%—-% on the k™ component then {g,, pi}, k= 1,2, ..., is a represen-

tation of the canonical commutation relations on H(y). For a short
description of the infinite tensor product spaces of voN NEumMANN and
the infinite tensor product representations of the CCR see [7] or the
Appendices in [5].

We now have a specific Hilbert space H (x), and representation of the

CCR. Let D be the finite span of the set {1/); pEH(y), w=1II R pp(x),
k=1

yr(@) € L (RB), pp(x) = yp(x) for £ = N, N arbitrary;. Then D is dense
in H(y) and } oy (p% + 93 + %qt - rk) certainly makes sense on D
k=1

since for any given y € D the sum is actually finite.

Theorem 1. 3 w, (p% + g%+ Z% qi — rk) is essentially self-adjoint
on D. k=1
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Proof. The theorem follows as a special case of a general theorem on
the essential self-adjointness of diagnonal sums in infinite tensor product
spaces [5]. It can also be proven by observing that D contains a dense
set of analytic vectors; namely, finite combinations of ¢,-vectors of the
form

@1@@2"'®@n®xn+1®"'

0, an eigenfunction of p} + ¢% + —;% qs.
We need the following estimate:
2
Lemma 3. Let B= o (~ O @ g ot - o) and | €S (R). Then
2 2 /2 \3 6 \4/3
@1 = o BN + {2 (57) + 3 (3) e
Proof. We denote % j_x by p and x by q. Then

(B, ) = (0@ + ¢ = D)), /) + (0@ + ¢ — 7) , weg 4], f)
+ 0?c®(%f, f) = ([w(P* + ¢ — 1), weq*lLf, f) + w?c (¢, f)
= (PPt + ¢*P) [, ) + 20%c(¢* (¢ — 0) 1, ) + 02 (¢, f) -

Since pg* = %—q3 + ¢*p and pg® = %qz + ¢®p we have:
4
(P + 9P 1. 1) = ((p (q“p + qs) + (pq - —) ) f, f)

= 2 (0g® — P 1. ) = — 12, ) -
1

. 2 \3
Furthermore since ¢*(¢? — 7) = — 3 |5 7) we have

202 (-7} H= - o C( ) 1712 -

Thus

@)1 = i B+ 5 (37) W2+ 2 @)

4/3
The estimate -1—62— ® < ? ®+3 (7) ! now proves the lemma.
Theorem 2. Suppose that the off-diagonal coefficients satisfy:

., 4/3 4/3 « \4/3
1. 2 ]dklmnl ldrstul (1 + ( ) + (%) +o (Elou ) ) < -

' 1
ZZ ldklmnl ldrstul (d—%+ﬁl§+ R dz) <L

u

( The double prime means that no term wherek =l=m=norr=s=t=u
appears.) Then

kzlwk ( Pk + 9k+ _Qk - Tk) + \—’ dklmn 9% 91 9m 9n

,lmn——

is essentially self-adjoint on D.
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N
Proof. Let w ¢ D.For any finite N, 3" dy1mn @ 91 9m ¢ 1s & well-
El,mmn=1

defined symmetric operator on D. Let O = w, (p% + g2 + Z—’; qt - Tk)
and
Sy=A{k,l,m,n);kl,mn= N}

Ty= {1, mmn,rstu);klmmn,rstuws N}
Sy, =8y —8a, Ty =Ty — T -
We observe that Sy, 3 X Sy, yr C Ty, - We now estimate

Z dklmn 91 9m In /‘l)lliz

Sa, ¥

= 2 Bximnl [ rseul (@ G On B O O 01 T 9> )|

M N

= ) TZ” ldklmn[ ]drstul I(q% + le i 93 Y, EU)I

.
(3], 2 Mmoo () (3) 420 ()"
(—?l)_:) (% Tu)a +20 ( ;’“ )4/3) |2

< (s%p(O%w, w)) : TMZN L il Idrstu[(d2 1, -—+}_)

1 2 C}
= g 2 sl el (5 + 5+

+

ra az

10 X |d -1 14 (@) (9_:)4’3
+ TEV I klmn| l rstul( +(dk) + dl + (

1)y

(we have used Lemma 2 and Lemma 3). For large enough &, (C3y,y) = 0
S0 stk}p(O,zc v, y) < co. By hypotheses 1. and 2.

1 ].
2 Idklmnl ldrstu| (dz + = + +—‘

Ty, n
and

. 4/3 L \4/3
0 sl (1 (5) 4 (59)"°) 0

Thus

[‘SN M

2 D vmn O 92 I In 71';‘2 el

Therefore Z,” Qi tmn Q2 91 Om 9 18 @ well-defined symmetric operator
kElmmn=1
N
on D since it is the strong limit of 3}  dy;mn @ 9 9m ¢, Further,

klmmn=1
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if we set

Ty =10 3" |di1mn| [@rseul (1 4 ( )4/3 + (%)4/3 4o ( ‘;’u )4/3)

then we have the estimate

12 diimn 9 0 qm Tnyl?
p C; Ca
4 Z |dklmnl Idrstul ((tl; I _;Zz')'l,u; VJ)JF Tg “wnz

1 31
=7 21 77 (D1,p+ Dy + -+ Dy (C3y, y) + Ta | pl?
v = v
where
-D = 2” [dv lmni |d'rstu[
lym,n,r,s,t,u
Dzw Z” ldkvm-n[ [drstul
k,m,n,r,8,t,u
Ds,v = Z” {dlclmnl ]d'rstvl .
kLm,n,r,8,t

Now since by hypotheses 2)

1 &1
”4“ 2 dz (Dl,z + Dz,vT S Ds,u) = Tl

we must have — : (d") (D1,5+ Dy, + + -+ + Dg,,) = T;. Thus

12 diimn G @ m | = Ty 2 02% + Ty |yl

é 2 zrw: A‘;U) —{— Tl 4:211 (07100)1/)’ 1/))
+ Ty l]?
o) 2
=7, (( 21 o,,) v, w) Tyl
= b + T, )2

We have used the fact that (O’,, Cw v, p) > 0 since the O}, are positive and
they commute. Therefore we have

IS 2
”2/ dklmn Xy qu'nv)” é T%/Z 2101)')0 + Té/2 HV’“
W=
which proves that
2 ( Ic'*'Qk_*_““(]L—Tk)"}“ 2 dklanleQan
k=1 Elmmn=1

is essentially self-adjoint on D since T}’ 2 < 1 (see KaTo [9]).
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§ 2. The Physical Vacuum
2
Since — j? + 2% + ca4, ¢ = 0, has pure point spectrum and the gap
between the lowest eigenvalue and the next is at least 3/2 (Lemma 2)
the operator w; (p,% + q3 + —ik— q% — rk) must have a gap of at least 3m/2
k

between its zero eigenvalue and the next highest (where m < inf w;, is

just the mass). Since the zero eigenvalue of w, (p% + ¢+ %ik— qt — ’L’k)
k

has multiplicity one, ' wy (p,% + ¢ + % qt — ‘ck) on H () has a zero
E=1 k

eigenvalue of multiplicity one and the next point in its spectrum is > —5”1 .

Theorem 3. If the off-diagonal coefficients satisfy
ZN Idklmnl Idrstul

(L R o (A (0 () (2
Rl a) o0 () (e (0 () )=
then A, is essentially self-adjoint on D C H (y) and has an isolated point

3
spectrum < —— of unit multiplicity as lowest point in its spectrum.

Proof. We use a standard theorem of analytic perturbation theory
(Karo [3], p. 214) which states. Suppose a symmetric operator V is
dominated by a self-adjoint operator H, in the sense of Kato (|| Vu|
< alu| + b|Hyul,0 = b<1). Let I' be a closed curve in the resolvent
set of H, which surrounds a finite number, n, of point spectra of H,. If
sup (a |R(C, Hy)| + b |H R (C, Hy)|) < 1 then I'is in the resolvent set
fer

of Hy+ V and surrounds » point spectra of H,+ V. In our case

oo

Hy= } wk(p%+q%+-g’;fqif—r;c), V =23 dy1mn 5 9 9m 9 and we will

=1
take I to be the circle with center the origin of radius%mn Let o(H,)
denote the spectrum of H,. Then
1
sup (@ sup ———-+b sup f ‘) = + 2b
ter ( reomy 1A—EL T heomy 14— € 0
since H, has point spectrum at the origin and the rest of its spectrum

is >E;i From the proof of Theorem 2 we have || Vy| < /T, |H,y|
+V/T | | so the condition to be fulfilled is %[/7]72 +2 VTI < 1. A con-

2
dition which implies this is 27, (—3%—) + 87, <1 which is just the

hypothesis of this theorem. (7', and 7', are defined in the proof of
Theorem 2).
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§ 3. Test Functions for the Field and Conjugate Momentum

In this setup where we have expanded the field into modes test func-
tions are test sequences of real numbers a = {a;};— ;. The smeared field

and conjugate momentum operators are ¢ (@)= 3, a,q,andz(a)= 3 a;p;
= F=1

respectively.
oo / /3
Theorem 4. Suppose {a,}y—1 satisfies 3 |ayl? (1 + (g’;—)l )< co.
=1
Then p(a) = 3 apq; and mw(a) = 3 a,p, are essentially self-adjoint on
E=1 k=1
DCH(y).

Proof. To show that ¢(a) is essentially self-adjoint on D it is suf-
ficient to show

fee) oo

2 law) 1(@xxw xx)| < oo and kZl @z (93 qns ) < ©

k=1

(StrEIT [7] shows that these conditions are sufficient for ¢(a) to be
self-adjoint on some domain in H (y); for a proof that this domain can
be taken to be D see § 1.2 of (5)).

From Lemma 1 we know that x,(x) € & (r) so the expressions
(9w xx) and (g2 sz, yx) make sense. y;(x) satisfies

17 d
— 7 @)+ (22 + 50t 70) = T @) (3.1)
but if y,(x) is a solution so is y,(— ). Since each eigenvalue has multi-
plicity one we must have y, () = 2y, (—2), |2| = 1. Since every solution

of (3.1) is a constant times an everywhere real solution, y, (%)= & x5 (— ).
Therefore (g; x1 (%), i) = 0. Now

@700, 7)) = 5 (@203 26 (@), 7))
= o (@7 + 0ua + dugh) £2(0), 7))
= 7, (1 (%), 22(2))

= @m)(5) (1+

which by the hypotheses of the theorem proves that

dx

Wy,

13
) by Lemma 2

kZ’l a3 (93 xres ) < © .

The proof for w(a) = J3 a;py is similar.
E=1
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§ 4. The Convergence of the Cut-off Physical Vacuums
Let Ay be the formal operator

N N
d ,

Ay= X wk(p%+q%+ ;o—"~q;%~rk)+ 2 dtmn O 91 G n -
k=1 £ k,l,m,n

If the off-diagonal coefficients are suitably small, then by the same
proofs as in §1 and §2 Ay can be shown to be essentially self-adjoint
on & (R¥)C L2(RY) and to have point spectrum of unit multiplicity as
lowest point in its spectrum. Let gy be the corresponding eigenfunction.
(See JarrE [2] for a detailed analysis of the cut-off case where the off-
diagonal d;;,,, are not required to be small.)

Ay is a well-defined operator on H () also (it only operates on the
first N components) and is essentially self-adjoint on D. Although the
lowest point in its spectrum is point spectrum, it has infinite multiplicity

since any vector of theformyy ® II )  frwhere 3’ |1 — (fz, xx)| < oo
E=N+1 N+1
is an eigenvector in H (y) corresponding to the lowest eigenvalue. Let us

choose for the cut-off physical vacuum the vector Oy = yy® I X sz
E=N+1
We then can state

Theorem b. Suppose that the off-diagonal coefficients satisfy
2” !dklmnl [drstul

1 1 4\ 1 wy 413 @, \4/3))
e+ a2 (@) +2) (+ ()" (2) )<
and let 0 be the unique physical vacuwum given by Theorem 3. Then 6, 2%, §.

Proof. Let

oo d N ,
By =X o (p% G gk - rk) + 2 Drtmn G0 9 G G-
The operators 4,, and By are all essentially self-adjoint on D and the
lowest point in the spectrum of By is a point spectrum with unit multi-
plicity and corresponding eigenvector 0. For y € D we have the estimate
(from the proof of Theorem 2)

l%"dkzmn%%%ﬂ%’/’ §VT?V kgl Cry +VT—§IH7PU
where '
d
Cr= wk(Pl%*‘Ql%‘*‘EZ‘Q}%—Tk)
13, 1 1
TY = ¢ 27 simal sl (G + - - )

00/1 4 o)
TY =10 2" |dvmn [drstal (1 + (%) Tt (3 ) ) )
N y )

24 Commun, math, Phys,,Vol.11
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Further, by the hypothesis on the off-diagonal coefficients 7§ < 1,
T¥ <1for all N and T¥ -0, 7Y — 0 as N - co. Let

V'__ZldklankQZQanr

then
IkZICkzp = (f Ch+V ’|+ Vol
= (2 w,I v 12, Cuv| - VT vl
80,
(kg O + V) wl' Flvl= Q=Y | X oy + Q- VTH 1wl
Therefore
sup 1o =B vl _ o0 12 ditmn @291 G O )|
y€ED o] + 4o vl veD |y + 1‘(:\:‘30 + V) '/’J
k=1 |

VTT | £ Cuvl + VT 1]
§ su k= i

p = 1 — e
ved (L= JT]) X Gy + (1 = J T[]

as N — co. Thus By converges strongly relatively uniformly to 4. in
the terminology of Sz. Nacy ([6], p. 370). From [6] we therefore get

gEEN(—oo,%@)—E(——oo —)’|->0 as N — oo.

where E¥ (s, t) and E(s,t) are the spectral projectors of By and A4

respectively. Now, & ( — o0, 3m 7\ ) has a one-dimensional range, namely 0,

and as soon as”;EN(— oo,%m) — E’(— oo,%m)]t <1, E¥ (— oo,éi—m) will

also have a one-dimensional range which must be 0. Since
l{@E'N(—oo,%m)—E(—-oo )u—>0 as N —oo
we have HNMO as N — co.

§ 5. The Anharmonie Oscillator

In this section we prove the two lemmas about the operator
2

B=— ddx2 + a2 + ca? which were stated in § 1. We always assume ¢ = 0.

Lemma 1. B is essentially self-adjoint on & (R), it has discrete spec-
trum, its eigenvalues have multiplicity one and the corresponding eigenfunc-
tions are in & (R).
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Proof. B is essentially self-adjoint on any dense domain contained
in & (R) (JAFFE [2]) and since a% + ca — oo as & — -+ oo, B has discrete
spectrum (Trrcamassa [8]). JAFFE [2] has also shown that the eigen-
functions are in % (R). The eigenvalues of B have unit multiplicity
essentially because B has the limit point case at both 4+ co. Suppose an
eigenvalue had multiplicity two; that is, both solutions of By = u¢ are
in L2(R). Then by a well-known theorem of Weyl both solutions of
B = A¢ for any complex A are in L?(R). In particular, there are two
L?*(R) functions such that B g = ¢ p. These functions are in the domain
of (Bloge(r))* which implies that the range of B -1 on CfF (E) is not
dense which contradicts the essential self-adjointness of B. Thus the
lemma is proven.

Let {A,(c)}n=1 and {u,(c)}n— 1 denote the eigenvalues of — 7;% 4 22

+ cxt and @*
da?

order. It is convenient to prove Lemma 2 by a sequence of lemmas.

Lemma 3. 4,(c) < iz , Ay(c) = 3.

+ ca? respectively. Each sequence is listed in increasing

Proof. Let h(a, ) = (“Z—)—Me_‘”‘z/z then |h(a, 2)|z =1 and 4;(c)

= (Bh(a x) h{a, a:)w - a + 21a + f:z . If we choose a~~g—we find
Ale) = 12 —I-~— Smce a? + cat = 2%, A,(c) is larger than the second
eigenvalue of — ——5- + 22, thus 1,(c) =

Lemma 4. 01/3,%(1) < Aple) = (01/3 + 15507 502,3 ) Uy (1) + O for all 6 > 0.

Proof. Suppose ¢ () satisfies — ¢ () + cxt@(x) = T (2).

Let x = ¢~1/% y and define y (y) = <p(c*1/6 y). Then — o' (y) + y* v(y)
=15 9(H) 50 fta(0) = 6 (1) V. Since a? + cat = cat, 2,(0) = pale)

= ¢3 y, (1). Furthermore, 2% + ca* < (c + —4—1—) 24+ d for all 6 >0 so

1) = o (o 45) + 0= (e 45)" ma1) +

1
= (01/3+ W) o (1) + 0.

13 =
Lemma 5. 1y (1) < 75, u(1) = 32— 1.

Proof. For all a0, ul(l)é((- 4)h( %), h(a, x))
a 3

:?+Za—2Choosmga—g—wege’n‘ul() 1 Nowx4>V46x2—5

24*
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for all > 0. Thus p,(1) is larger than the n'* eigenvalue of
d2 —
— 4624
which is (46)14 (2n — 1) — 6 In particular, u,(1) = 3(44)*/4 -4, §> 0.
If we choose 8 = 1, we get u,(1) = 3)/2 — 1.
Finally we have
Lemma 2. 2,(c) — 4,(c) > 3/2 (independent of ¢) and
3\3
B<2(3) 0o,

Proof. For ¢ < 1 the fact that 4,(c) — 4, (¢) > 3/2 follows immediately
from Lemma 3. For ¢ > 1 we observe that 1,(c) = (61/3 + ﬁ) Uy (1)
+ d, V6 > 0 (Lemma 4). Taking the minimum over all § >0 we find
M) = B (1) + 2 ( ne )1’2 = 8 (1) + 1%3— (using Lemma 5).

Since 2,(c) = ¢ uy (1), Ay(c) — Aile) = €'/3 (uy(1) — py (1)) “ﬂi> 3

If ¢ < 1, then 4, (c) 12,so(

proof of Lemma 4 we have for all §

2@ =5 (et 45) mO)

1) <1.If¢>1, then from the

I °°| b

_+._
wlr o

b= (ot )+ 20,

Choosing § = —;?and expanding (;— M (c))3 we find %11 (c))3 < 2¢+ 2.

§ 6. Remarks

The point of this example is the following: For diagonal Hamiltonians
it is easy to pick an infinite tensor product representation of the CCR so
that the Hamiltonian is self-adjoint (a theorem in [5] gives an explicit
domain of self-adjointness) and questions about the spectrum reduce
to questions about the spectrum of the component operators in the sum

2
(in this case — 7‘1—2— + 2% + cx‘*). For a “‘diagonally dominated’” Hamil-

tonian the diagonal part may be used to determine the ‘‘right”” represen-
tation and then the whole operator proved self-adjoint by the method
of Karo. Further analysis of the Hamiltonian can then be carried out
treating the whole operator as a perturbation of the diagonal part. Of
course ‘‘real” Hamiltonians are not diagonally dominated (the off-
diagonal dy;,,, are too big). Nevertheless, damping the off-diagonal
coefficients for large k, I, m, n gives in some sense a better approxima-
tion to the “real” Hamiltonian than cutting them off completely. It would
be interesting to carry through an analysis similar to JAFFE [2] or Cax-
~oN [1] and prove the existence of the vacuum expectation values.
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