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Abstract. The existence and analyticity of the correlation functionals of a quan-
tum lattice in the infinite volume limit is proved. The result is valid at sufficiently
high temperatures and for a large class of interactions. Our method estimates the
kernel K? for a set of Kirkwood-Salzburg equations. While a naive estimate would
indicate that | K?|| = oo, we take into account cancellations between different con-
tributions to K¢ in order to show that for sufficiently high temperatures || K?|] < 1,
and this estimate is independent of the volume of the system.

I. Infroduction

The algebraic theory of statistical mechanics applied to quantum spin
systems has recently been studied by D. Rosinsox [1, 2, 3]. In this note,
it is proved that the correlation functional of an infinite volume quantum
lattice satisfies a Kirkwood-Salzburg equation and is analytic in the
fugacities, for sufficiently high temperatures and a large class of multi-
particle potentials. This generalizes results of DoBRUSHIN [4] and GaL-
LAVOTTI [5] for classical lattices.

In order to describe a »-dimensional quantum lattice, assign to every
point « of Z¥ a Hilbert space 9, of dimension N, and to every finite set
A C Z* the tensor product 94 = P 9,. The algebra of bounded operators

zea

on 9,4, denoted 2((A), is called the algebra of strictly local observables,
and the closure of the union Aész A(A) is called the algebra of quasi-
local observables 2.

We will assume N = 2 to simplify notation, although the results are
true for arbitrary V. Let the vectors |X ), X C A, be an orthonormal basis
for £ 4. Then the algebra 2A () is generated by creation and annihilation
operators at(X), a(X), X A, defined with Fermi-Dirac commutation
relations at each lattice site and commutation between different lattice
sites.

at(X)=at(x) a*(xg) ...a%(zx,), X=x,Uz,U- ' Ug,
a* (@) |0y = o)

[a (@), a* (%)) = a0
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We will assume that the interaction of particles on the lattice is given
by a Hermitian, translation-invariant, many-body potential {@*} such

that @*(zy, ..., 2) €A, U -+ - U xy). With the norm || = Y |lol
E=1

where [@l,= 3 |¢*O0vU X)|, |¢*(X)| is the operator norm of
0¢XCZ?
N(X)=k—1
@*(X), and N (X) is the number of elements in X, the potentials {@*}
of finite norm form a Banach space B. Since the potential is translation-
3
invariant, @' can be uniquely specified by f¢!(z) = — 3 Inz,0; where

1=0
the o, are generators of the algebra Q(x). This serves to define the
fugacities z,. For the choice ¢, = a*(x) a(x), 2, agrees with the usual
notion of fugacity in the classical limit. The energy operator U, (A)
= X p(X) satisfes | U, (4)] = N (4) gl

The space B is too large to carry out the intended proofs. It is
necessary rather to consider the subsets B,, « € R, of those multi-
particle potentials {p*} which satisfy

oo o n—1
21 2 lelalela, - - lelga™m 7
a1 =

In=1 j=1

j
. (Z(qi—l)+1)<r"n!
i=1
for some number r depending on ¢.

II. Kirkwood-Salzburg Equation

The partition function Z, and the correlation functional g 4 of a finite
lattice are defined by:

ZA = Tr$A<6_ ﬂU¢<A))

0s(X, ¥) = Z5  Trg (¢ "7 a+(X) a(1)).

Theorem. The correlation functional o,(X, Y) satisfies the following
generalization of the Kirkwood Salzburg equation:

oAaX, V)= Y oP,YURK,X,Y;P,YUR)+a(X,7).
S S
where

1if XUY=0

h€e€Y, Y=Y -y, €X, X' =X — 2, a(X, Y) ={0 otherwise
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and the kernel is given by

Vc%:nP (=Y LP -V |ePUD g ¢~ FUD X (R —~T))
K (X7 RN\@\JX)CV fY+0,(Xuy)nRcCP
A 3 B
P Y/UR) — Z (—— ].)‘V(V) <P——-XI— VI e'ﬁU(A) a:; eﬁU(A) |R — V>
’ VCRN(P—X") .
©“\PCV if Y =0, 5, " PCR,X'"CP
zero otherwise

If p€B,, a= 21/2 + 1, and if B is sufficiently small, then in the limat
A — oo this equation is well defined, has a unique solution, and the solution
is an analytic function of the fugacities in a region of z; — f8 space.

Proof. Viewed as an operator equation on #*, the Kirkwood-Salz-
burg equation can be written (I — K%) 04 = «. We will prove that if
@ € B, and B is sufficiently small, then the operator K7 approaches
a limit K? of norm | K%| < 1 as A4 — oo, uniformly in (complex) fugacities
z;. Therefore, the equation is well defined in the infinite volume limit,
K% — K?, and (I — K?) is invertible.

The solutions of the equation (I — K¢%) p = « are the infinite volume
correlation functionals p. Since |K?| <1, (I — K91 — (I — K?)~! as
A—oco, and thus o4= (I — K¥)~'a~— . Moreover, the functions
2, — K, &9 (I — K #1150 ,(X,Y)of C— Hom (#*)—> Hom (£>)
— C are analytic, and so the composite functions z; — g4 are analytic.
By the uniform convergence of K%, the functions z; — (X, Y) restricted
to the real lines are analytic functions.

To derive the equation for the case Y = ), use cyclicity of the trace
and a sum over intermediate states:

04(X, ¥) =25  Try (a(Y)e "% ot (X))

=Z;! PRIV AN VD ¢
Sc4
SN(YuX)=90
=Z7t Y (SuY|e U LTy o TPUNIg | X
ScAa
Sf\(Y\SX)= 0
=z;* XY (Sur| O
S, TcAa
SN(YUX)=9
LT e U™ ay, e P 5y X>.

From the identity,

(Al By = 7, 2 DY BUT,AUT)
VF\(A\CJB)= [4]
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obtain

0a(X, ¥) = P ea(T VUV, Y uSUTV)(—=1¥N
V,S8,Tc4
SAFUD =0
VA USUT) =

. (TleﬁU‘P(A) a,, e PUet Svu X).

Making the change of summation indices, P=Tyv Vand R=8SuU V,
completes the derivation. The case ¥ = 0§ is similar [6].
We shall calculate |K%| = sup 3 |[K,4(X,Y;P, Y uR)| by
X,Yc4 RPCA
RNY' =9
expanding e# U g, ¢~fU) in multicommutators:

oo

PV a, 0D — 3 P aqn ), 0,) = 3 L U(a), a0

n=0 n=0
Then
K4 X, Y; P, Y UR)= Z;}- Ky (X,Y; P, Y UR),
where B
K% (X,Y; P, Y UR)= b (— ¥
VCENP
RNw,\UX)CV

(P— V| [U(A), 0,1 XU (B~ V)).

If in estimating | K%|| the factor (— 1)¥ (" is omitted, then we obtain
[K%| = co. Hence this factor must be used to take into account can-
cellations between different contributions to the sum for K9.

A bound on |K| is given by the Lemma.

Lemma. 2 |K%(X,Y; P, Y uUR)|

=a2) 2 3 ol Dok,
im1l  ka=1

()t El(zp' k;—1) + 1)
=1
foroc=2]/§—|— 1. ’

Proof. The proof is based on the commutativity [¢(Y;), (¥,)]=0
whenever ¥; N Y, = 0, and the identity 3 (— 1)¥(¥) = 0 for any set

Ycx
X = @. From the first we have
[UA),al® = Y 2 2o X b))
Y,c4 Ys€S, Y,cA4 Yn€Sn-1 Y,c4
Yy\Ny=9 YsNy:=9 YaNyn=190

' [<P(?/nU Yn)s [¢(?/n-1 Y Yn—l)’ R [S‘U(yU Yl)) ai/] b ]]
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where Sp=YpuU Yp_;uU---uU Y, Uy. By setting W=RnNnP -7,
write K% in the form

Ky (X,Y; P, Y UR)= (—1)NEAP 37 (_1)¥ (D
WCENP—(XUyNR

(P—RBNnP)+W|BUA),a,]J"|XU(R—-RNP+W)).
In evaluating 3 ||K%(X, Y; P, Y' U R)|, we may interchange the

R,PCA
RAY =0
order of summation at finite /1 and sum last over the arguments of the
potentials Y5, yo, Y, . . ., Yy, Y, as it will become clear from the proof

of the Lemma and the definition of B, that the resulting series is abso-
lutely convergent uniformly in A. Therefore, let 7= RN\ P, R = R — 1,
P = P — 7, and consider the sum

) 2 =D (= )en g P U W
) PRca tCA—(PURUY) WCr—(XUpNr
R UPUXUY =0

Je@.u V). [ . [eyu Yy, a,].. . ]]IXVRU W).

The sum 3, (—1)¥ ) can be written
WCr—(X\uUymnNr

D e GO (— Y

Wi CE—(XUNNDOINS W, CE—(@XUN)N(A—8y)
which vanishes unless (z — (X U y) n 1) n (4 — 8,) = 0, since, from the
observation [U(A), a,]™ ¢€2A(S,), the matrix element is clearly inde-

pendent of W,. Note that this implies v C S, v X. With these restrictions,
the matrix element becomes

PuW[e. [ [p.a].. ]I XURU W)
={(PnS)uW[e.[ - [ga]. JI(XURUW)NS,)
(PN (A=8) | (XUR) N (A—=8,))
which vanishes unless P N\ (4 — 8,) = XN (A —8,), Rn (4 -8, = 0.
Now suppose 7N (A — 8,) + 0, ie., 1N (X N (A—8,) = 0. Then

in(Pnd— 8,)) = 0, which is impossible, since 7C/A — P. Hence
7 CS,. Combining these results, we may write

2 |KA(X, Y; P, Y U R)|

S5 R T S
AN Yn€Sny Y CA4 Y,c4 P,RCS, WCRNP
YiNy=9 YaN\yn=

B KP—RBRNAP) + W e[ [@a] 1 (XNS,)
UR—=RnP+W).
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Let [, [+ [@, @) +]]=B, V=RAP—W,and T'=P—V,
and employ the Schwarz inequality in summing over 7'.

Y KP—(RAP)+W|B|(XNS,)U(ER—(RAP)+ W)
P,RCSy WCRNP

= X X X l(TlBl(XﬂSn)U(R—V)>I

RCSp VCR TCSp—

= 3 ¥ (f2Ve0- N<V>an—uBu (1/2>N<Sn>(1 +Y12V®

RCSn VCR

= | B (2 @+ /1/2))¥

where we have used the fact that for any set § and number z,

N(@S)
(¥ =y (NSS)) @) = (z - 1)¥ ) .
AcCS r=0

Finally, since | [, a,]"| = 2]¢] |[g, a,]* ], and

N(S,) = L (k; — 1)+ 1
for k; = N(¥,) +1, -
2 EMX,Y; P, Y UR)

=2 ﬁ"kZ_T Z lole, - - Il
L2241 T N (s,)

which proves the Lemma. .

The case n =0 can be explicitly evaluated, writing (4 = B)

1ifA=258
- {O otherwise .
> KYX,Y;P,YUR)p (P, Y UR)
RAYZ0
=0(yNX+0)[ea(X -y Y')—ea(X, ¥)].

Thus the Kirkwood-Salzburg equation takes the form

1

X D= T 5yn x+9)

[6(sz +0)oa(X —y, ¥)

+ > Y L EX, Y, P, Y UR)ouP, Y UR) + «(X, )
n=1 PRca ™

and it is evident that if ¢ € B,, then f can be made sufficiently small
so that [K%| < 1. The convergence of K% as /A — co and the uniformity
in fugacities can easily be checked, completing the proof of the Theorem.
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Corollary 1. If U,(A) conserves particle number, there exists a strictly
positive monotonically decreasing function of fugacity f,(z) such that the
infinite volume correlation functional is analytic in fugacity for B < B, (2).

Proof. If U, (A) conserves particle number, z can be factored from K.

Corollary 2. Suppose ¢ € B, @, =0 if i > 2, and suppose U,(A) con-
serves particle number. Then o (X, Y) is analytic in fugacity z if f(1 4 z«)
< (2o | @llg)2, where o = 2]/2 + 1.

We are investigating if the Theorem provides, in the case that U (A)
commutes with particle number, a better value for an upper bound of the
critical temperature than that found by G. GaLravorTI [7].

Applications of the integral equation and other properties of the
correlation functionals for classical systems have been described by
D. RusLre [8] and G. Garravorrr [9].

I would like to thank D. RoBinson for suggesting this problem and A. JAFFE
for his assistance and encouragement.
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