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Abstract. The Fourier transform of a product of two functions on $I/(2, C) is
expressed as a convolution integral of the Fourier transforms of its factors. With
the help of this convolution integral we present the Fourier transform of a polynomi-
ally bounded function as a finite linear combination of analytic delta functionals
applied to a continuous function on the real line in an improper sense.

1. Introduction

The scattering amplitude for elastic scattering of elementary particles
in forward direction can be described by a set of functions on the homo-
geneous Lorentz group SL(2, C) which are polynomially bounded and
analytic in the real variables of the group SL(2, C). Such presentation
of the scattering amplitude allows us to perform a phenomenological
analysis of elastic forward scattering in the fashion developed by TOLLER
[1]. TOLLER'S method is based on harmonic analysis on the group
SL(2, C). However, the functions we are dealing with in scattering
theory are in general not square integrable, and harmonic analysis in the
Z2-sense is therefore not applicable. Instead Toller proposes to consider
these functions as if they generate linear functionals on certain spaces
of test functions. Without following this idea in more detail he assumes
that their Eourier transforms are analytic functionals1. This means in
particular that the functions themselves are written as inverse Fourier
transforms in which the integration contour extends over complex values
ρ, where ρ together with an integer m parametrizes all completely irre-
ducible representations of SL(2, C) [3]. This integral representation
which by definition of analytic functionals converges in the sense of the
topology of linear functionals is moreover assumed to converge in
a standard sense and to have some other "nice" properties.

In this article we study a general approach to polynomially bounded
functions and their Fourier transform on SL (2, C). We denote an element
of SL(2, C) by

α = = W <W'
1 The notations used here have been discussed in more detail in [2].



200 W. BUHL:

and introduce the notation \a\ for the norm of this element,

|α * = Σ K;12

i,i

We note that |α|2 ϊ> 2. Any polynomially bounded and continuous func-
tion x (a) can be split into two factors

x(a) = \a\2σ Xι(a) ,

such that x1 (a) is square integrable and σ is a complex number which can
always be chosen a real or even non-negative entire number. We want
to express the Fourier transform of x (a) by the Fourier transform of each
of the functions |α|2σ and x1(a). We recall that in the case of Fourier
transformations on the real line (with respect to the additive group of
real numbers, we should add) the transform of a product of two functions
can be obtained by convoluting the Fourier transforms of the factors in
the standard sense. This approach yields the Fourier transform of a poly-
nomially bounded, once continuously differentiable function in terms of
a finite linear combination of finite order derivatives of a continuous
function, the derivatives performed in the sense of distributions of
course. In this article we try to handle polynomially bounded functions
on 8L(2, C) in an analogous fashion. The main issue is the construction
and investigation of kernels by which to perform the convolutions that
we expect from the classical example. We refer to the results on the
Fourier transform of the distribution |α|2σ as displayed in great detail
in [2].

2. Notations

Let & be a triangular matrix,

= (o

Such triangular matrices form a subgroup K of SL(2, C). One-dimen-
sional unitary representations of K can be characterized by a symbol
χ = (m, ρ) where m is an integer and ρ is real,

= \λ\ie e~

The right cosets SL(2, C)/K can be parametrized by points z in a compact
complex plane. In fact, any element a ζSL(2, C) with α22 Φ 0 may be
decomposed uniquely in the fashion

=Q J).
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The subset belonging to α2 a = 0 forms a single coset and can be repre-
sented by the point z = oo. We define a measure on SL(2, C)/K as

Dz = dx dy, z = x + ίy, — oo <x, y < + oo ,

and consider the Hubert space L2(Z) of measurable functions /(z) whose
norm

is finite. The unitary irreducible representations of the principal series
of SL(2, C) realized in L2(Z) are obtained by induction from the unitary
one-dimensional representations of K. We write

_ _ w ^ i m i

Ty(z) = λ(z,a} Ύ *° λ(z,a)Ύ ¥' f ( z a ) ,
where

Cβ-*f.,f. = (i J),

2, α) =

Let x(a) be in (7 °̂, the closed topological space of infinitely different-
iable functions with compact support on SL(2, C). We introduce the
operator

which is bounded in L2(Z). dμ(ά) is the invariant measure on SL(2, C),
we give its normalization below. We define the Fourier transform of
x (a) as the integral kernel Kx (χ) in the integral operator representation

This kernel Kx (χ) can be expressed as

_ W l ί m ι _ * _ ι

Kx(zl!zz\χ) = fx(ζ^kζ3)λ~Ύ ¥β~ 1Ύ Yβ~ dμt(k)

where dμl(k) is the left invariant measure on K. We normalize the
measures dμ(a) and dμι(k) by

dμ(a) = dμl(t)Dz for α = kζ, dμt(k) = (2π)~*Dλ Dμ .

The decomposition

which is possible for all elements a £ SL (2, C) leads to another convenient
parametrization of the cosets SL(2, C)/K. The matrix u is determined
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only up to a left factor γ,
ieίω 0 \

= (θ e-<«) '

We define a Hubert space L^ (U) of measurable functions φ (u) on 8 U (2)
with the covariance property

φ(γu) = eimω φ(u)
and the finite norm

W = {/>(«)'
dμ(u) is the invariant measure on 8U(2) normalized to one. The prin-
cipal series of SL(2, C) realized in the spaces L^(U) is obtained by
induction from the unitary one-dimensional representations of K in the
form

T^ φ (u) = λ (u, a) 2 2 λ (u, a) 2 2 φ (ua)
where

ua = Jcua ,

~ \0 λ(u, a)i

The Fourier transform of a function x (a) ζ C™ can also be defined as
the kernel of the integral operator

T*φ(u-i) = f Kx(u1} u%\χ) φ(u2) dμ(u^
which leads to

m i m , i
_1 ;~""2"+2"ρ~ ?T" + "2"ρ~ 7

The relation between KX(UI} u 2 \ χ ) and KX(ZI} z2\χ) is

. piwi^ip-L—va) 77" (~ ~ I Λ/\
X V I ' ^2 I Λ / J

where
i1( -iχ

Finally we introduce the notations

m ί m _ ι _

α«(2,α) = λ(2;,α) T ^ λ(z,a)Ύ

_ m i w

α"(w,α) = A(w,α)~T ¥'~ I(M,«)T

- X = (~ m, - ρ) if χ = (m, ρ)
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Two representations χ and — χ of the principal series are equivalent.
The product

x (a) = x1 (a) x% (a)

is in C™ if each of the factors xl (a) and x^ (a) is. For the Fourier transform
of x (a) we make an ansatz

i,«U';**«ί.4Ί**',z")

where dχ is PlanchereΓs measure for SL(2, C)

f f ( χ ) d χ = Σ +f dρ(ρ* + mηf(m,ρ).
m — — oo —oo

We call G the convolution kernel. It will be constructed in section 4.
If we require that G exhibits a certain symmetry2 under each of the
replacements

we shall find that it is unique up to changes on sets of measure zero.
For further reference on the notions and results compiled in this sec-

tion we quote Naimark's textbook [3], for the method of induced repre-
sentations we refer to Mackey's lectures [4].

3. The Decomposition of Tensor Products of Two Representations
of the Principal Series

Naimark's results on the decomposition of tensor products of the
principal series [5] present the most elegant access to the convolution
integral we are dealing with. In section 4 it will moreover turn out that
the construction of the convolution kernel θ is in a certain sense equiv-
alent with the decomposition of tensor products of representations of
the principal series. We start therefore with a quotation and an appro-
priate interpretation of Naimark's work.

Let L*(Z x Z) be the Hubert space of measurable functions f ( z l 9 za)
of two complex variables ^ and 2a with the finite norm

This space can be made to carry the unitary representation χ± x χ2 which
we define to be the tensor product of the two representations χl and χ%
of the principal series,

Z«' ft/(zι, *ύ = <**(*!, α) α*ψa, α)
2 In this article we shall never need the explicit form of this symmetry, which

goes back to the equivalence of two representations χ and — χ.
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The issue consists in decomposing this representation into a direct
integral of irreducible representations, the irreducible representations
needed belong to the principal series. We denote by L2(Z, χ) the Hubert
space of functions / (z, χ) with the norm

which carries the representation χ of the principal series. Then we build
the direct integral of these spaces L2 (Z, χ)

In this integral we do not consider L2 (Z, χ) and L2 (Z, — χ) as independent
but as related by the isomorphism which expresses the equivalence of the
representations χ and — χ. In other words, we count only one of the
representatives of each pair L2 (Z, ± χ) but with doubled weight. The
space $) can be mapped isometrically on L2 (Z x Z) by the integral trans-
formations

/(*,*) = f H ( z , z', z"\χ, χ', χ") f(z', z") Dz'Dz" ,

f(z', z") = f H ( z , z', z"\χ, χ', χ")f(z, χ) Dzdχ ,

which converge in the norm of the respective image space. Since under
this mapping the function T^'χ* f (z±, z^ goes into Txf(z,χ) for all
a ζSL(2, C), this mapping establishes the decomposition of the tensor
product into the irreducible representations χ.

We call the kernel H Naimark's kernel. It is equal to

(2π)-2(2 - z'}^(z - z'Y'(z' - z"}A>

if m + m + m is even ,

0 if m + m' + m" is odd .

The powers At and Bi are defined by

Λ = T (~ w + m' - m") ~ T (- β + Q' ~ g") ~ Y >

Λ = T<- m ~ m' + m"> " τ(~ e " e' +

^3 = T (m + m' + m") " T (^ + e' + e'f)

^=-J,-ι.
For all elements a ζ >SjL(2, (7) Naimark's kernel 5" satisfies the following
functional equation

H(z, z', z"\χ, χ', χ") = <ffi(z, a) or*'(2', α) βr«"(z", α)

•H(za,z'a,z'a'\χ,χ',χ").
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This functional equation determines H up to a factor C(χ, χ', χ") which
is independent of z, zf, and z". To fix the absolute magnitude of this
factor it suffices to prove the orthogonality relation

/ H(z, *ί, *ί' I χ, χ', χ"} H(z, 4, 4' I χ, χ', χ") Dz dχ

where the delta functions are to be understood in the two-dimensional
sense. This orthogonality relation is the core of Naimark's theorem. The
phase of C(χ, χ', χ") is arbitrary.

4. The Convolution Kernel

In order to determine the convolution kernel G we make use of the
particular behaviour of the product

x(a) = x1(a)x2(a)

with respect to translations. Right translations act like

and left translations act analogously

The Fourier transforms behave under translations like [2, 3]

*ι> *z\X) = ot-χ(z2, a) Kx(zl9 ( z 2 ) a \ χ ) .

Apart from the symmetry under the replacement χ -> — χ the Fourier
transforms are sufficiently general functions to conclude that the con-
volution kernel has to obey the functional equations

= oc*(zv a) α-*'(4, α) ar*'(%, a) <?(&)„ (z[)a, (z^)oc z^ 4, £\χ, χ'9 χ") ,

due to left translations, and

G(zlί z[, <'; sa, 4, 4'|^, χ', χ")

= α-^fe α) α*'(4, α) α«"(^ «) Gfe, ̂  %; (z^9 (4)α, (4X1%, /, χ") >

due to right translations, if in addition we require that the convolution
kernel be symmetric with respect to the substitutions

v' _> _ v' v" _^ _ v"Λ ^̂  Λ ' Λ ^̂  Z '

Remembering our remark of section 3 we realize that these functional
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equations determine G up to a factor C(χ, χ', χ"),

β(z1,z[,z'^,zt,z^^\χ,χ',χ")

= C(χ, χ', χ") H(z,, z{, % \ χ, χ', χ") H(zz, 4 4' - χ, - χ', - χ") ,

which remains to be derived.
Among all possible choices for the function C(χ, χ'9 χ") we are

interested only in those which after performing the convolution yield
a Fourier transform Kχ0(zv zz \ χ) of a function xc of C™. Since the kernel
G even in its preliminary form implies already the correct behaviour of
KχC(χ) with respect to translations we need only adjust C(χ, χ', χ") such
that an inverse Fourier transformation [2, 3] leads to

where e is the group unit of SL(2, C). If we remember the orthogonality
relation of section 3 we notice that the equation

**(%, 4' I *") Dz'i D4 Dz{' Dzϊ dχ' dχ"

reduces to the relation desired

•{fKX2(zϊ,zϊ χ")Dzϊdχ"}
if and only if

We emphasize that the method just displayed is not the only approach
to the convolution kernel. The straightforward way would be to start
from the definition of the Fourier transform

__!?L_μ_l_ _l ^L_μA _1

Kx(z1,z2\χ)=fx(ζΓ1kζ,)λ Ύ ¥* ϊ* ¥' dμt(k)

and replace x = x1 x2 using the inverse Fourier transformations of
KXι and KXz,

«Ί,2(«) = Y/ κ*ιΛ(*> *a\X) oc-*(z, a) Dz dχ .

Since we know the final result already it is not difficult to find the
appropriate substitutions of variables which lead to it. For simplicity
we put zl — 22 = 0 remembering that we may get back to arbitrary
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values at the end by applying translations. We have

*. (0, 0 1 χ) = |/ KXι(z{, &)» I jfO **&', (zi')» I %")
_ _ _

2 2 *

m_ jί_ __

*

First we notice that the replacement k-^ — k under the integral sign
multiplies the whole right hand side with

/ _ J\m+m'+m"

In other words : Kx (%, 22 1 χ) vanishes if m -+- m' + m" is odd. Next we
introduce the variables

I I l\ It i tf\

*2 = (*l)fc , ^2 = (*l )*

and aim at a substitution
0 I I I

Λ, μ-> z2, z2

We have the relations

which imply

_J__^_J ___ A^μ~~* ~*~ * '

The variables λ and μ are double valued over the z^z'z -plane, however,
when m + m' + m" is even the integrand is the same on both Riemann
sheets. We obtain therefore a Jacobian.

where the determinant is taken from

dW λ ^ 0 2 . r~'z"ι~" 2'n-i
d(zί z?) - A tZ*Z* (Z* - Z*>1

If we put all factors together we get finally

_ L _ | _ _ι 4. _ι

ί, A) β-^ &', A) A T T8~ 1T ¥ 6~

as desired.
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We point out that this construction can be viewed upon as a proof
of the orthogonality relation asserted in section 3. We have reduced the
proof of the orthogonality relation to that of the inverse Fourier trans-
formation. Since this is also the idea on which Naimark's proof is based,
our proof cannot be regarded as independent.

5. Convolutions of Semi-transforms

The huge number of integrations involved in the convolution makes
it in practice very difficult to rigorously evaluate such an integral, as
an illustration we refer the reader to sections 6 and 7. This forces us to
think about a general possibility to perform some integrations in advance.
This can be accomplished if we make use of quantities ξx(zl9 zz λ) and
ηx (zv z2, λ) which we denote Fourier semi- transforms of the function
x £ C£°. They play a certain role in the proof of the inverse Fourier
transformation on SL (2, C) as established by GELFAND and NAIMARK
[2, 3]. We define them in terms of the functions x(a) by

and they are related with the Fourier transform Kx by

+ 00
ίβ(*υ«a>*) = / dρ

00 +00 J2L_!ρ -±L_!ρ

— oo wι = — oo
— -ΪL _ι _^__Λ —i

2 I 2 2 ό#.
In turn we have

We start from the convolution integral as defined at the end of
section 4 and introduce the new variables λ', λ"

λ' = λ (* - z') ,

λ" = λ (z- z") ,

λλ'λ" =λ"-λr,
and

, / 9 (2 - z')(z' - »")
2-«".

(z - z') (z - z") '



Fourier Transforms on SL(2, G) 209

with the functional determinant

δ(A',A") ~~¥ *

The variables A', λ" cover the zV-plane twice. However, the integrand
is identical on both Biemann sheets since the sum over m' and ra"
extends only over those values for which m + wf + m" is even. We make
further use of the fact that

m _ ί _ _ m _ * _ι

K^z^tiλ* ^ λ~'τβ~ dχ
m + M even

After some algebra the convolution integral takes the form

m ί m ί
- •-• — n — 1 — --- Q — 1 — -- --
2 2 y ? 2 2

 tf

 3 2 2
m ί m ί m i

Λ - •-• — n — 1 — --- Q — 1 — -- -- D~~l
y tf κ

A

_ -"

where we have to insert

λ1 = (λί)-1 - (A^)-1 , λ, = (A^)-1 - (A^)-1 -

If instead of ̂  only ξx is wanted further simplifications become possible.

6. Bi-invariant Functions on Sir (2, C)

From now on our interest is mainly directed on the analytic structure
of Kx(χ) in χ if KXl(χ') and KXz(χ") are known. To gain an insight into
this behaviour of Kx it is desirable to perform as many integrations as
possible, an issue which can be settled best in the simplest case that
xλ(ά) and #2(α) are bi-in variant on SL(2, C) with respect to SU(2). We
call a function bi-invariant on SL(2, C) with respect to 8U(2) if

x(u1 au2) = x(a) for any pair %, u2 ζ $ £7(2) .

Since any element α £ $£(2, C) can always be decomposed in the fashion

( e

0
eη!2 Q
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we notice that a bi-invariant function is in fact a function only of d or η
or ch?7, where

The Fourier transform of a bi-invariant function x ζ <7C°° is easily seen to
have the structure (see section 2) [2]

0

Zβ(ρ) = K.(- ρ) ,
+ 00

/ j \ * Γ j orr /ι»(«Z) = y J dρρ*Kx(ρ
— OO

The function
2 sin η ρ/2

ρ shη

is called the elementary spherical harmonic of SL(2, C) [3].
As in the general case we can define a convolution integral also for

bi-invariant functions x1 (a) and x% (a)

*.(ρ)= +fdρ'ρ'* +fdρ"ρ"*G(ρ,ρ',ρ")KXι(ρ')KX3(ρ"),
— 00 — 00

where we impose the additional constraint

G(ρ, ρ', ρ") = G(ερ, ε'ρ', ε" ' ρ") for arbitrary signs ε, ε', ε" ,

which makes G unique. The kernel G can be obtained better directly
than by averaging the general kernel four times over 8U(2). In fact, the
ansatz oo

2 sin ηρ/2
/g/

ρ sh?7
0

+ 00

,a 2smηρ'/21 Γ

Ύ J

implies immediately

1 Γ dη . ηρ . ηρ' . ηρ"
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G is symmetric against permutation of its arguments. We note in addition
the formulae

?(0, ρ', ρ") = -32^{tlι2τte' + β") ~ ̂ 2f(ρ' - ρ")} ,

0(0, 0, ρ") = -gf^thf ρ" (l - th'fρ") ,

£(0,0,0)= 128

G is meromorphic in all its arguments with first order poles at

Y (ερ + ε'ρ' + ε"ρ") = (2» + 1) » , n = 0, 1, 2, . . .

if all three variables are different from zero, with second order poles at

Y (ε'ρ' + ε"ρ") = (2» + 1) » , n = 0, 1, 2, . . .

if ρ = 0 but neither ρ' nor ρ" is equal zero, and third order poles at

y β " ρ " = ( 2 Λ + l ) i , rc = 0,1,2, . . .

if ρ = ρ' = 0.
If ρ' and ρ" vary over the real line, the function G is holomorphic

in the strip

This fact has interesting consequences. If x1 (a) and x2 (a) are both square
integrable, then KXι(ρ') and KXZ(Q") exist each for almost all real ρ' and
ρ" and are square integrable in the sense

It is in general impossible to continue KXί (ρ) and KXz (ρ) off the real axis.
The convolution integral exists and defines a holomorphic function in ρ
in the strip 1/2 |Imρ| < 1. Since any absolutely integrable function is the
product of two square integrable functions it follows [6] : The Fourier
transform of an absolutely integrable bi-invariant function on SL(2, C)
is holomorphic in the strip 1/2 |Imρ| < 1.

7. Polynomially Bounded Functions

We call a function x(a) polynomially bounded if a number a exists
such that the quotient

\a\-*σx(a)

is bounded. Any continuous polynomially bounded function admits
a decomposition

x(a)= la^x^a)
15 Commun. math. Phys., Vol. 10
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such that X L (a) is square integrable. A polynomially bounded continuous
function can be regarded as a distribution, i.e. as generating a linear con-
tinuous functional pσ on C™,

( P o > y ) = f x ( a ) y ( < * ) d μ ( a ) , y ζ Oc°° .

For fixed x1(a) this distribution depends analytically on a (it is even
entire in σ). This suggests to handle its Fourier transform by first
assuming σ to be in a domain where x(ά) is square integrable and then
by continuing analytically in σ to the value considered.

The function

is square integrable if Reσ < — 1. Its Fourier transform can be computed
easily [2]

Q - T (σ +

If Reσ approaches — 1 from below, two poles in ρ move against the real
axis. For the treatment of x2(a) as a distribution we refer to [2]. It is
shown there that for arbitrary complex σ the Fourier transform of x2 (a)
is an analytic functional acting on the Fourier image of C%° such that

(Pa, y) = ~ fdρ ρ*KXί (ρ) Ky (ρ), y ζ <7C°° bi-invariant .
Δ (E

The contour (£ is equivalent to the real axis if Reσ < — 1 and to a curve
symmetric with respect to the replacement ρ -> — ρ having two infinite
intervals in common with the real axis in all other cases except the
singular case that a ̂  0 is integer. In this singular case the contour
reduces to a finite number of circles.

If σ is such that x(a) is square integrable, we expect an integral
representation

to hold. The kernel M can in principle be obtained from the convolution
kernel G by

• G(zίt z[, % z2, 4 4' I χ, χ', (0, ρ")) K^ (ρ")

However, any attempt to actually evaluate this integral by analytic
means seems hopeless. We restrict therefore again to the case where
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x1 (a) is also bi-in variant and we have the simpler relation

KX(Q)= +fM(ρ,ρ';σ)KXι(ρ')ρ'*dρ'

with

The latter integral can indeed be performed analytically.

We write the integral

M(ρ, ρ'; σ) = [2«πΓ(- σ) ρρ']-lΣ (- e)
ε

+ 00

where

α = (σ + 1) ,

After some algebra we obtain

M(ρ, ρ'; σ) = [16πΓ(- σ) ρρ']-

The kernel Jf is meromorphic in both ρ and ρ' with first order poles if
both variables are different from zero and second order poles in one
variable if the other is kept fixed at zero. If ρ' Φ 0 is real, this kernel M
is holomorphic in ρ in the strip

γ |Imρ|<-Reσ.

It is therefore obvious that the integral

for square integrable x^(a) can in general be continued till Reσ = 0 but
not beyond it.

We assume now that x1(a) is in C£°. Then ̂ (ρ') is entire in ρ' and
we may evade the poles moving against the real axis during the pro-
cedure of continuation by a corresponding deformation of the contour of
15*
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integration. In this fashion it turns out that the integral
+ 00

is entire in ρ and a. In fact, this result does not surprise us since the
function

x(a) = \a2<yx1(a)

is in C™ together with all its derivatives with respect to a if x± is in C£°.
We are in particular interested in the values

cr = n = 0, 1,2, . . .
We denote

and have
M(ρ, ρ'', a) = M^ρ, ρ'; σ) + Jfj(- ρ, ρ'; σ) .

The function M± has poles at

ρ' = ρ - 4i (μ - y

ρ' = ρ + 4ί (v - yσj , μ, v = 0, 1, 2, . . .

If Reσ < 0 and ρ Φ 0 is real, the poles labelled v are located in the upper
half ρ' -plane. We deform the integration contour such that it passes
between the pole v = n and v = n -f- 1 . This gives rise to a series of pole
contributions and a contour integral JRn(ρ),

| ( ) [β

When we let σ approach the integer n, En (ρ) tends to zero because of
the factor Γ(— σ)"1 and the holomorphy of the rest in a at a = n. In the
second sum we may replace v by n — v and use the symmetry of KXι (ρ)
to obtain

For the particular case n = 0 this expression reduces to

K.(Q) = KXι(Q) ,

as we should have expected.
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8. Conclusion

We recall the situation which we meet in the case of Fourier trans-
formations on the real line. The Fourier transform of a polynomially
bounded, continuously differentiable function is a finite linear combina-
tion of finite order derivatives of a continuous function, the derivatives
taken in the distribution sense. A similar improper sense has to be
attributed to the integral representation

K.(β)= fdρ'ρ'*KXι(ρ')M(ρ,ρ';σ)
— oo

for the Fourier transform of an arbitrary polynomially bounded function
x(a) which is moreover continuous and bi-invariant on SL(2, C). a is
any complex number which makes x± square integrable. To describe the
proper sense of this integral we consider x ( a ) as a distribution p0(a)
acting on the space C™ of test functions y(a)9

i.e. we integrate first over ρ, continue then in σ, and integrate finally
over ρ'. If σ = n is a non-negative integer we get the simpler result

+ 00

(?»,») = T Σ
v

Since y is in C™, Ky ίρ + 4 ί l v — - g - w j l goes to zero faster than any

inverse power of ρ for ρ -> ± oo and the right hand side makes sense
indeed. If x1 is in C™ we are allowed to rewrite the integral as

+ 00

Σ

which leads us back to the expression for Kx (ρ) gained in the preceding
section and shows that the distribution sense for the integral representa-
tion of Kx(ρ) is an extension of the ordinary sense. In order to further
stress on the correspondence with Fourier transformations on the real
line we say that multiplying x1(a) with \a\2n amounts to applying the
analytic functional

, ρ'; n)

ρρ
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viz. a finite linear combination of analytic delta functionals, to Kφι(ρ'),
formally 1 „

K«($ = y / W Jt(ρ9 ρ' n) KXί(ρ') .

If x± is in (7C°°, this functional can be applied in the proper sense.
Finally we return to Toller's kinematical analysis of elastic forward

scattering. Elastic scattering of two spin zero particles in forward direc-
tion is described by one invariant function A (s) where s is Mandelstam's
variable. If the particles have masses Ml and Jfa the function A(s) is
made a function on the homogeneous Lorentz group by setting

a - Ml - Ml _ 1

This function is polynomially bounded, continuous, and piece wise
(between the inelastic thresholds) regular analytic in the real variables
of SL(2,C). Moreover, it is bi-invariant. We introduce the auxiliary
function -^-^-σ

where σ is chosen such that A^s) is square integrable in the sense

f

J

The Fourier transform KA^(Q) exists in the proper sense. If this Fourier
transform is meromorphic with a finite number of poles in each strip
|Imρ| < δ and tends to zero sufficiently fast when Re ρ goes to d= °° (say not
worse than |ρ|~2, due to the inelastic thresholds a power behaviour is the
best we may expect), then using our representation which expresses
K A (o) by KAί (ρ) one can show that KA (ρ) defines an analytic functional
and has all the properties which are sufficient for Toller's analysis to go
through. We emphasize that the limitation to spin-zero particles and
bi-invariant functions is in fact only technical and that a similar state-
ment can be made in general.
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