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Abstract. The Goldstone theorem in the formulation of KASTLER, ROBINSON,
and SwikcA is proven in the framework of Euclidean quantum field theory. One
utilizes that Schwinger functions have the cluster property in all directions.

There is no lack of proofs of the Goldstone theorem [1]. We present
here a proof of the theorem as formulated by KasTLER, ROBINSON and
Swieca [2] in the framework of Euclidean quantum field theory [3]
derived [4,5] from a Wightman theory [6]. Although such theory
requires more assumptions than are known to suffice [2] for the Goldstone
theorem, the simplicity of the proof itself is noteworthy and exhibits a
feature of the Euclidean approach which is interesting even for Lagran-
gian-free field theory.

We consider the Wightman theory of a scalar multicomponent field
A (z) where we suppress the subscript. Nonscalar fields can be dealt with
similarly as below and require merely a straightforward extension of
notation. We assume the existence of a local automorphism A4 (x)—
— A" (x) which is generated by a conserved current:

(0/07) A7 (w) = i [@y (2°), 4" ()] (la)

Qr@®) = [ &' (2" x), x€V (1)
14

0uj* (@) = 0. (2)

Examples of such automorphisms acting e.g., on the suppressed subscript
are one-dimensional subgroups of constant-parameter gauge groups or
of internal-symmetry groups. We assume the current operator to be
local and to transform as a vector field. We choose a C* time-smearing
function f(t) with support in (— 7', + 7T') and obeying [ f(t) dt = 1 and
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rewrite (1), using (2) and commutativity in spacelike distances, as
T
(@o7) (A7 (xy) . . . A%(xp)y =1 [ d3z [ f(t) dt X
7SR -7

X [GO(R +t,2) A7(2y) . . . A™(2)) —

3
A7)« AT P~ R+ 1)) + )

’ T
+if 38 [ PO IO UG+ A7) e
—R' z| = -7

where we choose R and R’ so large that

Max|ad| < R’ — T, Max(2|xy + |[2¥) <R—-R' — T.
(] 2

We take (3) as the rigorization of (1).
We now multiply the time arguments in (3) by the real number «,

taking values in [—;— ) 1] . Defining

(A7 (aad, Xq) . . . A% (aad, X)) = WE(2y . . . @)
and
G (a2, 7) A" (o, 1y) . . . AT (a2, X)) = WET(2, 21 . . . @) ,
<A’(OC$01, Xl) ce Ar(uxg’ Xn) jﬂ(azo’ Z)> = WZ’T(xl oo Wy, Z)
(3) yields
T
(0foT) Wi(xy ... w,) =1 [ d3z [ f(t)dt x
lzZ1l <R —-T
X [WOT((R' +t,2), ;.. .2p) — WOe™(2y ... 2p (=R +¢,2)]+ (4)

R T
+ oo [d20 [ d2Oy(2) [ f(t) dt WoT((2°+t,2), 2, . . . @)
—R  |z|=R -7

where we have used that the right hand side of (3) is independent of the
smearing function f(¢). All terms on the right hand side of (4) possess as
functions of « analytic continuations into the lower complex half plane
[3, 4] (for convenience we choose all x; space-like relative to each other,
and the time smearing of z serves to remove [7] the singularities con-
nected with timelike distances) and so possesses the left hand side, and
under a natural assumption concerning the continuity of the auto-
morphism that continuation is the one under the differentiation sign as
seen by integrating over T and temporary smearing over the arguments
@ . .. ;. The continuations to & = — 4 are the Schwinger functions

We (2. ..2,) = S(2 ...,
and

(4 5)%m0 WET (2, 2y . .. @) = (+ )20 WHAT (2, .. .2, 2) = ST (2, 2. . . &)
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which are well-defined and real-analytic [4] for any non-coinciding
arguments, and Euclidean-covariant such that, e.g.,

S»*((Rz + a), (Ra, + a) . .. (Rx, + @) = R** 8" (2, @y . . . )

with R € SO(4, R). (The metric tensor is now the unit tensor while the
original metric tensor is diag (1, —1, —1, —1).) Since due to (2)

0, W (2,2, ... ,) =0

in particular for purely spacelike separated points, as an analytic relation
this entails
0,847 (2, %y ... 2,) =0, 22,V (5)

at all points of analyticity of the Schwinger function, i.e., when no two
points coincide. With (5), (4) may for « = — ¢ be simplified to

(0/0T) 87 (2y . . . @) = $ AO#(2) 8»7(2, @y . . . @) (6)

provided the surface, whose normal points outward, encloses all points ;.

‘We now use that Schwinger functions have the strong (i.e., exponen-
tial) cluster property [4, 5] in all directions if the mass spectrum has a
gap between the vacuum and some positive massl. Since S§#(0)
= (4)°%{j#(0)) = 0 due to relativistic invariance, the right hand side of
(6) vanishes upon pushing the integration surface to infinity. Therefore,
under these circumstances, 8%(x; . . . 2,) is independent of v and conse-
quently so is W= (x, . . . x,), wherefrom the implementability of the auto-
morphism by a unitary transformation that leaves the vacuum invariant
follows by the reconstruction theorem as in ref. 2. (It is only here that
the positive metric of the Hilbert space comes into play.)

We add some remarks. The derivation of (6) can immediately be
generalized to yield

n
oSt m) = L O ) S @)
i=1

+ Schwinger terms

where the underlined argument indicates the substitution
A7 (2;) > (0]07) A (2;) = A% () -

In (7), Schwinger terms are defined as (because of (5), local) terms that
do not contribute in integrations over Euclidean four-space. E.g., we
might have

n
Schwinger terms = 3’ (0, 0(z — ;) 87 (2. . . &; . . . @) (8a)

t=1

1 Tt here suffices that there be such gap in the mass spectrum of the state j#(0))
for some u.
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with the tilde denoting a scalar operator? replacement A% (x;) - A*(z;), or

n
Schwinger terms = 3’ 046 (z — x;) 8% (%, . . . & . . . 2,) (8b)
i=1
with a vector operator? replacement A*(z;) - A*7(x;), etc. The cor-
responding equal-time commutation relations are

i[1°(2), A%(2)] 8(2° — 2%) — A7(2) 8(2 — @) = 4,0(2 — ) A*(x)  (9a)

respectively
= 03,0 (z — ) AP () (9b)

where A, is the three-dimensional Laplacian. The “time”-derivative
terms that appear in (8) additional to the space-derivative terms from
(9) stem from the correction terms [8] at coinciding space-time points
by which Green’s functions differ from the vacuum expectation values of
time-ordered products and Schwinger functions differ from the «-con-
tinuations, as described before, of such expectation values. These
correction terms, which restore covariance, contain® up to (n — 1)
order time derivatives of space-time delta functions if the equal-time
commutator contains up to n't order space derivatives of space delta
functions. On the right hand side of (7) also Schwinger terms involving
coincidence of three or more arguments could occur.

Similarly as (5) and (6) or, alternatively, (7) were derived, one may
derive relations involving the energy-momentum tensor or angular-
momentum density tensor upon making suitable assumptions concerning
these. In (5) and (6), due to (2) the mentioned fine points concerning the
definition of Schwinger functions (as also of Green’s functions) at co-
inciding arguments do not matter. In particular, (5) and (6) and the con-
clusions drawn therefrom are also valid if the fields are not tempered
operator-valued distributions but the more general strictly localizable
fields of Jaffe [9] which do occur in some physically relevant models.
On the other hand, in the derivation of differential equations for Green’s
and Schwinger functions as a consequence of field equations [3, 5] one
encounters ‘“‘nonconserved currents” and the definition of those func-
tions at coinciding points need be used, as for the derivation of (8) from
(9). In the first case, the required information concerning equal-time
commutators is the content of the canonical commutation relations which,
in turn, depend on the field equations [10].

2 The vacuum expectation values of A7 and AT must be zero if, as assumed
here, A7 is a scalar field. Of course we tacitly assume that equal-time commutators

are meaningful.
3 Of course, one may always add further local correction terms that are co-

variant by themselves.
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