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Abstract. I t is shown how the test function spaces for the field operator and its
canonical conjugate are determined by a given irreducible direct product representa-
tion of the canonical commutation relations. An explicit characterization of the
admissible test functions (so that the smeared out field operators are selfadjoint) is
given in terms of any one product state of the representation space.

§ 1. Introduction

Regarding myriotic representations of the canonical commutation
relations there exists by now — in addition to general statements [1] —
a variety of field theoretical models which illustrate their significance.

Examples are the quantum theory of optical coherence [2] (in the
general case of infinite average photon number) and methods for the
elimination of infrared divergences [3], [4], the infinite free Bose gas
of non-zero density [5] and (in the Fermion case) the HAAG solution [6]
of the BCS-model.

The mathematical properties of a large class of inequivalent rep-
resentations have recently been studied by KLAUDER et al. [7]. These
"direct product" representations are generated by defining the Weyl
operators e~i7t(g), eί(PW roughly as follows:

Let
eiφ(f) = eiΣQV8v=

where f(x) = Σsvhv(x) = (s, h), g(x) = (t, h), h a complete orthonormal
set of functions and where the Pv, Qv act as canonical conjugate operators
on the vth factor of an infinite direct product

of "oscillator" Hubert spaces Hv.
H is non-separable [8], the representations so obtained are highly

reducible, and a decomposition into irreducible representations can be
given.
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KLAUDER, MCKENNA and WOODS [7] have proved a criterion for the

inequivalence of such irreducible representations which we will derive
anew making strong use of the theory of von Neumann algebras.

The topological properties of the latter allow to avoid an a priori
definition of the test function spaces {/} and {g}. In fact the class of
sequences s, t which correspond to unitary operators depends strongly
on the given irreducible representation; one may show [3] that

a) every representation allows for some infinite s, t
b) for any given infinite sequence s or t there exist irreducible rep-

resentations such that the restrictions of W{s) or V(t) are not unitary
i.e. such that / = (s, h) or g = (t, h) are no good testfunctions.

In the following we shall derive criteria for s, t that are necessary and
sufficient for / and g to be good test functions in the above sense.

§ 2 will contain a collection of definitions, in § 3 we shall give our
proof of the KLAUDER, MCKENNA and WOODS theorem, § 4 will serve to

characterize the test function spaces.

§ 2. Definitions and other preliminaries

A. Concerning infinite direct product spaces and following v. NEU-
MANN [8]: The infinite direct product of Hubert spaces Hv

is generated by linear combinations of "c0-vectors" χ

χ=Π®χv χveHv Σ WxΛ - 1| <
V V

with the scalar product

(χ, ψ) = Π(χv, ψv) .
V

Two c0-vectors χ, ψ are called equivalent if

Σ \(Xv,ψv)- 1 | < o o {χ~ ip)

and weakly equivalent if

In the latter case the weak equivalence class cw(χ) contains the whole
equivalence class c (ψ):

c(x)~ c(ψ)

The c0-vectors of a given equivalence class c span the incomplete direct

product space (IDPS) denoted by 77 θ Hv.
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The algebra of all bounded linear operators in Hv

B(HV) = {AV}

is extended to an algebra B {Hv) of operators

Av = l x ® ® l,_ x ® Λ ® 1,+ 1 ® ζ

and generates the von Neumann algebra of extended operators

Finally we denote the restriction of an operator A £ J5# to /7<έ Hvby Ac.
V

B. Concerning the canonical commutation relations (CCR): The Hv

are identified with '"oscillator" Hubert spaces Hv = L2{R^) with qv= ξ

. d

Ϋ(t) =
V

W{s)= 77® eίqvSv

V

are defined by the equations

We shall write Ϋc(t) = F(ί), tfc(5) = TF(5) to simplify the notation and
shall denote rational s and t (sequences with sVi tv = 0 for almost all v) by

§ 3. The irreducible direct product representations

For the Ϋ(t^), W(s^) one verifies directly that they are unitary
operators in B (H) which obey the CCR:

V(0)= W(0) =

Note that Σsvtv is a finite sum for rational s, t, so that there is no con-
vergence problem. Furthermore
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since such Ϋ, W are equal to !„ on almost every Hv. This suggests already
that the decomposition of H into incomplete direct product spaces will
reduce the representation. To make the argument rigorous we use the
following lemmata:

Lemma 1 [9]. M'v' = {Vv{s)9 Wv(t)\-oo <s,t < oo}" = B{HV).
Lemma 2. Let K be a Hilbert space, I an index set, Mv Q B(K) V v ζ /

(For a proof cf. e.g. [10].)
From these one immediately gets
Lemma 3. J5# = {F(|<r>), ΐP(
As a consequence of a theorem given by v. NEUMANN [8] we have the

Lemma 4. Let A ζ B (Π&> Hv\

=Φ> 3 Q ζ J5# Λ g c - A Q c ' = 0 V c ' o j c .

Lemmata 3 and 4 serve to show the irreducibility of {V(Ur)),

restricted to 77® Hv, since
V

({F(*<r>), ^(i< r ))Π β = (^ # ) c = B ( Π ® HV\

and, since restriction (c) and completion <") may be permuted [11], the

restricted rational Weyl operators generate the full algebra B (77® Hv\

qed. —- Furthermore we note that they are cyclic [12]:

{7(ί<'>), IF(«<'>)}'= {αl} in 77® Hv.
V

To decide which of the so obtained irreducible representations are in-
equivalent there is the

Theorem (KLAUDER, MCKENNA and WOODS, ref. [7]). The representa-
tions {Ϋ(t^), W(sW)}Ci, i = 1, 2, are equivalent if and only if cx ~ c2.

Proof. (We shall skip the straightforward '"if"-part and give only our
version of the "only if" part.)

Equivalence of the representations implies the existence of a unitary
transform

with

i.e.
TQc*T+= Qc
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and consequently

VQ ζ {?(«<'>), W{s(r))}" = £ # (lemma 3) .

But from lemma 4 we know that there are Q ζ JB* with QCl = I, Q°2 = 0
if only c , oo c2, which contradicts unitary equivalence qed.

§ 4. The test function spaces

The object of this paragraph will be to find the sets σ, τ of all (infinite,
real) sequences s, t such that V(λt), W(λs) are unitary, obey the CCR and
are weakly continuous in λ so that through Stone's theorem [13] they
generate self-adjoint field operators

φ (/) = lim (i λ)-i (W (λ β) - 1) f={8,i)

π(g)=]im(-iλ)-1(V(λt)-l) g = (ί, h) .
A—>0

As a first step we shall verify that unitarity alone already characterizes
a and r.

Definition.
σ^{s\ W(λs) ζ B{Π® Hv) unitary V real λ} .

V

τ^{t\ V(λt) ζ JB(J7έ ^ ) unitary V real λ} .

(One will expect σ and τ to depend on the equivalence class c; i.e. on the
given irreducible representation of the CCR.)

With infinite sequences a we associate rational sequences an the first
n elements of which coincide with those of a whereas the rest are zero:

jav v ^ n
an>v==\0 v > n .

For simplicity we shall not use an upper index (r) here.
The following lemma relates the infinite sequences s, t to rational ones

and will thus enable us to see that continuity and CCR for W(λs), V{λt)
extend to all s ζ σ, t ζ r.

L e m m a 5. Let s^σ^t^τ

Then

s-limTΓ(5n)= W(s)

s-MmF(ίn)= F ( ί ) .
n

Proof. For any two c0-vectors χ,ψζΠ®Hv
V

f, W(sn)ψ) = Urn Π(χn W(βv)ψv) Π (χv, Ψv)

= KmΠ(χ,,W(8,)ip,)
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the second equality following from the equivalence of χ and ψ. Because
it is sesquilinear, the resulting relation

is true if only χ and ψ are elements of the set M of finite linear combina-

tions of c0-vectors; M is dense in 77® Hv. Consequently

\\(W(sn) - W(s))ψψ = 2\\ψψ - 2Re(W(s)ψ, W(sn)ψ) -> 0

o r W (in) ψ "

for all ψ ζ M (note that χ Ξ= Wψ is in M for all ψ from M), but for
bounded operators strong vector convergence

for all y? from a dense linear manifold entails strong operator convergence
[14]

Wn->W
or in our case

s-limJF(sM)= W(s)
n

and analogously
s-limF(ί n )= F(ί) qed.

Lemma 6. Vθ ζ σ, ί ζ τ W(λs) and V(λt) obey the CCR and are con-
tinuous in λ.

Proof. W(s) W(s') = W(s + s') s,s' ζσ s + a' = {sv + <} and the
analogue for V(t) follow directly from the definitions of V and W.

As the operator product is continuous in the sense of strong con-
vergence (although not in the sense of strong topology) [15], lemma 5
guarantees the existence of

e " , ^ * ^ Inn W(λsn) V(tn) W(-λsn) V(-tn) .
n n—> oo

Noting that the above relation holds for all real λ we may write

]imeίλΛSvtv=:eiλMSvtv with Σ^tv<oo

thus completing the proof of the CCR.
Continuity of W(λs) is implied by the facts that W(λs) is unitary,

that its matrix elements

are measurable functions in λ and by the separability [7] of the IDPS [16].
Again the analogue is true for V(λt).
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With the result of lemma 6 in mind the task of finding the test

function spaces for φ (x) and π (x) reduces to that of making the depend-

ence of a and τ on /7® Hv explicit. The theorem we shall now derive
V

allows to decide, for any given irreducible product representation of the
OCR, whether any given / = (s, h) or g = (t, h) is a good test function,
i.e. whether s ζ σ, t ζ τ, or not.

Theorem Let 77® Hv be any IDPS and χζ 77® Hv a c0-vecίor with
V V

||χv|| = 1V?>. Then W(λs) is a unitary operator, continuous in λ and
obeying the CCR if and only if

A) Σ |β?(Z» <%%,%,) ! < oo n = 1, 2
v = 1

v = 1

The proof is based on a lemma following from Kolmogorov's three series
theorem [17].

Lemma 7. Suppose that ρv{xv) v = 1, 2, . . . <xre probability densities
with characteristic functions

ψv(λ) = fe-ίλXvρv(xv)dxv.

Let c> 0 α^<i ̂  = Θ(c — | ^ v | ) ^ α ^ let

m'v = f XVQV(XV) dxv σ'v
2 = f {xv — m^,)2 ρv(^v) dα:v

δe ί^e means and mean square deviations of xv and

the probability for \xv\ > c.
Then the following two conditions are equivalent

n

(1) II φv(λ) converges to a characteristic function

(2) Σmv, Σσ'v
2 and Σp'v all converge.

Remark. Absolute convergence in condition (1) is equivalent to con-
vergence after any permutation of the indices v, and this to absolute
convergence in (2) [18].

Proof of the theorem. From Lemma 7 one deduces the equivalence of
conditions A, B with the fact that

w(λ) = lim
n—>oo
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is a characteristic function (in λ) and that the convergence on the rhs. is
absolute. To verify the "only if" part we note that the continuous one
parameter unitary group W(λs) has a spectral decomposition [13]

W(λs) = feίλ*dE(x)
— oo

so that

w{λ) = (χ, W(λs)χ) = / > * ( * , dE(x)χ)
OO

is indeed the characteristic function of the probability measure (χ, dE χ)

(note that ffo dE(x)χ) = (χ, χ) = l).
— oo

To show that the converse statement is true we note that

X~ W(λs)χζH

follows from the existence of w(λ).

But then W(λs) χ ~ ψ V c0-vectors ψ ζ IJ ® Hv because of transi-

tivity, whereas the unitarity of W(λs) implies

i.e.

and

^ r " 1 ( λ β ) v = ff (-λs) <ψ £ Π0® Hv.
V

c (y)

Since the ψ span Π ® Hv and W (λs) is unitary iniϊ so that W(λs) φ is

continuous in φ we finally find that the restriction Wc(λs) = W(λs) is

unitary in JJ 0 iϊ v qed.
V

Corollary 1. Lei U® Hv be any IDPS. Then W (λs) is a unitary
V

operator continuous in λ and obeying the CCR iff there is a non zero c0-vector
c

ψ ζ ΠΘ Hv with

Σ \*ΐ(ψv>glSψv)\<°° w = 1 , 2 .
v = 1

Proof. Under the conditions A), B) of the preceding theorem
oo

ψ= Π® Evχv

is such a vector; condition B) may be written as ψ ~ χ which ensures
that ψ is in the IDPS of χ.
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Let now be ψ any vector obeying the corollary conditions, and
\\ψv\\ = 1 without loss of generality.

Since
\(ψv,q*EvWv)\^ \{Ψt,q»φr)\

condition A, n — 2 of the theorem holds.

*%{ψv> Qvψv) ^ C2(ψv, (1 - Ev)ψv)

implies condition B. To derive A, n = 1 we note that

\sv(ψv, qvEvψv)\ g \sv(ψV) qvψv)\ + c - 1 ^ ^ , qξ(l - Ev)ψv)\

^ \*v(ψv, Vvψv)\ + c - χ | θ ? ( ^ , q*ψv)\

and that the sum over v of the rhs. converges.
Obviously, analogous statements result for F(ί), t ζ τ:
Corollary 2. The above theorem and corollary remain valid after the

exchanges

Finally, as an example, we shall take a short look at the IDPS generated
by the equivalence class of the c0-vector φ with

Straightforward calculations show that in this case

is equivalent to condition B of our theorem, and sufficient for condition A
to be fulfilled, so that

a — lx

In connection with the first corollary the question will arise whether
there is any one c0-vector ψ in the IDPS such that

Σ \sΐ{ψv,

is equivalent to s being an element of a.
The above example illustrates that this is not generally true. For if ψ

were such a vector
Σ Sv{ψv>$vψv) <°° VsζZi

V

would imply (ψv, θpψv) < M < oo W
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On the other hand for φ and ψ to be equivalent (φv, ψv) must tend to 1
as v -> oo. This yields

(ψv,Θ(\qv\-c)ψv)^ (4c)-1

for any c ^ 1 and almost all v, so that for these v
{ψv, ΦvWv) ^ c2{ψv, Θ{\qv\ - c)ψv) ^ c/4

which provides a contradiction if c ^ 4:31.
We conclude that in general it will not be possible to improve the

statements of our theorem and corollaries in the above mentioned
manner.
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