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Abstract. Mathematically we consider a <7*-algebra 2ί, acted upon by the group
T of space-translations, which has an asymptotic abelian property. We analyse
invariant states over 21. Physically this programme can be considered as a kine-
matical study of equilibrium states in statistical mechanics. Each invariant state
can be uniquely decomposed into elementary invariant states (J^-states). These
elementary states have, amongst other characteristics, the physical property that
space-averages of local observables are constants in the corresponding representa-
tions. In an Estate the discrete spectrum S^ of space-translations is additive which
gives rise to the classification EI, EH, and Em corresponding to the three possi-
bilities that SD contains one point, a lattice of points, or a set with accumulation
points. An En-state can be uniquely decomposed into states (L-states) having a
symmetry with respect to a closed subgroup T& of space-translations (S^ and T^
are reciprocal lattices). JD-states have properties with respect to ΎL analogous to the
properties of instates with respect to T. The decomposition into ^-states is the
inverse process of 'homogenizing' a lattice state by smearing it over a lattice
distance. The mathematical methods which we employ have more general applica-
tions.

1. Introduction

In a recent paper [1] with S. DOPLICHEB, which we refer to as DKR,
we among other things partially analysed a class of states which we
consider to be suitable as equilibrium states in statistical mechanics. It
is the purpose of the present paper to generalise and extend this analysis.
As our approach to statistical mechanics is rather different from the
traditional one let us first briefly state our point of view. In the usual
formulation one considers first the microscopic problem of a finite
number N of particles in a box of volume F and then considers the macro-
scopic limit F->oo with the mean density N/V held fixed. Instead of
following this procedure we wish to consider directly a description of the
macroscopic or infinite, system. In order to understand our procedure
it is worthwile to recall a few of the salient features of the microscopic
approach. If we consider the quantum mechanical case the description of
N particles in volume F is given kinematically by the Fock representation
of the canonical commutation, or anti-commutation, relations (for
further details see, for instance, [2], [3], [4]) and dynamically by speci-
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fication of the Hamiltonian describing the interaction of the particles.
In the limit of an infinite volume the simplicity of this description is lost
and other states or representations of the gauge invariant subalgebra of
the commutation (anti- commutation) relations occur which are not
unitarily equivalent to the Fock representation; the particular state
which occurs is determined by the interaction i.e. the Hamiltonian [5].
This complication is a consequence of the fact that in the macroscopic
system we have an infinite number of degrees of freedom. However to
compensate this complication there is an added simplification in the
description of the infinite system because the limit states have the
property of in variance under the group of space translations. Thus the
kinematic description of equilibrium states in quantum statistical
mechanics should be given by a discussion of the translationally in-
variant states of the gauge invariant subalgebra of the commutation
(anti- commutation) relations. In the present paper we will consider a
more general problem and analyse the translationally invariant states
over an algebra 21 which has the structure

This general approach has the advantage of not only covering the
quantum mechanical case but also covering abelian algebras which are
of interest in classical statistical mechanics.

The results of our analysis are as follows. Any invariant state over
21 has a unique decomposition (theorem 2) into invariant states of a
special type which we call J^-states. These ^-states were already con-
sidered in DKB and they can be characterised by a number of equivalent
conditions (theorem 3) of which we mention the following three. Firstly
if π ( A ) and U(x) are the representations, determined by an Estate, of 21
and the group T of space-translations respectively, then the set of
operators π (21) w U7 (T) is irreducible in the representation space §.
Secondly, in § there is a unique translationally invariant vector Ω.
Thirdly, we have

lw^~ fdx(ψ\π(A(x))\ φ) = (Ω\π(A)\Ω) (ψ\φ) (2)
~>°° γ

for all A £21 and ψ} φ £§. This last condition expresses the physical
result that the global average of a local observable exists and is a con-
stant in the representation determined by an E- state. Further analysis
(theorem 4) shows that ^-states can be divided into three classes El9

Eu and Elιrstates, where the classification is with respect to the discrete
eigenstates of U(x). In an j^j-state there is one and only one discrete
eigenstate of ϋ(x), namely Ω, but in an _Z£irstate there is an infinite
number of discrete eigenstates occurring with a lattice structure. In an
J?IIΓstate there is also an infinite number of discrete eigenstates but
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they occur in a dense manner making it impossible to define a lattice
distance. Next (theorem 5), we show that an J^π-state has a unique
decomposition into states which are invariant under a closed subgroup
T£ of space-translations and which we call L-states. These latter lattice
type states can also be characterised by a number of equivalent conditions
(theorem 6) which are similar to those characterising J£Γstates: if UL (XL)
is the representation of T^ then the set of operators n (21) \J UL (TL) is
irreducible, there is a unique vector ΩL which is invariant under UL(ΎL),
and a condition similar to (2) holds but the mean value is taken over
lattice points. The L-states are analogous to EΓstates insofar that they
give rise to only one discrete eigenstate of ΎL) namely ΩL. We thus see
that the analysis of invariant states delivers in a unique and natural
manner states of a homogeneous nature (J^-states), states of a periodic
nature (L-states) in which the space-translation symmetry is broken and
states of the mysterious Elu type.

An independent analysis of invariant states has been carried out by
RUELLE [6] who has obtained results similar to our theorems 2 and 3
using rather different methods. The advantage of our methods appears to
be that they are open to generalisation to more complicated symmetry
groups than the abelian group of space-translations.

In section 2 we begin by developing some properties of mean values
of operators in Hubert space. In section 3 we introduce the algebraic
definitions which are necessary for the sequel. Section 4 is devoted to the
first decomposition theorem and the characterisation of E-states. The
second decomposition theorem and the characterisation of L-states is
given in section 5. We discuss possible properties of .Z£Γstate and L-states
in section 6 and we end with a discussion of our results and their possible
generalisations in Section 7.

2. Mean values

We start our discussion by developing some properties of means of
functions and means of operator-valued functions acting on Hubert
space. In order to define the notion of mean we first introduce a special
class of filters, or less generally, sequences of functions over the Euclidean
space T = Rn denoting points in this space by x, y, etc. In fact all
definitions and results of this, and the two following sections can be
applied to a general locally compact abelian group T with Haar measure
dx a fact which will be of relevance in section 5.

Definition 1. An M-filter f is a family of functions fκ over T, indexed by
a filter α, which satisfies the following properties:

i) /.(*) > 0
ϋ) / dx fχ(x) = 1 for each α, (3)
w)]imfdx\fκ(x)-fx(x+y)\ = 0 for all y £T.

α

11*



154 D. KASTLER and D. W. ROBINSON:

Utilising this definition we define for each Jf-filter a mean hf of a
complex function h by

hf = ]imfdxfx(x)h(x) (4)
<χ

whenever this definition makes sense. The mean hf depends in general
upon the particular choice of M -filter as the notation already implies. As
an illustration we note that a particular choice of /α would be the func-
tions V~1χυ where χυ is the characteristic function of the compact
subset v of volume V i.e.

χυ(x) = l if xζv

= 0 if xξv

and with this choice the limit would be a limit F -> oo (cf . (2)).

If x -*• A (x) is an operator valued function acting on a Hubert space
£j we can define means of A (x) in various ways and the most useful of
these are given by the following.

Definition 2. // x -> A (x) is an operator -valued function acting on a
Hilbert space ξ>, if f is an M- filter and if operators wAf, sAf and uAf on ξ)
exist with the properties

lim(9?|/ dx fκ(x) A (x) — wAf\ψ) = 0 for all φ, ψ ζ §
α

] i m \ \ ( f d x f x ( x ) A ( x ) - s A f ) ψ l = Q for all ψ ζ § (6)
α

]im\\fdxfx(x)A(x)-uAf\\ = 0
Oί

respectively, then we call wAf a weak mean, sAf a strong mean and uAf a
uniform mean of A (x).

It should be noted that these means have properties similar to those
of limits, the existence of the uniform mean implies the existence of the
strong mean which in turn implies the existence of the weak mean. If
any two of the means of A (x) exist it also follows that they are equal.
We now wish to apply these definitions to some specific cases.

If x -> U (x) is a strongly continuous unitary representation of the
group T of translations in Rn by operators acting on § then in general
U (x) has the spectral decomposition.

f dE(p) eiv* (7)
n

where d(φ \E(p}\ ψ) is a continuous measure for all φ, ψ ζ ξ) and JE(pn) is
the projector onto all states \n) such that

U(x) \n) = e^x\n) . (8)
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Lemma 1. All weak means of U (x) exist and are all equal to E (0). More
generally, for any p

Um(φ\fdxfΛ(x)e-**«U(x)-E(p)\ψ) = 0, φ,ψζξ) (9)
α

where f is any M-ftlter.

Proof. In order to prove (9) we first note that we can assume, without
loss of generality, that

E(p)\φ) = 0 (10)
and secondly we have

limltol (1 - e">» U(-y) (/ dx fx(x) e~*> ϋ(x) -E(p)) |y)|

= ]ίm\(χ\ fdx(f.(x)-fa(x + y)) e-"*U(x) \ψ)\ <
(11)

< lim / dx\fx(x) — fx(x + y)\
ΰί

-0

for all χψ £ $> and all y ζ T.

Now however we can, by virtue of (10), choose fa ζ § and yi ζ Rn

such that for ε > 0.

\\φ-Σ (l-e-1™ U(y{)-)Xi\\ < ε . (12)
ί = l

As the operator appearing in (9) is uniformly bounded with respect to α,
combining (12) and (11) gives (9).

We next deduce the existence of all strong means of U (x).

Lemma 2. All strong means of U (x} exist and are all equal to E (0). More
generally, for any p,

Q, γ ζ§ (13)

where f is any M -filter .

Proof. The above argument actually establishes that

d x f x ( x ) e-^xϋ(x) — E(p)} φ = Q (14)

for φ in the total set

(15)

Again due to uniform boundedness with respect to α this is enough to
deduce the Lemma .

Although we do not wish to consider uniform means of e~~ipxU(x)
we mention, without proof, that such means exist if and only if the
spectral measure dE(p) defined by (7), vanishes in some open neighbour-
hood of p-space containing the point p. In this case the means are of
course all equal to E(p).
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The next step in our development is to use the information con-
cerning the means of U(x) to derive properties of the means of other
operator- valued functions. If Av A2 . . . An are bounded operators
acting on § we define the respective translates A x (x) . . . An (x) to be the
operators given by

Aί(x)^ϋ(x)Aiϋ(x)-1 for i=l,2,...n. (16)

Our next result concerns means of products of operator- valued functions
A{(x) defined in this manner.

Lemma 3. // f are n M- filters, i = 1,2, . . .n, then

lim . . . lim(χ| (/ dx1 . . . dxn fafa) . . . f^(xn) A^xJ . . . An(xn) —
*ι «n (17)

-E(p)A1E(p)...E(p)An)E(p)\φ) = 0
and

lim ... lim||(/ dxl . . . dxn /^fo) . . . f^(xn) A^xJ . . . An(xn) —
«ι v n (18)

~E(p)AlE(p)...E(p)An}E(p)ψ\\=0

for all χ, φ, Ψ ζ$), for all p, and for any order or manner of the limits i.e.
the limit may be taken with respect to the product filter.

Proof. We note that.

\(χ\ (/ dx, . . . dxn ft to) . . . fΐn(xn) ^ to) . . . An(xn) -

-E(p)AίE(<p)...An)E(p)\φ)\

= Σ(X\ fdx,... dxr fl (̂ ) . . . f l ( x r ) A, to) . . .

...Ar(xr)E(p)Ar+1...AnE(p)\φ)-

- (χ| fax,... dxr 4 to) . . . f£ί(Xr-ι) Λ(%)

. . . ̂ -jto-i) E(p)Ar... AnE(p)\ψ)\ (19)

= I Σ (χ\ f da* . . . dxr j{ to) . . . fox,) A, to) . . .
r = 1

. . . Ar_, to_j) (e-«"« ϋ(x) -E(p) ) ArE(p) . . . AnE(p) \φ)\ ̂

^Σ\U IIΛII - Mr-lul l f d X r f l M (e-*»x U(x)-E(p» x

xArE(p)...AnE(p)

Now combining inequality (19) and (13) we can deduce (17). In an anal-
ogous manner we may deduce (18).

Finally we note that even if the spectrum of U(x) is purely con-
tinuous lemmas 1 and 2 provide non-trivial results but lemma 3 is an
empty statement. In this case it is therefore necessary to develop more
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powerful methods for investigating means of the translates A^x). In the
sequel we will apply the above results to certain algebras of operators
and we prepare the ground for these applications by introducing the
required algebraic definitions and notations in the next section.

3. Algebraic definitions

In the following we are interested in examining a (7*-algebra 2ί on
which the group T of space -translations acts as a group of automorphisms
(for general information on <7*-algebras see [7] or, for a short resume,
the appendix of [8]). We use the notation A £ 21 -> A (x) ζ 2ί to describe
the action of these automorphisms and assume strong continuity i.e. we
assume

\A(x)-A\-^-ft) (20)

where I || denotes the algebraic norm. We will limit our discussion to the
consideration of invariant states over 21. Explicitly a state Φ over 21 is a
positive linear form over 2ί and an invariant state is specified by the
additional property

Φ(A(x)) = Φ(A) (21)

for all x ζ Rn and A ξ 21. It is well known that from each state one can
construct a cyclic representation of 21 by operators π(2l) acting in a
Hubert space $) and that from an invariant state it is also possible to
construct a unitary representation U(x) of the group T for which the
cyclic vector Ω is invariant. The connection between these quantities is
given by

= ( Ω \ π ( A ) \ Ω ) ,

ϋ) π(A(x)} = U(x) π(A) U(x)-*, (22)

iii) U(x)Ω = Ω.

Due to property ii) we call π a T-covariant representation of 21. We have
previously shown in DKR that all T-covariant representations of 21, of
which the above are a special subclass, can be best studied by con-
sidering an algebra 2lf which is constructed from 21 and T in such a
manner that its * -representations π are in one-to-one correspondence
with the T-covariant representations (π, U) of (21, T). The algebra 21Ϊ7,
which we call a co variance algebra, is of use in the ensuing analysis and
we refer to DKR for details of its construction etc.; for our present
purposes it suffices to note the following facts. If π is a representation of
2ljf then it is connected to representations π and U, of 21 and T respectively,

by
π(X) = / duπ(Σu) U(u) (23)
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where X ζ 2lf is an Lrintegrable function from the space T to 21 i.e.

where u ξ T ->• Xu £ 21 is such that

fdu\\Xu\\<oo. (24)

Further, it is possible to extend the T-automorphism of 21 to auto-
morphisms of 2lf by defining for each X ζ 2lf the translate X (x) through

(X(x)}u = Xu(x) (25)

and thus in the representation π we have

ti(X (x)) = U(x)π (X) U (x)~l = / du π (XJ U (u) . (26)

Finally it is possible to extend an invariant state Φ over 21 to an in-
variant state Φ over 2lf through the definition

Φ(X) = fduΦ(Xa) (27)

and the representations (π, U) and π associated with Φ and Φ respec-
tively act in the same Hubert space $). The invariant vector Ω is cyclic
for both π (21) and n(3\%}. We will call Φ the canonical extension of Φ.

In the following section we will also need the concept of an enveloping
von Neumann algebra (see [7] Chapter 12) as applied specifically to a
covariance algebra 2lf. The enveloping von Neumann algebra Slf** of
2ίf is the dual of the Banach space 21?1*, which consists of the continuous
linear forms on 2lf i.e. ${%** is the bi-dual of 2lf.

An alternative definition is given by identifying 2lf ** with the weak
closure of the set of representatives of 2lf contained in the "universal
representations" τ which is in turn defined to be the direct sum of all
cyclic representations of 2lf. From this latter definition it is clear that
Slf** is a von Neumann algebra containing 2lf in the sense that it con-
tains the set τ($ίι) which is in one-to-one correspondence with 2lf
because τ is a faithful representation. As a general feature of the theory
of von Neumann enveloping algebras an arbitrary representation π of
2lf (a state Φ over 2lf) can be uniquely extended to a W* -representation
of 2lf** (a weakly continuous state over 2117**). Due to the definition of
2lf the representation τ determines representations (r, Uτ) of (21, T) and
we note (DKR end of Theorem 3) that both τ(2l) and Uτ(T) are con-
tained in 2117**. Furthermore, T (21) and C7T(T) are faithful representations
of 2ί and T as a consequence of τ being faithful and thus 21 and T are
embedded π^f** as a sub-algebra and a group of unitaries respectively.
We can also consider the group algebra LX(T) of T as a sub-*algebra of
2J27** by assigning to every / £ LX(T) the operator τ(/) where

τ(f) = f d x f ( x ) U τ ( x ) .

The embedding follows because the definition /->£(/) is easily seen to
provide a faithful representation of Lj (T) such that τ (/) commutes with
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the commutant of Uτ(T). Finally all the spectral projectors of the
representation £7T(T) will be in the weak closure of the sub-algebra
Lα(T) of 2lf** and in particular the associated projector Eτ(Q) onto the
invariant states is an element of 2lf **. This last fact will be of importance
in the sequel.

Next we recall that a state Φ over 21 is said to be strongly clustering if

\Φ(A(x}B) — Φ(A(x))Φ(B}\-^-^$ for all A, B ζ2l (28)

and we will call a state weakly clustering (cf. DKR, section VI) if

lim / dx /α (x) {Φ(A (x) B) — Φ(A (x}} Φ (B)} = 0 (29)
Cf.

for all A, B £ 21 and for some M-filter /. These definitions are principally
motivated by physical considerations. If, for example A (x) represents a
measurement at the point x and Φ(A (x)) denotes the value obtained by
making this measurement in the state Φ then (28) implies that the result
of the product measurement A (x) B is equal to the product of the results
of the individual measurements in the limit x -> oo. This interpretation
implies the absence of infinite range correlations in the state Φ. Alterna-
tively the weak clustering definition (29) implies that any long range
correlations in the state Φ have at most an oscillatory nature. However
the latter definition also has a direct mathematical motivation which is
provided by

Theorem 1. Let 21 be a C*-algebra on which the group T acts as a group
of automorphisms, Φ be an invariant state over 21 and Φ the canonical
extension of Φ to 2lf. // (π, U) and π are the representations of (21, T) and
2lf on the Hilbert space $) and Ω the invariant vector, in ξ>, determined by
Φ, or ώ, then the following are equivalent:

i) Φ is a weakly clustering state
ϋ) Ω is the only invariant vector in ξ>

iii) lim / dx fΛ(x) (ψ\ U(x) — EΩ \ψ) = 0, <ψ, ψ ζ §

iv) Hm \\f dx fΛ(χ) (U(x) - EΩ}y\\ = 0, Ψ ζ §
α

where EΩ is the projector on Ω, and f is any M-filter (thus (29) is valid
for all M-filters).

Further, it follows from each of the equivalent conditions i)—iv) that
(π, U) is irreducible i.e. π is irreducible or, equivalently, Φ is a pure state
over 2tf.

Proof. It is clear that iv) implies iii) but the proof of lemma 2 shows
that the converse is also true. Further Lemma 1 shows that ii) and iii)
are equivalent. If we next rewrite the definition of weak clustering, with
the aid of (22), in the form

lim / dx fκ(x) {(Ω\ π(A) (U(x}~^ - EΩ) π(B) |β)} = 0 (30)
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we immediately see that iϋ) implies i). However asί3 is cyclic for π we
also deduce from (30) that i) implies ϋi). This demonstrates the equi-
valence of statements i)—iv). Finally we remark that (30) establishes
that EΩ is in the weak closure of (π, U) but as Ω is cyclic for π it must
follow that (π, U) is irreducible.

Up to this stage we have considered quite general (7*-algebras acted
on by the group of automorphisms T and we have placed no structure
requirements upon these algebras. In this broad framework theorem 1
appears to be an optimal result. However, in physics, one is interested
in algebras with properties reflecting local structure and therefore in the
following we will restrict our attention to a special class of algebras which
are characterised by an 'asymptotically local5 property. These algebras,
which were first introduced in DKR under the name of asymptotically
abelian algebras, are, as discussed in the introduction, of special interest
in Statistical Mechanics.

Definition 3. An asymptotically abelίan algebra 21 is a C*-algebra acted
on by the group of automorphism T with the property

||[^),£]|l|φr^0 (31)
for all A, B £21.

In the ensuing sections we will analyse the structure of invariant
states over such algebras and will see that the result of theorem 1 can
be considerably strengthened in this case (cf. theorem 3).

4. Invariant States

The major aims of this section are, firstly, to show that any invariant
state over an asymptotically abelian algebra can be uniquely decomposed
into invariant weakly clustering states, secondly, to characterise and,
thirdly, to classify these latter states. As a preliminary, and also an aid,
to this investigation we first derive the two following lemmas.

Lemma 4. // Φ is an invariant state over an asymptotically abelian
algebra and (π, U) are the representations of (21, T) associated with Φ then,
for any plt pny pm and all A, B ζ 21,

E(Pl) π(A) E(Pl + pm) π(B) E(pn)

^E(Pl)n(B)E(pn-pm)n(A)E(pn)
 (

where the E (pn) are the projectors onto discrete eigenstates of U (x) defined by
the spectral decomposition (7). In particular for any pn and all A, B £21

[E(pn) π(A) E(pn), E(pn) π(B) E(pn)] = 0 . (33)

Proof. As 21 is an asymptotically abelian algebra we may deduce from
(31) that

[π(A (*)), π(B)]E (pn) \φ} ̂ ^ 0 (34)
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for any pl9 pm, pn, all A, B ζ 21 and for all vectors ip, φ in the representa-
tion space §. However (34) implies that

lim / dx /«(*) e****(ψ\ E(Pl) [π(A (*)), π(B)} E(pn) \φ) = 0 (35)

for any M -filter /. Next, using the T-covariance property

π (A (x)) = U(x)π (A) U (x)~l (36)
and the fact that

U(x)E(pn) = eί^E(pn) (37)

we can rewrite (35) in the form

lim / ία /α (x) (<ψ\ E (Pl) {π (A) e^ + ̂ ^U (x)~l π (B) —
&

— π(J5) e-ϊ(v«-v^* U(x) π(A)}E(pn) \φ) = 0 .

Application of the result (9) of Lemma 1 to (38) delivers (32). In order to
deduce (33) from (32) it is only necessary to choose pl = pn and pm — 0.

Lemma 5. // Φ is an invariant state over an asymptotically abelian
algebra 21 and (π, U) are the representations of (21, T) associated with Φ
then all strong means of π(A(x)*) exist, are independent of the choice of
M-filter f, are in the centre of the von Neumann algebra generated by (π, U)
and, denoting the strong means by sπ(A) we have

sπ(A) π(B)Ω = π(B) (E(Q) π(A) #(0))β . (39)

Thus if Φ is the canonical extension of Φ to 2lf and π is the associated
representation of 2lf then sπ(A) is in the centre Q$ of the von Neumann
algebra generated by π. Further Q$ is the smallest von Neumann algebra
containing all strong means sπ(A) and the mapping Z ζQ$-> E(Q) ZE(0)
defines an isomorphism between von Neumann algebras. Moreover Q$

Proof. Recalling the definition (6) of strong means of operator- valued
functions we see that the existence of sπ(A) its independence of the
choice of Jf-filter /, and its action (39), are all established if we can prove
that

lim || / dxfΛ(x) π(A(x)} π(B)Ω — π(B) (E(0) π(A) E(0))Ω\\ = 0 (40)
(X.

because {π (B) Ω B ζ 21} is a dense set of vectors and

}\\^ \\A\\.
However

If dx fx(x) (π(A (a;)) π(B) — π(B) E(0) π(A) E(0))Ω\\ g

+ \\π(B) f dx f.(x) (π(A (x)) -E(Q) π(A))Ω\\ ^ (41)
^fdxU(x}\\[π(A(x)),π(B)}\\ +
+ \\π(B)\\\\fdxfa(x)(U(x)-E(0))π(A)Ω\\
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and in the filter limit the first term of (41) tends to zero due to (31)
and the second term due to Lemma 2. Now that we have established
that sπ(A) exists and acts in the manner described by (39) it is easy to
demonstrate that it is in the centre of the von Neumann algebra generated
by (π, U). In particular we have by definition that sπ(A) is in the weak
closure of π so it is only necessary to show that it commutes with (π, U).
This latter fact is, however, a consequence of (39) e.g.

sπ(A) π(C) π(B)Ω = π(C) π(B) E(0) n(A) E(ϋ)Ω
(42)

= π(C)sπ(A)π(B)Ω.

The second statement of the Lemma follows from the fact that the
von Neumann algebras generated by (π, U) and π are identical (DKR
end of the theorem 3). We note that the abelian character of the set
{sπ(A)ι A ζ 21} is a consequence of (39) and (33). The final statement of
the Lemma is established by noting that Z ζ g^ has the property

[Z, π(B)] = 0 = [Z, E(Q)], hence

Zπ(B)Ω = π(B) E(Q)
and therefore

from which the stated facts immediately follow.
Finally we deduce that 3^ = π($iι)f by showing that this commutant

is abelian. Now π(2lf)' is isomorphic to E (0) π (21%)' E (Q) because
E(0) £6(9%)" and Ω ζ^(0)§ is cyclic. But

lf)' E(Q) ς E(0) (E(0) Λ(9%) E(0)γ E(0) = (E(0) π(

where the last equality follows because Ω is cyclic, in E(Q)ξ), for the
abelian algebra E (0) π (Sίf) E (0) (see [10] page 89). Hence π (<&%)' is
isomorphic to an abelian algebra and is thus abelian. (Quite generally
this is the case for any von Neumann algebra whose commutant con-
tains an abelian projector with a cyclic vector in its range.)

We are now in a position to derive the main decomposition theorem
for invariant states.

Theorem 2. // Φ is an invariant state over an asymptotically abelian
algebra 21 and the associated representation π acts in a separable Hilbert
space ξ) then there exists a unique decomposition of Φ

Φ=fdμ(λ)Φλ (43)

into invariant weakly clustering states Φλ over Qίi.e. for each A ζ 21 one lias
the Radon integral

Φ(A) = fdμ(λ)Φλ(A), (44)

and the states Φ^ generate representations π^ which are mutually inequivalent.
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Further, if Φ and Φλ are the canonical extensions of Φ and Φλ to 2lf,
respectively, then the corresponding decomposition

(45)

is the central decomposition of Φ over 2lf and this decomposition is into
pure states.

Corresponding to the above decompositions we have the associated
decompositions of the representations e.g.

A(X) = fdμ(λ}Aλ(X), ZeSlί1. (46)

Proof. The existence of the decomposition (43) will be deduced from
the existence of the decomposition (46). Since π acts on a separable
Hubert space § it has a unique central decomposition which, according
to Lemma 5, is a decomposition into irreducibles.

Specifically ξ) is the direct ingegral of Hubert spaces $)λ

and the operators B ζπ(2lf)" are the decomposable operators

(47)

whilst the operators T of the center Q$ = π(2lf)' are the diagonalizable
operators

T = fdμ(λ)T(λ), T(λ)£C, TζQΛ.

If we consider (47) for B = π(Σ)9 X £2lf we obtain the central de-
composition of π into irreducible representation πχ of 2lf :

(48)

where π^ (X) is defined to be equal to {π (X)}λ
On the other hand the cyclic vector Ω ζ ί) associated to the positive

form Φ is decomposed as

(49)

where Ωχ Φ 0 for almost all λ (see [7], 8.8.1). Hence

Φ(X) = fdμ(λ)Φλ(X) (50)

where Φλ is defined by

(51)

Now let (π, U) and (πλ, Uλ) be the covariant representations of (21, T)
corresponding to π and π^ respectively. We have for A ζ 21, x ζ T and
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, (see [1] theorem 3)

π(A) A(Z) = π(ρ(A)Σ) = f d μ ( λ ) A^(AW = f d μ ( λ ) πλ(A) Aλ(X]

U(x) ή(X) = π(V(x)X) = fdμ(λ) πλ(V(x)X) = fdμ(λ) ϋλ(x) Λλ(X)

from which, using cyclicity of the vector (49), one deduces
Θ

π ( A ) = fdμ(λ)πλ(A) (52 a)

ϋ(x) = fdμ(λ) Uλ(x). (52 b)

Furthermore, for all x £ T

U(x)Ω = f d μ ( λ ) Uλ(x)Ωλ = Ω

whence, for almost all λ

ϋλ(x)Ωλ = Ωλ foraU xζT (53)

(this is first proven for all rational x and follows for all x by the strong
continuity of Uλ(x)}. This shows that the pure state Φλ is an invariant
state. The decomposition for the state Φ over 21 resulting from (52 a) and
(49):

Φ(A)*=(Ω\π(A)\Ω) = fdμ(λ)Φλ(A) A & (54)

where Φλ is defined by

is therefore a decomposition into invariant states generating covariant
representations (πλί Uλ) such that the set πλ($i) \J U(Ύ) is irreducible.
We have shown in [1] theorem 7 (cf. theorem 3 below) that this property
is equivalent to weak clustering for those states Φλ.

To demonstrate the inequivalence of the π^ generated by the Φλ we
first deduce from (32) that

E(Pl) π(A) E(Pl) π(B) E(pn) = E(Pl) π(B) E(pn) π(A) E(pn) .

However, if (π, U) is a covariant representation associated with a weakly
clustering state Φ we will prove in Theorem 4 that the projectors
E(pl),E(pn)y onto discrete eigenstates |Z), \ri) of U(x), are at most one
dimensional. Thus we have

and hence Φ is the only invariant state in the representation it generates.
Thus if Φλι Φλz generate equivalent representations then Φλι = Φλa which
is contrary to the construction for λl φ λ2.

The general idea of the uniqueness proof is to reduce a given de-
composition into invariant weakly clustering states to a decomposition
into pure states over an abelian (7* -algebra. In this latter case the
decomposition is known to be unique. The abelian (7*-algebra which we
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consider is the smallest norm- closed sub *- algebra of the enveloping
von Neumann algebra 21 f7** containing all operators of the form
Eτ(Q) τ(2l) Eτ(Q). We will denote this algebra by <£. It is abelian as a
consequence of (33) of Lemma 4.

Let us first define a linear one-to-one mapping of the invariant states
Φ over 21 to states φ over <£. This mapping is obtained by first extending
Φ over 21 to a Φ over 2lf by the canonical procedure (27), then extending
Φ to a weakly continuous state Φ over 21^** and finally taking the restric-
tion φ oί Φ to the subalgebra ®. This procedure is well defined because
each step is uniquely specified, it is obviously linear and it remains to
be shown that it is one-to-one. To demonstrate this property we first
recall that Φ is an invariant state over Slf and as an immediate con-
sequence Φ is such that

Φ(ϋτ(x) X ϋτ(-x)} = Φ(X) X ζ 2lp*

thus φ will have the property

φ(Eτ(0) τ(A) Eτ(0) ) = Φ(Eτ(0) τ(A) Eτ(0))
(55)

Therefore φ determines Φ and the mapping is one-to-one.
Next we demonstrate that the weak clustering property of Φ over

21 is equivalent to the purity of φ over ©. This is established by noting
that

Φ (A (x) B)-Φ(A)Φ(B) = φ (Eτ (0) τ(A)Ur (-x) τ (B) Eτ (0)) -
(56)

- φ(Eτ(0) τ(A) Eτ(0) ) φ(Eτ(0) τ(B) Eτ(0))

and taking means of both sides and using Lemma 1 we see that the weak
clustering of Φ is equivalent to the property

(57)
)τ(B)Eτ(Q)~)

for φ. But this last condition amounts to multiplicativity of φ over <£ or,
since @ is abelian, purity of φ.

Now let us assume that we are given a decomposition of Φ into
weakly clustering states

Φ(A) = f d v ( ξ ) Φ ξ ( A ) Aζ<Ά (58)

where the integral is a Radon integral taken over some locally compact
space. We will prove that this decomposition induces a corresponding
decomposition

φ(M) = f d v ( ξ ) φ ξ ( M ) A T £ « (59)

where the φ and φξ are obtained from the Φ and Φξ as explained above.
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Thus the φξ will be pure states over (£ and the uniqueness of decomposi-
tion into pure states for an abelian 0*-algebra, together with the fact
that the correspondence Φ -> φ is one-to-one will entail uniqueness of the
decomposition (58).

The passage from (58) to (59) is effected in the following manner.
We first note that due to the definition (27) of the canonical extension
we can deduce from (58) the decomposition

Φ(Σ) = f d v ( ξ ) Φ t ( Z ) , Zζ3ir (60)
or identically,

δ(X) = f d v ( ξ ) Φ t ( X ) , XζSlf (61)

where we have used Fubini's theorem to interchange the order of
integrations. Now to complete the deduction of (59) we establish that (61)
is valid not only for X ζ 2lf but also for M ζ @. To demonstrate this, we
show that an M ξ @ can be approximated in the weak topology of 21 f **
by a sequence of elements of Slf7 and then we can use Lebesgue's dominated
convergence theorem to interchange the integration in (61) with the
weak limit. As (£ is the norm closure of linear combinations of the form

Eτ(0) τ(Al) Eτ(Q) r(A2) . . . Eτ(ΰ) r(An) Eτ(Q), Ai ζ 2t i=l,2...n

it is only necessary to show that such elements may be weakly approxi-
mated by sequences. However it follows directly from Lemma 5 that
they can even be approximated strongly.

We notice that this uniqueness proof does not depend upon a separa-
bility assumption for the representation induced by the state Φ.

Now that we have seen that all invariant states over an asympto-
tically abelian algebra can be uniquely expressed in terms of invariant
weakly clustering states we will denote those latter basic states by the
special name E-states:

Definition 4. // 21 is an asymptotically abelian algebra then the in-
variant weakly clustering states over 21 are called E-states.

Theorem 1 has already shown that invariant weakly clustering states
over a general algebra 21 have a number of very special properties; the
assumption of an asymptotically abelian character for 21 increases this
number considerably. The next theorem (a generalization of theorem 7
of DKR) gives alternative properties which may be used to characterize
^-states.

Theorem 3. Let Φ be an invariant state over an asymptotically abelian
algebra 21 and Φ its canonical extension to 2lf. // (π, U) and π are the
associated representations, on the Hilbert space $), of (21, ϊ) and 2lf and Ω
is the corresponding invariant cyclic vector then the following are equivalent

i) Φ is a weakly clustering state,
ii) Ω is the only invariant vector in §,
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iϋ) (π, U) is irreducible i.e. π is irreducible or Φ is pure,
iv) π($iι)" is a factor i.e. Φ is a primary state,
v) Φ (Φ) is an extremal element of the convex set of invariant states over

i.e. Φ(Φ) cannot be further decomposed in terms of invariant states,
vi) lim / dx fΛ(x) (<ψ\ U(x) - EΩ \ψ) = 0, γ, ψ ζ $,

vϋ) lim || / dx fΛ(x) (ϋ(x) - EΩ}γ\\ = , ψ £ £,

viii) }LfdxfΛ(x)(Ψ\π(A(x))^(Ω\π(A)\Ω)\χ)^09 ψ,χζξ),A^,

ix) Hm || / dx fa(x) (π(A (x)} — (Ω\ π ( A ) |β))y|| =0, Ψ ζ S), A ζ 21.

7% £&e αδove / &s α?w/ M- filter and EΩ is the projector onto Ω.
Proof. Most of the equivalences cited in the theorem have already

been proved in the foregoing. In particular i) <=> ii) •*> vi) o vii) =φ iϋ)
is given by theorem 1, ϋi) =φ iv) by definition and iv) =Φ iϋ) due to
Corollary 2 of theorem 2. Further ix) => vϋi) by definition and that
vϋi) => vi) is easily seen by choosing χ = Ω and using the fact that Ω is
cyclic for π. Next if Φ is a pure state it is an extremal element of the set
of all states and we clearly have ϋi) => v). We complete the proof of the
theorem by demonstrating that v) =Φ ϋi) = >̂ ϋ) and vii) =$> ix).

v) => ϋi) .If we assume that π is reducible we can decompose it into
irreducibles and there will be a corresponding decomposition of Φ. How-
ever this latter decomposition will be a decomposition into invariant
states because the commutant of π commutes with U(x). Thus we have
a contradiction.

ϋi) =Φ ii). Let us assume that there are many invariant states in § and
we denote the projector on all invariant states by -$(0). However due
to lemma 4 E(0) π(9l) E(0) is an abelian set and this is in contradiction
with the irreducibility of (π, U) unless $(0) is one-dimensional i.e. Ω
is unique.

vϋ) =Φ ix). We have straightforwardly that

If dx /.(*) (π(A (x)) - (Ω\ π(A) \Ω))π(B)Ω -

-fax /„(*) π(B) (ϋ(x) - EO) π(A)Ω\ (62)

However in the filter limit the right hand side tends to zero due to (31).
Remembering that Ω is cyclic for π and that all operators occurring in
(62) are bounded we have immediately the complete equivalence
vϋ) <=> ix).

As we have now reduced the discussion of invariant states to a
discussion of E- states it is perhaps at this point appropriate to comment
upon the physical significance of these latter states in the ϋght of
Theorem 3. We would ϋke particularly to comment upon condition vϋi)
12 Commun. math. Phys., Vol. 3
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of this theorem which shows that

] ί m f d x f x ( x ) (ψ\ π(A(x)} \ψ) = (Ω\ n(A) |β), \\ψ\\ = 1 (63)

Now if the E~ state described an equilibrium situation in statistical
mechanics and Ω was the vector representing the ground state of the
system in equilibrium then ψ would be a vector representing a state of
the system which was locally disturbed from equilibrium. We then see
from (63) that the average of all measurements of a local observable A
at the various points of space would be a global quantity whose value
is independent of the vector state in which it is measured. Further from
condition ix) we have

] i m f d x d y f a ( x ) f x ( y ) { ( V \ π ( A ( x ) )π(A(y))\ψ)-

- (ψ\ π(A (x) ) \γ) (γ\ n(A (y}) \ψ)} = 0

for A ζ 21, ψ ζ$) and \\ψ\\ = 1. This latter condition expresses the fact
that the fluctuations of the values of the space averages of all local
observables A are small in all vector states, a characteristic of single-
phase equilibrium.

Obviously the essential next step in an analysis of invariant states is
to classify the ^-states. One classification which appears to be of physical
interest is based upon the analysis of the discrete spectrum of the space-
translation operators. The necessary mathematical information con-
cerning this spectrum is given by the following theorem.

Theorem 4. Let Φ be an E -state and (π, U) the associated representations
of (21, T). The group representatives U have the general spectral decom-
position

U(x) = Σ E(pn) e^x + f dE(p)e*v* (64)

where the sum and integral correspond to the discrete spectrum 8D and the
continuous spectrum S^ of U respectively. It follows that the discrete spectrum
is subgroup i.e. if pn, pm ζ SD then pn + pm ζ S^ and —pn ζ Sp and
further it is simple i.e. for each pn ζ Sχ> the corresponding projector E (pn) is
one- dimensional .

Proof. We have already seen that in an Estate (π, U) is irreducible
but from lemma 4 we know that E(pn) π(2l) E(pn) is abelian for pn £ S#.
Therefore we have a contradiction unless E (pn) is one -dimensional. This
proves the simplicity of 8$. Next we note that the eigenstate of E(pn) is
cyclic for (π, U), due to irreducibility, and hence cyclic for π. Now from
(32) of lemma 4 we have, in particular, that

E (pn) π(A)E(pn + pm) π (B) E (pm] = E (pn) π(B)E(Q)π(A)E (pm) . (65)

For all A, B ζ 2ί. Now if we assume that pn, pm ζ Sΰ but pn + pm $ Sχ> we
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must conclude that

E(pn) π(B) E(0)π(A)E(pj = 0 (66)

for all A, B ζ 2ί. But as E(pn), E(pm) project onto states cyclic under π
this would entail E (0) = 0 which is a contradiction because E (0) projects
onto the invariant vector Ω associated with Φ. This proves the additivity
of $>D. The symmetry of S# follows similarly from

E(Q)π(A)E (pn) π (B) E(Q) = E (0) π (B) E (-pn) π (A) E (0) (67)

which is a special case of (32).
The result of the above theorem provides an immediate and natural

classification of E-states for the case T = Rn.
Definition 5. // Φ is an E-state and Ω is the associated invariant vector

and U the corresponding representation of T then
1. Φ is called an EΓstate if Ω is the only discrete eigenvector of £7.
2. Φ is called an Efrstate if the discrete spectrum Sχ> of U spans an

m-dimensional subspace of Rw and if there exists a minimum nonzero
distance between all pairs of points of S#.

3. Φ is called an Elιrstate if it does not fall into the two foregoing
categories.

As Sj0 is additive the definition of jS/jj-states is equivalent to the
requirement that S# contains no accumulation points. On the other hand
in an J£ΠΓstate accumulation points of $D will occur and due to the
additivity property each point in some subset of $D will be an accumu-
lation point. Thus in .E^-state Sp will be dense in some subspace of
~Rn that it spans.

At this point we end our general analysis of E^ states and in the
following section we will analyse Eιrstates. We are unable to analyse
.£/ΠΓstates and will not consider their structure further. In section 6 we
return a discussion of possible properties of jS^-states.

5. Lattice states

The aim of this section is to present an analysis of Eιrstates. The
major feature of our results is that an arbitrary .E^-state can be uniquely
decomposed into states which are invariant under a subgroup of trans-
lations and which are characterised by a number of equivalent conditions
similar to those characterising EΓstates. The methods which we use
closely parallel those of previous sections; our general tactics are the
following. For each J£π-state we define a certain subgroup T^ of the
group T (L for lattice). This subgroup consists of all translations which
leave the corresponding discrete eigenvectors of T invariant. T^ acts as a
group of automorphisms on the algebra 21 and the Eιrstate is an in-
variant state with respect to this group. Now we apply to the pair
12*
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(21, TL), or equivalently to 2l£z our previous results. As we mentioned
earlier, these results are valid for any locally compact abelian group and
are thus applicable to T^ with appropriate notational changes.

We begin by giving abstract definitions of T^ and related concepts
and then illustrating these concepts by examples. Now the discrete
spectrum $D of U (x) in an £7IΓstate is, according to the definition, a

discrete closed sub-group of the dual group T of T (T Ξ= p-space). We
next define the closed subgroup TL of T by the requirement that

pnx = Qmoά2π, pn £$>D - (68)

This amounts to our prescription of selecting all translations which leave
invariant the discrete eigenvectors of U (x). The subgroup TL is commonly

referred to in the mathematical literature as the annihilator of S_^ C T (see
[11] chapter 2,2-1). We next introduce the quotient group K = T/T^
K is the group of translations of T modulo translations of T^ Generally

Tjr and K can be identified with the dual groups of T/S^ and Sj> respec-
tively ([11] theorem 2.1.2) and thus, since Sjτ> is discrete, K is compact.

The subgroup T^ will be discrete if, and only if, T/Sχ> is compact i.e. if

Sχ> spans T as a vector space, which is the case of ^fj-states. In order to
apply our previous results to the group T^ we must describe the Haar
measure on T^. We obtain the simplest description for an .£Jff-state in the

following way. Let us call Tw the m-dimensional vectorial subspace

spanned by S# in T and let us choose a complementary subspace Tn~m,

then T is the product group Tw x Tn~m. Consequently

T/S^ = T^/SD x Tn~m (69)

where T^/S^ is compact andTw~w is isomorphic to Rw~m. Thus the dual

group Tj, of T/Sχ> is equal to the product of the duals,

ΎL = ΎlxTn~m (70)

where T™ is a discrete group and Tw~m is again isomorphic to Rw~w

(Tf and $D are "reciprocal lattices"). Thus the Haar measure on T^ is the
product of a discrete sum over Tf and the Lebesgue measure on Tn~m.
In the event that m = n (ί/fj-states) T^ is discrete and the Haar measure
is given by discrete sums.

Let us illustrate the above definitions in the case of two dimensions
where we have the possibility of E\Γstates or E\γstates. Firstly we
consider an 2£}rstate where, by definition, the discrete spectrum S^
of U consists of points equally spaced on a line. Choosing cartesian
coordinates (xv x2) in T = R2 and the corresponding coordinates (pl9 p2)

in the dual space T we can assume, without loss of generality, that the
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spectrum S# consists of the points (a1N, 0) where aλ is a fixed scale
factor and N takes integer values in this case T^ is the discrete group of
translations through distances 2πMja1 where M takes integer values, in
the xr direction. The group TL consists of translations whose component
in the ^-direction is an integer multiple of 2πjalί and whose component
in the #2-direction is arbitrary. The quotient group K consists of trans-
lations in the ^-direction modulo the translations of T^ and is isomorphic
to the rotations (modulo 2π) on a circle. A general function / on TL can
be viewed as a sequence of functions /^(^2) and the integral of this
function with respect to the Haar measure on T^ is given by

Σ /ί*2 /*(**)• (71)
M-oo

Secondly if we consider an l£fr state TL will consist of translations of the
type (2πM1jav 2πM2ja2) where a1 and α2 are both fixed by the spectrum
8 j) and where Ml9 M2, take integer values. In this case K is isomorphic
to the product of two groups both describing rotations (modulo 2 π) on a
circle. A function / on T£ is then a double array of constants fM1Ma

 an(^
the integral of the function with respect to the Haar measure is the
double sum

Σ Σ /*,*.- (72)
! = oo Mz — — oo

Now we proceed to the analysis of J^jj -states and we begin by intro-
ducing a number of notational definitions which will be used in the
remainder of this section.

Definitions. Let Φ be an j^π -state and (π, U) the associated represen-
tations of (21, T) on the space $> with the cyclic invariant vector Ω. We
denote by UL the restriction of U to the subgroup T^ of T and by E the
projector in § on states invariant under T^ so that

E + fdEL(p)e**** xLζTL (73)
and

1= Σ E(pn). (74)

On the space E$) we define the algebra 921 to be the <7*-algebra
generated by Eπ(3l)E and we denote by UE the restriction of U to
Έίί). We note that for XL ζ ΎL the restriction UE reduces to the identity
(in E $)) so that UE is in fact a representation of the compact quotient
group K - T/Tj.

With the above notation we now have
Lemma 6. The C*-algebra SK is abelian and countably generated.

Further, the set of operators 9K and UE(K) is irreducible in E$) and Ω is
cyclic for 221.



172 D. KASTLEB and D. W. ROBINSON :

Proof. As lemma 4 is valid for any locally compact abelian group we
obtain immediately, by replacing T by T^ in that lemma, the fact
that 9K is abelian. As a consequence of (74) 9H is generated by the
E (pn) π (21) E (pm) but as E (pn) is one-dimensional for all pn we have that
92ΐ is countably generated. Finally since the set of operators π(2t) and
U are, by theorem 3, irreducible in § and Ω is cyclic for π(2ί) it follows
that 9Ώ and UE(K) are irreducible in Eξ) and Ω is cyclic for 97Ϊ.

After these preliminaries we now wish to give the major result of this
section concerning the decomposition of Eu-states. It is a consequence
of our earlier result, theorem 2, that there is a unique decomposition of
an Eιrstate into states which are invariant with respect to T^ and weakly
clustering with respect to this subgroup. As one would expect this
decomposition 'breaks' the symmetry with respect to the group K and
this is explicity displayed by

Theorem 5. // Φ is an E-^-state then there is a unique decomposition of
Φ into states Φξ which are invariant and weakly clustering with respect to
the subgroup T^. Furthermore this decomposition can be written as an
integral with respect to the Haar measure dm(ξ] of K and one has

Φ = fdm(ξ)Φξ (75)
K

in such a way that the states Φξ are transforms of each other under the action
of K i.e.

Φξ+η(A) = Φξ(A(y)), yζη. (76)

The representations π and πξ associated with Φ and Φξ, respectively, are
simultaneously faithful, but are inequivalent for ξ Φ η. However, the
representations of TL associated with the states Φξ are all unitary equivalent.

Corresponding to the decomposition (75) there is a decomposition of the
canonical extension Φ of Φ

Φ = fdm(ξ)Φξ (77)
K

where
Φξ+tl(X) = Φξ(X(y) ), yζη (78)

and the decomposition (77) is the central decomposition of Φ over Slf2'

which is into pure states. The representations π and n% of ty^L generated
by Φ and Φξ are simultaneously faithful.

Proof. Before giving details we first outline the main features of the
proof. Firstly we know from theorem 2, on replacing T by T^, that there
exists a unique decomposition of Φ into states which are weakly clustering
and invariant with respect to T^. We will construct this decomposition
by the "diagonalization" of the abelian algebra 911 acting in ES) (a slight
variant of the construction in the proof of theorem 2). Secondly we
demonstrate that this decomposition can be rewritten in the form (75)
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by using the fact that the set of operators 911 \j UE is irreducible in E$)
and that T acts on 92ΐ in the covariant manner

UE(x) Eπ(A) EUE(x)~l = Eπ(A(x)}E . (79)

These facts, together with the remark that T^ is characterised as the set
of x ζ T acting trivially on 2JI, allow us to establish an identification
between the quotient group K = T/T^ and the spectrum @ of 321. We
now proceed to the details.

We recall that the abelian (7*-algebra QΏ can be identified with the
set C0 (β>) of continuous functions on 0 vanishing at infinity, through the
well known Gelfand isomorphism defined by

M(s) = s(M) (80)

where M ζ 221, s ζ 6 and Ά ζ C0(<S). The positive form on 92ΐ defined by
Ω ξ E$) is then represented by a Radon measure m on 6> i.e.

(Ω\ M\Ω) = f dm (s) M (s) . (81)

Since Ω is cyclic for 22ΐ in ES) the latter can be identified with the space
L2(<2, m) in such a way that if

ψζ Eί) <->$ζl 2(<S,m) (82)

we have a "diagonalisation" of 321 in the sense that (see [12] §17.4)

jMψ(s) = ]SΪ(s)<φ(s), ψζ$),Mζm. (83)

This diagonalisation effects the decomposition of Φ,

Φ(A) = (fl| Eπ(A}E \Ω} = f dm(s) ΦS(A) (84)
0

where the states Φs are defined by

Φ8(A) = s(Eπ(A)E} - Eπ(A) E(s] (85)

which implies that they are invariant and weakly clustering with respect
to TL through an argument identical to that given in the proof of
theorem 2.

We next wish to examine the action of UE(x), x £T, on L2(Θ, m)
= Eξ). From (79) we see that T acts on 92ΐ as a group of automorphisms

Mζm-*Mxζm (86)
of the algebra 321. We define the action of T on the spectrum & by

*es->«*e© (87)
with

sx(M) = s(M_x) (88)
so that

Jfrβ(β) = .lfr(O. (89)
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From this we easily deduce the action of UE(x) on L2(Θ, m) and we have

in accordance with (79). The fact that UE(x) is unitary reflects itself in
the property that the measure m is invariant for the mapping (87). Note
that the mapping (87) is such that (s, x) -> sx is continuous form Q x T
to 0. Indeed we have for arbitrary M i ζ 93U = I . . . n

MJf,)- 4(^)1 g s^M^-s'^M^ + KW-^'WI £
( y j- }

g !«(#,_„) -«'(#,_„)! + IM^-M^I
where

|β(Λf,-β)-β'(lf,-.)|ίϊγ » = l . . . n (92)

defines a weak neighbourhood of s in & and

for x — x' small enough by our assumption (20).
Now let u be an element of 6 and consider the orbit Φu of u under T

defined as the set
Θu = K; x ζ T} . (94)

Θu is a Borel subset of (S and, as a consequence of (83) and (90), L2(0W, m)
is a subspace ot E$) invariant under the combined action of 9ft and UE.
Thus as the set of operators 311 w UE is irreducible L2(@u, in) is either the
null subspace or the whole L2 (0, m) space and hence in the latter case the
complementary set of Φu is of zero m-measure. Irreducibility implies that
the invariant measure m is ergodic and on the other hand 9ft is countably
generated i.e. separable and consequently the spectrum Q admits a
countable basis of open sets. Therefore ergodicity of m implies transi-
tivity (see [13], Theorem 3.9) and thus we can choose a u ζ Q such that
Φu has an m-negligeable complement. Thus the integral in (87) can be
equivalently taken over Φu i.e.

Φ(A) = fdm(s) ΦS(A) = fdm(s) s(Eπ(A)E] . (95)
®u ®u

As the action of T on Θu is now strictly transitive we can, due to the
continuity of the mapping (s, x) -> sx, conclude that Θu is a homogeneous
space for T. Consequently, since T is a separable group and T^ is the
stabilisier of the points in Θu i.e.

TL={xζTιβΛ = 8}9 sζ&u (96)

we have a homeomorphic mapping of Φu onto the quotient group
K - T/Tj. Explicitly, we have

ξ£K<->uξζ(Pu (97)
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where uξ is defined by

Uξ = ux with x in the class ξ of T modulo T£ . (98)

Furthermore the mapping is such that for η, ξ ζ K

and the image of the measure m on Φu is the Haar measure (which we
also denote by m) on K because the Haar measure is the only quasi-
invariant measure on K.

We can now rewrite the decomposition (95) replacing Φu by the
isomorphic K

Φ(A) = f dm(ή) η(Eπ(A)E) . (100)
K

Now using the invariance of the Haar measure and taking account of
(97) (99) we have

Φ(A) = f dm(ξ) (ξ + η) (Eπ(A)E) (101)
K

= fdm(ξ)ξ(Eπ(A(y))E), y ζ η
K

= fdm(ξ)Φξ(A)
K

where the states Φξ defined by

Φξ(A)^ξ(Eπ(A(y)E), y ζη (102)

obviously satisfy (76).
The above proof invoques general theorems of the theory of ergodic

measures for the replacement of β by K in the integral (84). In fact we
can use the compactness of K = T/T^ to deduce in an elementary way
the even stronger result that there exists a u ζ 0 for which (9U is homeo-
morphic to K (without a zero-measure difference set). Since © has a
countable basis of open sets it is known that one can easily prove the
existence of a u ζ 6 such that the closure Φu of Θu is the support of the
ergodic measure m, i.e. coincides with the whole spectrum © since 22ΐ is
by definition faithfully represented in L2(<S, m). The mapping of K onto
Ou defined by (97) and (98) stems from the continuous mapping

aζT-*tι β £0 t t

constant on the classes modulo T^: it is therefore continuous from the
compact space K to the Hausdorίf space Θ and since it is one-to-one it is
homeomorphic. We thus conclude that θu = @u — β.

We now prove the rest of the theorem. Now that we have established
(76) it is a direct consequence that π§ and πη are simultaneously faithful.
More generally (theorem 1.7 [14]) we have that

KerΦ- Π KerΦ|. (103)
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The inequivalence of πξ and πη follows as in theorem 2. To demonstrate
the unitary equivalence of the representations of T^ associated with
Φξ+η and Φη we first note that the mapping

πξ+η(A)Ωξ+ηζ$ξ+η^πξ(A(y))Ωξζ$ξ y ζη (104)

extends to an isometric linear mapping of ί)^n onto $)$ due to (76). The
same equation also shows that

fa+η(A) Ωξ+η, Uξ+η(xL) πξ+η(B) Ωξ+η)

= (πξ(A (*/)) Ωξ, Uξ(xL) πξ(B(y))Ω^ y ζ η

which demonstrates the unitary equivalence.
The properties of the decomposition of the canonical extension Φ of

Φ to 3iιL follow immediately from theorem 2 and the above. Theorem 5
has shown that the representations Uξ of TL associated with the states
Φξ occuring in the decomposition (75) are unitarily equivalent and we can
also deduce the result,

Theorem 6. // Φξ is a state occurring in the decomposition (75) of an
Eιrstate and Uξ is the associated representation of TL on $)ξ then Uξ has
one, and only one, discrete eigenvector in $)ξ. This unique eigenvector is the
invariant vector Ωξ associated with Φξ.

Proof. Instead of considering the Φξ we consider the canonical

extensions over 2lf L or rather their continuous extensions to the eveloping

(7*-algebra 21̂  (see DKR Section 4). As Φξ is a pure state Kadison's
transitivity theorem ([7] 2.8.4) assures us that any discrete eigenstate
\f of Uξ(xL) in $)ξ with eigenvalue eίqXL can be written

V = At(X)Ωξ (105)

for some η £ Sl^X Therefore we have

Φξ(X*X(xL)) - $t(X*X)e**** . (106)

But from (78) we conclude that

yη)X(-yη))e****, yηί$η.

This last relation shows that the vector

fdm(η) πξ+η(X(-yη))Ωξ+η (108)
K

(where the choice of yη ζ $) η is a continuous section) in the direct
integral space

fdm(η)?)ξ+η (109)
K

is a discrete eigenstate of UL(xL) with eigenvalue eiqXL and we therefore
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conclude from (73) that q = 0. Thus all discrete eigenvectors of Uξ are
invariant vectors but as Φξ is weakly clustering it follows from theorem 1
(applied with T^) that they all coincide with Ωξ.

We note that the use of direct integrals in the above proof requires
separability of the representation π generated by the j^π-state Φ, how-
ever this restriction can probably be removed.

The study of -Z£π-states has been reduced at this point to the study
of states occurring in the decomposition (75) and from theorems 4 and 5
we see that these states have properties analogous to ^-states. We will
give them the special name ^-states.

Definition 6. // 21 is an asymptotically abelian algebra and ΎL is a
closed subgroup of the group T of space-translations then we call a state Φ
over 21 an L-state if Φ is invariant with respect to T^ and if the associated
invariant vector ΩL is the only discrete eigenstate of the corresponding
representation UL of ΎL.

In analogy to the definition of El-states we have in the above
definition brought forward the fact that the discrete spectrum of UL is a
point and the corresponding eigenvector unique. This implies, due to
theorem 1, that L-states are weakly clustering and in fact they enjoy all
of the properties listed in Theorem 4.

Theorem 7. If Φ is an L-state then it has the equivalent properties
i)—ix) of theorem 3 with the proviso that T should be replaced by TL in the
statement of these properties. (The replacement of T by ΎL naturally entails
replacing dx by dxL, the Haar measure on TL, and the interpretation of f
as an M-filter over T^ as described above.)

Proof. The proof of this theorem follows, in the same manner that its
statement does, by replacing T by T^ in theorem 3 and the appropriate
foregoing lemmas.

The result of this, and the previous, section have reduced the study
of invariant states to the analysis of the very similar Eϊ and L-states
together with an examination of $m-states. In the following section we
give a short discussion of properties, and conjectured properties, of the
former states.

6. .Ej-states and Z/-states

As ^j-states and L-states are so similar we will only discuss the former
to apply our discussion to the latter it is merely necessary to replace
T by T^. In theorem 3 we showed that the weak and strong means of
representatives π(A(x)) of 21 in an Estate Φ are equal to Φ(A)I and
our first remark is that the product means of n(A^(x^f) . . . π(An(xn)

>)
also exist in the weak and strong sense and are equal to Φ (A ̂  . . . Φ (An) I.
This follows straightforwardly from lemma 3 which also precisely states
what we understand by product means. Our next remark is that an
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EΓ state, which is by definition weakly clustering, is possibly already
strongly clustering. The representation U of T associated with such a
state has the form

U(x) = EΩ + f dE(p)e^x (110)
SL

so the strong clustering property (28) is equivalent to the condition

(111)

on the continuous measure d(ψ\ E(p) \φ) where ip, φ are vectors in the
representation space £j. If this condition is not automatically fulfilled
it should be a consequence of taking stronger local commutativity' con-
ditions than (31) for the algebra 21. The strong clustering property would
be deducible if the representation π(2l), associated with an ^j-state,
were a factor representation as the next theorem (essentially due to
ABAKI [15] and BOUCHERS [16]) shows.

Theorem 8. If Φ is a state (not necessarily invariant) over an asymp-
totically abelian algebra 21 and if the associated representation π of 21 on £j,
is factorial then

\φ(A(x}B)-Φ(A(x))Φ(B}\w^Q. (112)

Proof. Firstly we note that Φ and π are connected by

Φ(A) = ( ξ \ π ( A ) \ ξ ) , A £31 (113)

where ξ £ ξ> is cyclic for π. Next we define £ to be the (7* -algebra of
operators generated by π and its commutant π' . With this definition we
have firstly that

(114)

for each A ζ 21 and B ζ £ due to asymptotical abelianness and secondly
£ acts irreducibly in § due to π being factorial i.e. {π" r\ π'} = {λl}.

However, due to this irreducibility we can use Kadison's transitivity
theorem (see [7], 2.9.1) to conclude that every B ξ £ has a decomposition

B1+B2 (115)
such that

B*ξ^Q,B2ξ = Q and BvB2ζ£. (116)

In particular for A, B ξ 2ί

Φ(A(x)E)-Φ(A(x)) Φ(B) = (ξ\ π(A(x)) B^ξ}

= -(ξ\[π(A(x)),B1]\ξ ) , B^Z. (

Now (112) is an immediate consequence of (117) and (114).
We note that in the above theorem it is not necessary that there

should be a unitary representation of T associated with Φ. It is also
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interesting to note that the decomposition (115) is an abstract mathe-
matical version of the splitting into " creation" and " annihilation"
operators.

Let us now show that the converse of the above theorem is not true
i.e. strong clustering does not imply that π is factorial, and thus deduce
that an Jζ/Γstate is not necessarily a primary state over 21. To demonstrate
this we will consider an abelian algebra 21 generated by unitary operators
U(f), acting on the Fock space $)F with vacuum Ω, where

U(f) = exp{*(α(/) + α+(/))} / real £ L2(T)
and

[a(g)9 α+(A)] = f dx dy'JW h(y) ρ(x-y) g, h £L2(T) .

For consistency we take ρ to be real and of positive type, now we have

(Ω\ U(f) U{g,)\Ω) = exp-±dxdy(J(x) + g(x-zϊ) X

x
where the action of T is

It is straightforwardly checked from (118), and the definition of 21 that,
the state over 21 is strongly clustering if we assume that

p(x)—, — > 0 .r ^ ' \x\ — oo

However (118) also shows that this state is not a primary state over 21
because as 21 is abelian a primary state is pure and hence multiplicative
over the algebra.

We conclude from the above observations that in our general frame-
work of asymptotic abelian algebras, which also includes abelian algebras,
EΓ states are not necessarily primary. However it is possible that they
are strongly clustering.

7. Conclusion

In the present paper we have focused our attention on invariant
states over an asymptotically abelian algebra as these states are of
interest in statistical mechanics. We have shown how one is led to a
study of particular "elementary" states and how states of a lower
"crystalline" symmetry naturally arise through the breaking of trans-
lation symmetry.

The methods which we have developed have more general applications
than those considered and it would be possible to analyse invariant
states when the group T is replaced by a more general locally compact
group G. The decomposition theorem (theorem 2) hinges essentially on
two results only 1) the weak mean of U(x) is the projector E(Q)y and
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2) the set E (0) π ( ) E (0) is abelian. The first of these results is dependent
only on the existence of M-filters and the second then depends on having
an appropriate asymptotic abelian condition. It is worth mentioning
that even in the context of the present paper it is not necessary to have
the asymptotic abelian property for all directions to obtain most of our
results. If one had this property in all space-like directions, as in relativ-
istic field theory, it would also be possible to obtain similar results.

A final remark is that the methods of mean values developed here
might be used in relativistic field theory to replace the methods of big
translations as has also been suggested privately by R. HAAGL
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Note added in proof. The proof of the assertion in Lemma 5 that the strong
means of elements of 01 are weakly dense in Sά *s n°^ satisfactory. However this
assertion is correct as will be shown at a later occasion.
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