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Abstract. Starting from a G^-algebra 21 and a locally compact group T of
automorphisms of 21 we construct a "covariance algebra" 21̂  with the property
that the corresponding *-representations are in one-to-one correspondence with
covariant representations of 21 i.e. *-representations of 21 in which the automor-
phisms are continuously unitarily implemented. We further construct for rela-
tivistic field theory an algebra 2ί^(F) yielding the # -representations of 21 in which
the space time translations have their spectrum contained in V. The problem of
denumerable occurence of superselection sectors is formulated as a condition on
the spectrum of 2ί^(F). Finally we consider the covariance algebra 21 £ built with
space translations alone and show its relevance for the discussion of equilibrium
states in statistical mechanics, namely we restore in this framework the equiv-
alence of uniqueness of the vacuum, irreducibility and a weak clustering property.

§ I. Introduction

In recent formulations of both relativistic field theory and statistical
mechanics emphasis is being placed upon the algebraic structure of these
theories. The algebraic approach is based on the specification of a (7*-
algebra of observables with structure properties related to space-time
or space and its positive forms or (physical) states. It is customary how-
ever to work with special representations of the algebra i.e. special states
so chosen that the space-(time) automorphisms are represented by uni-
tary operators of the representation space. Thus consideration is re-
stricted to a family of states transformed into each other by the space -
(time) automorphisms. Such a restriction is hoped to be a partial charac-
terization of the superselection sectors of relativistic field theory and the
equilibrium states of statistical mechanics. It is even believed that in the
relativistic case the extra requirement of positivity of the energy might
be essentially sufficient to completely characterize the superselection
sectors whose denumerable occurence is one of the most fascinating
general problems in field theory. In statistical mechanics extra speciali-
zation such as invariance and clustering properties should also be neces-
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sary, and perhaps sufficient to characterize the equilibrium states1. In
this paper we wish to demonstrate that such specialization can again be
formulated in an algebraic setting.

The general idea is to build from the quasi-local algebra 21 and the
group of automorphisms T an auxiliary algebra which we denote 2lf and
call a "covariance algebra" because it has the property that its *-repre-
sentations yield the representations of 21 for which T is unitarily im-
plemented. In fact the representations of 2lf will be in a one-to-one
correspondence with these "covariant representations" of 21. The con-
struction of <Ά^ is a natural generalization of the construction of the group
algebra L^T). Whilst L^T] is a linearization of T by functions x ζ T-> fx

from T to the complex numbers behaving like integrals

f f x ϋ ( x ) d x ( a )

2lf is an algebra of functions X :x ζT ^ Xy.ζ'Ά from T to 21 behaving
like integrals

f π ( X x ) U ( x ) d x ( b )

where π is a covariant representation of 21 and U the associated unitary
representation of T. The theory of L-^(T) is developed from the observa-
tion that the multiplication and adjunction of operators of the type (a)
is in fact independent of the representation and can be stated algebrai-
cally. The same observation in the case of the operators (b) provides the
basis for the theory of the *- algebra 2ίf whose product and *- operation
are the corresponding generalization of the usual convolution and
^-operation of L^T). Our general construction applies to any (7*-algebra
21 and any locally compact group T of automorphisms which acts upon
21 in a strongly continuous manner.

In the case of relativistic theory we turn our attention to the group
T of space-time translations and show that the further restriction to
representations with positive spectrum can also be formulated algebrai-
cally. This is achieved by considering the quotient 2lf(F) by a spectral
ideal J which in heuristic terms contains the projectors on the unphysical
energy-momentum spectrum. The spectrum of 2lf(F) is tightly connected
with the part 21̂ , of the spectrum 21 of 21 which is determined by irreduc-
ible covariant representations with physical energy-momentum spectrum.
As these representations are essentially the natural candidates for the
description of superselection sectors the denumerable occurence of the
latter is thus converted into a spectral property of 2ίf'(F) which thus
provides a mathematical frame for a synthetic study of 21̂  based on
locality.

1 R. HAAG, private communication.
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The covariance algebra which we believe to be of interest for sta-
tistical mechanics is obtained by taking T to be the group of space-
translations. Using general asymptotic properties of 21 we then consider
some properties of the invariant states. We introduce a new notion of
clustering properties defined with the aid of mean values. Our main
result is then the equivalence of weak clustering of the invariant state,
irreducibility of Slf and uniqueness of an invariant vector in Hubert
space. This equivalence and other subsidiary results are generalizations
of properties which are well known in relativistic field theory.

Section II is devoted to the definition of the general covariance
algebra 2lf as a Banach *- algebra. In Section III we show that the
* -representations of 2ίf yield the co variant representations of 21 in a
one-to-one fashion. Section IV presents a proof of the J.*-character of
Slf. Section V is concerned with the algebra 2lf ( V) for the relativistic
case, Section VI with states of interest in statistical mechanics. Our
conclusions are summarized at the ends of the latter two sections.

§ II. The algebra 21?

In the first three sections of this paper we deal with the following
general situation: we are given a (7*-algebra 21 (separable or not) and an
Abelian locally compact group T acting on 21 in the sense that

i) to each x ξ T corresponds a *- automorphism of the algebra 21 i.e.
a mapping A ζ 21 -> A (x) ζ 21 such that

'(ocA + βB) (x) = ocA(x) + βB(x) A, B ζ 21
(AB) (x) — A (x) B(x) α, β complex numbers (1)

A*(x) = A(x)*

(we recall that the automorphism is automatically norm -preserving i.e.

for all A ζ 21, where || || denotes the (7*-ιιorm in 21.)
ii) the correspondence i) is a representation of T in the automorphism

group of 21 i.e. one has

ϋi) for each A £ 21 A (x) is a continuous function of x ζ T in the norm
topology of 21 i.e. for each x £ T and ε > 0 there is a neighbourhood V
of zero in T such that h £ V implies

\\A(x+h]-A(x)\\<£. (3)

In physical applications, 21 will be the algebra of quasi-local ob-
servables of field theory [1] and T will be the group of translations
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either in space and time or in space alone. In fact our theory could be
developed for a non-Abelian locally compact group without other changes
that some complications in writing.

Concerning assumption iii) we first point out that we could equiv-
alently require continuity of the mapping x ζ T -> A (x) ζ 21 in the
weak topology of 21 with respect to its dual 21* i.e. continuity of the
functions #-» φ(A (x)) for allJL £21 and all states φ over 21 (see [2], 10.2
Corollary and [6], 2.6.4).

In this latter form assumption iii) is more motivated on physical
grounds. Further mathematical motivation is provided by the following

Proposition. // the C*-algebra 21 is separable iii) is implied by the
existence of a faithful representation in which the group T is continuously
unitarily implemented.

Proof. For a separable 2ί iii) is equivalent with measurability of all
functions x-> φ(A (x)) for all A £ 21 and φ £ 21* (see [2], Theorems 3.5.3
and 10.2.3.). Let us assume the existence of a faithful *-representation π
of 21 along with a strongly continuous unitary representation U of T
such that

π ( A ( x ) ) = ϋ(x)π(A) ϋ(x)-1, x £ T, A £ 21.

We then have that the functions x -> φ (A (x)) are continuous for all φ
belonging to the linear hull ̂ π of vectorial forms in the representation π.
Furthermore, since π is faithful, it is known that 3Fn is dense in 21*
equipped with the weak topology with respect to 21.

Now we recall that separability of 21 implies the existence of a
denumerable complete system of weak neighbourhoods of zero in the
unit ball of 21* viz. the

Vn = (<p£2l* Sup \φ(Ai}λ\ < -I, n=l,29...
I i^n n)

where Aif ί = 1,2, . . ., is a dense sequence of elements of 21. Let us then
take a φ £ 21* and prove that x^> φ(A(x)) is measurable. We select a
sequence φn £ 3Fn such that \\ φn\\ = \\ φ\\ and φ — φn £ Vn. By the density
of the Ai we then have that

φn(A) > φ(A)rn \ i n = oQ r \ /

for each A £ 21. Therefore the function x-^ φ(A (#)) is a point wise limit
of continuous functions φn(A (x)) and is thus measurable.

A discussion of the motivation of assumption iii) in the non-separable
case is given in the Appendix.

We now give the following
Definition 1. We denote by 21?1 the set of all measurable functions X of

TtoW:

Z : α ζ T - > Z β ζ 2 l (4)
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defined up to a set of measure zero and absolutely ίntegrable i.e. such that*

\\X\\, = / ||Ze|| dx<™. (5)

More generally 21̂  will denote the set of measurable functions such that

μηi^/IZJMa^oo.j, (6)

On the other hand we will denote by 2l5o and Qί^ the sets of norm-con-
tinuous functions X-+ Xx respectively vanishing at infinity and with
compact support. We will set

J, X621?.. (7)

As a consequence of these definitions 2lf is a Banach space under the
norm ]| ̂  given by (5) and 21̂ - is a dense subset of 2lf (and analogously
for 2lp see [3], Chap. IV § 3 n° 4 and § 5 n° 6). Our definition of measur-
ability is that of [3], Chapt. IV § 5 n° 1 Prop. 1, i.e. the function
X : x -> Xx is measurable whenever to each compact set K C T and
ε > 0 there is a compact set K' cK on which X is norm -continuous such
that the measure m (Kf — K) of K' — K is less than ε (this entails
measurability of the scalar function x-> \\XX\\ so that (5) and (6) make
sense) .

Comment on our notation: we chose to write the value Xx of the
function X ζ 21̂  with x as an index to avoid conflict with the established
notation A (x) for the automorphic image of A ζ 21 in the translation x.
In order to avoid confusion between elements of 2ίf and elements of 21
we will consistently use symbols like X, Y, Z for the first and A, B> C
or Xx, Yu etc. . . . for the latter (in order to stress this distinction one
could use symbols like X. , where the point stands for a dummy variable,
for elements of ^If, but we do not find this necessary) . With our notation
the symbol Xx_u(u) used below means the image in the translation
u 6 T of the value Xx__u ζ 21 of X ζ 2ίf at the spot x — uζT.

Lemma 1. Given any two X, Y £ 21̂  the integral

(X*Y)x = /XuYx_u(u)du (8)

exists for almost all x ζT and defines an element X * Y of 21̂  such that

ιz * Γik <
Proof. For the integral (8) to exist it is sufficient that the integrand be

measurable and of integrable norm. Now given any ε > 0 and compact
K there is a compact K1 C K on which u -> Xu is continuous and such

2 When we wish to consider everywhere defined, absolutely integrable func-
tions x -> Xx (rather than classes of functions denned up to negligible sets) we will
speak about everywhere defined elements of ̂ . The measure dx is the Haar measure
on T.
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that m(K — K') < - <τ . Again there exists a compact K" ζ.K' on which

u-+ Yχ-u is continuous and such that m(K' — K") < -~- . Using (3) and

the continuity of products in 21 we have that the integrand of (8) is
continuous on K" cKr such that m(K — K") < ε, and therefore is
measurable. On the other hand we have

/ |zu rβ_,,(tt)|| du ̂  ;ιzj i r e_j du ,
the last expression being the ordinary convolution product of the L^
functions u-> \\XU\\ and u-> \\YU\\ which is therefore integrable almost
everywhere in x and determines a £r function of x of norm not exceeding

Lemma 2. Given X ζ 2tf the definition

(X*)* = {X_ „(*)}* (10)

determines an element X* of 31 J7 of norm equal to that of X:

Using (3) X* is immediately seen to be measurable and we have

Theorem 1. Under the norm (5), the product (8) and the adjoint operation
(10) 2lf is a Banach * -algebra.

Proof. 21Ϊ7 is already known to be a Banach space. The product (8)
is obviously bilinear and the adjoint- operation obviously antilinear and
such that X** = X for all X.

Thus the only properties which remain to be shown are the following

(X* 7)*Z = Z * ( 7 * Z ) X, Γ,Z£2ίf (12)

(X * 7)* - 7* * Z* X, Y £ Slf7 . (13)

Both properties result from a straighforward calculation. We have, by
definition

{(Z * Γ) * Z}y = fdx(Z * Y)xZv_x(x)

= fdx{fduXuYx_u(U)}Zy_x(x).

On the other hand we have

{X * (Γ * Z)}v = / du XU(T * Z)υ_u(u)

= / du Xu{f dx 7,(u) Zy_u_v(u + v)}

= fduXu{fdx Yx-u(u)Zy_x(x)}

where we used the strong continuity (3) of the translation u to perform
it under the integral sign. Now permuting multiplication in 21 (which is
strongly continuous) with integral signs both expressions are seen to be
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equal to
ffdxduXuYx_u(u)Zy_x(x) (14)

(the use of FTJBINI'S theorem, see [3] Chapt. V § 8 n° 1, Theorem 1, is
allowable since the integrand of (14) is absolutely integrable with respect
to dx du for almost all y, measurability is readily verified and (14) is in
modulus smaller than

ffdxdu\\Xa\\ \\Yx_u\\ \\Zy_x\\,

which exists for almost all y as a double convolution of scalar ^-func-
tions).

Property (13) results from a straightforward calculation where strong
continuity of the *- operation and of the translation by x is used for per-
muting this operation with integrals : one has

[(Z * F)*L = (Z * Γ)_β(a:)* = {/ Xu Γ_ „_„(«) du} (x)*

= I Y-x-u(u + x)* Xu(x)* dv = f Ύ_v(v}* X,_a(x)* dv

= (Γ**Z*)β.

Theorem 2. If X and Y are everywhere defined elements respectively of
2lf and 21 J1 r\ Ql%>o the integral (8) exists everywhere in x and defines an
element X*Y of 21? n 2l| .' 1 '©Q

21Ϊ7 r\ 2l^0 is a two-sided * -ideal of 2lf and one has

Z * Γ < OZI - I I Π I Xζ^ (15)-I' I'1 I I * 11°°' τ ' ( >n y*II χ *

2tf n Îf ^ α^o α ίtί o sided * -ideal of 2lf α^cί o^e

Proof. All sets considered being obviously invariant for the *- opera-
tion, it is enough to prove the left-ideal property. Take X £ 21?7 and
y ξ 2l5β The argument in the proof of Lemma 1 shows that the integral
(8) exists for all x ξ T. To prove the continuity of the function X * Y at
the spot x we notice that Y £ 2( ô is uniformly continuous, so that, to
each ε > 0, we can choose a neighborhood V of 0 in T such that h ξ F
implies

for all u ζ T. We then have

II / V . V\ f "V V\ II
\\(Λ. * j£ )x + fl— (-Λ- * -^)aj|| =

The fact that ί̂ * Y tends towards zero at infinity follows from the
majorization

-\\Yx-u\\du (17)
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where the second term is the ordinary convolution product of the func-
tions {u-> \\XU\\} ζL^T) and {u-> \\YU\} £&0(T) for which the result
is well known. The same majorization settles the question of the first
inequality (15) and also (using again a well-known property of ordinary
convolution) of the first inequality (16), thereby proving that 2ίf n ̂
is a left-ideal. The other inequalities readily follow by use of the *-oper-
ation.

§ III. Representations of 2lf and covariant representations of 21

This section is devoted to the most important property of the algebra
2lf: the fact that there exists a one-to-one correspondence between
covariant representations of $1 and representations of 2ίf (see Theorem 3
below). This situation is a generalization of the situation encountered in
the theory of the Z/j-algebra of a locally compact group (which is obtained
as a special case of the algebra 2lf when 21 reduces to the complex number
field trivially acted upon by T -commutativity of T plays in fact no
essential role as we mentioned above). Constructs analogous to the one
we present here are to be found in the mathematical literature (DiXMiER
[4], GLIMM [5]3).

The proof of Theorem 3 will be based on the consideration of operators
V(x) and ρ(A) on 2lf whose definition and relevant properties are
gathered in Lemma 3. Lemma 4 establishes the existence of an approx-
imate identity in $[% — a useful tool for questions pertaining to rep-
resentations and positive forms.

Lemma 3. We associate with elements x £ T and A ζtyt the respective
linear mappings V(x) and ρ(A) on functions x-> Xx from T to 21 defined as

( V ( x ) : X-> *X with (*X)V = Yy x(x)i \ / \ ly y — j s \ i

\ρ(A):X-*AX with (AX)y = AXy.

These operators V(x) and ρ(A) carry the respective spaces Sί̂  , 2l^o and
Slf (more generally 21^) into themselves with the following properties:

Properties of V:

V(x + y) = V(x) V(y)

V (0) = identity

\\V(χ)X\\^ \\X\\,, X

We are thankful to Dr. J. GLIMM for drawing our attention to his paper.
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(V(x) is more generally isometric with respect to the norm \\ \v in

F4) ||F(a;)Z-F(:e0)Z||ooΊ— 0, X£2lSo

F5) I V(x) X - V(x0) XI ^^ 0 , X ζ 31Γ

( V (x) is more generally continuous in x for the norm || \\p in 2ίf )

γ

'
Z}** 7(z) 7 = X** Γ ' ' ι

F7) {F(z)Z}* Γ= F(a;){Z* 7} , x ^ T , Z, Y

Properties of ρ:

ft)

analogous property in Sl^j

ρ4) Z** ρ μ)Γ = {ρ(4*)Z}**Γ, .4651, Z,

{ρ μ) Z}* *ρ(A)7 = Σ**ρ (A* A) Y

ρ5) Let Aλ, λ ζl, be an approximate unit in 21. One has

lim||ρμΛ)Z-Z|0 0=0,

and
\ίm\\ρ(Aλ)X-Xl =0,

Λ

ρ6) T/^e positive form on 21 given by

Ψ(A)=φ(X**ρ(A)X),

where φ is a positive form on Qi^ and X £ ^If, ^α5 5̂ norm equal to

ρ7)

Properties of V and ρ:
ζ !Γ, ^4 ^ 21

Fρ2) One has
X*Y = fρ(Xx)V(x)Ydx X, 7ζ2ί f .

Notice that the properties contained in this lemma formally result
from the fact that ρ ( A ) V(x) is equal to the left hand convolution times
A δx. This operation can be given a precise meaning by developing the
theory of vector valued bounded measures on T with values in 21. We
do not discuss this theory in the present paper, although the corresponding
enlargement of the analytical apparatus is of interest for some questions
(vector valued distributions may also be interesting e.g. for the de-
scription of the Hamiltonian).
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Proof of the lemma: The properties Fj) and ρx) are obvious. If X is
strongly measurable, the same is true for XX and AX and since one has

IK zu = |z,_j
and

\\AXy\\^ \\A\\ \\Xy\\

one sees that V(x) and ρ (4) map the spaces 2l|o, and 2lf (more generally
2φ into themselves with the properties F2), F3) and ρ2), ρ3).

To prove F4) and F5) we may take XQ = 0 in view of Fx). Let us first
take X £ 21 and consider

For each y the differences ||-X'1/_a. — Xy\ and H-X^a?) — .XJ can be made
arbitrarily small by choosing x small enough. Since those differences
are both continuous functions in y with compact support they can
furthermore be made arbitrarily small uniformly in y. This shows that
one has

and the same is true a fortiori for the norm || 1 .̂ Properties F4) and F5)
then immediately result by using the density of SlJ- respectively in 2l^o

for the norm || 1^ and in 2lf for the norm || 1 .̂
^e)> "P?) an(i ^4) are obtained by a straightforward calculation using

the definition of the product and of the adjoint operation in 5lf .
ρ4) shows that the form ψ defined in ρ6) is a positive form on 21. If

A fa λ ζ /, is an approximate identity in 21 one then has (see [6] 2.1.5.(iv)) :

The proof of ρ6) is reduced to the proof of ρ5). For the latter, we first
reduce it to the case of XQ ζ 2ί̂  by writing, according to ρ2) and ρ3) :

\\ρ(Aλ)X0-X0\\1 +\\X0-X\\1

We then notice that one has for X0

because AλXQχ — X0χ tends to zero for each x, and therefore uniformly in
x by a compactness argument.

ρ7) is obvious from the definition of ρ.
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Fρα) is a straightforward consequence of the definition (18). Proof of
V ρ2) : choose arbitrarily a compact K c T and ε > 0. There exists K ' C K on
which X is continuous such that m(K — K') < ε. Owing to F5) and ρ3)
the expression

ρ(Xx)V(x)Y

is then continuous on K' and thus measurable. This expression is thus
integrable since its norm does not exceed \\XX\\ \\ F||ι an(^ the integral is
of norm less than \\X\\i || Y\\ι It is therefore enough to verify Fρ2) f°

r

X, Y in the dense set 21J* in which case the integral exists also in the
]] |] oo norm and we are free to interchange the integration with the process
of taking the value at a point u ζ T. We then have

(/ ρ(Z.) V(x) Y dx)u = / [ρ(Zβ) V(x) Y]u dx = /Xx Y u _ x ( x ) dx

= (Z * Y)u

q.e.d.
Lemma 4. Let Aλ ζ 21, λ ζ I, be an approximate unit for the C*-algebra

21. Let on the other hand Jx be the set of neighbourhoods of x ζ T. We choose
for each μ ζ Jx a positive element εx,μ ζL1(T) of unit LΓnorm with support
within the neighbourhood μ.

Denoting generally by A f , A ζ 3i, f ζ L1 (T) the element of 2lf given by

/(«M, u£T (19)
we then have, for each X

lim \\(Aλεx,μ) *X- V(x)X\\^ 0 , (20)
λ,μ

where the limit is taken with respect to the product filter I x Jx. In particular
Λ-λε0>μ ζ 2lf, (λ, μ) ζl x Jx, is an approximate unit for Slf:

= l (21a)

Vml(Aλe0,μ)*X-Xl-+0, Z ζ S l f . (21 b)
λ,μ

Given a B ζ3l, we have also that

]ίπί\}(BA,εx<μ)*X-ρ(B)V(x)X\\1^0, X ζ S l f . (22)
λ,μ

In particular ρ (B) can be defined by the limiting process

0, X £%? . (23)
λ,μ

Proof: Af ξ 2tf as defined by (19) is obviously such that

where / * X £ Slf is (legitimately) defined as follows
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This allows us to write

\\(Aλεx,μ) * X- V(x)Xl = ||ρμΛ) [εx,μ * Σ]- V(x)Xl £
£ le(4ι) [εx,μ*X]-ρ(Aλ) V(x)Σ\1+ls(Aί) V(x)Σ-V(x)Σl.

By ρ2) in Lemma 3, the first term is majorized by

lε,,μ*Σ-V(x)Σl, (24)

whilst, by ρ4) in the same Lemma, the second term tends to zero with
respect to λ. The proof of (20) thus reduces to showing that (24) tends to
zero with respect to μ. Now we have

||{eβfl,*Z- V(x)X}y\\ = ||/εβ,» [Zv_u(

(24) is thus majorized by the expression

8vp\\V(u)X-V(x)X\\l9
Uζμ

where convergence to zero is assured by F5) of Lemma 3.
The proof of (22), (23) is similar and left to the reader.
The fact that we can choose the ε0>μ continuous with compact sup-

port in (21 b) immediately gives the proof of the following corollary,
which will serve us in the proof of the ^-character of 2ίf given in the
next section.

Corollary. // X £ 21? is such that X*Z = Q (or Z * X = Q) for each
Z ζ 2l£ , then X = 0.

We now come to the main result of this section. We first give the
Definition 2. A covariant representation (π, U) of 31 is a pair of a

* -representation π of $1 on a Hilbert space & and a strongly continuous
unitary representation U of T on ̂  such that one lias

π(A(x}) = ϋ(x) π(A) U (x)-1 x^T,A^ (25)

(π, U) is said to be essential if π is essential i.e. does not contain the zero
representation as a subrepresentation. The system (π, U) is said to be cyclic
with cyclic vector ^0 if the set of vectors of ffl obtained by applying to ^0

arbitrary products of operators π(Ai), Ai ζ 21, and U '(Xj), x$ ζ T, is a total
set in ffl (i.e. generates linearly a dense set in ffl).

Theorem 3. There is a one-to-one correspondence (π, U) <-> π between
essential covariant representations (π, U) of 21 and essential * -representa-
tions π of 21? . (π, U)-> π is given by

π(X)γ = f π(Xx) U(x)<ψdx Zζ2lf, ψζje. (26)

n-> (π, U) is given by the equalities

π ( A ) A ( X ) = π ( ρ ( A ) X ) (27 a)

ϋ(x) π(X) = π ( V ( x ) X ) (27b)
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(which determines π ( A ) and U(x) owing to the fact that π is essential) or
alternatively by

π(A) = strong limit π (ρ ( A ) Eλ) (28a)

approximate identity in 2lf.
^ J 1-,. . *,TT, ^ x > . / Λ Λ 1 x= strong limit π(V(x)Eλ] ^ J 1 (28 b)

weαfc closure of π (2lf) ώ £&e .same as ^e vow Neumann algebra
generated by π(2l) cmd U(T). π on the one side, the system (π, U) on the
other are simultaneously cyclic (with the same cyclic vector) or irreducible.

Proof. Let us start from the essential representation π of 2ίf on the
Hubert space 3? . Since the set π (X) ψ, X ζ 2lf , γ 6 3tf is a total set in «#*,
the existence of the strong limits π(^4) and V(x) of formulae (28 a, b)
follows from

\\π(Q(A)Eλ}A(X}-A(Q(A)X}\\ < \\A\\ \\Eλ * Z-Z^-^0

where JΓ is an arbitrary element of 21̂  and we have used ρ7), ρ3) and F7),
F3) of Lemma 3. π and C7 are respectively a *- representation of 21 and
a unitary representation of T owing to ρ ,̂ ρ4) and Fj), F6) using again
the fact that π is essential. The strong continuity of U (x) in x will result
from the continuity of all matrix elements between vectors of a total set,
we have namely

\(A(X')Ψ'\U(x)-U(x0)

\\Ψ\\ \\X\\\V (x}X-V(x<ί}X\\l

for arbitrary X , X' £ 21̂  and ψ, ψf ζ ffl , the last expression tending to
zero for x-+ x0 by F5). The intertwining property (25) needs only be
checked on the total set of the A(X)ψ where it follows from (27 a, b) and
Fρj). The fact that π is essential results from the property

strong limit π (Aλ) = I (29)
λ

for any approximate identity Aλ of 21. (29) follows from

for any X £ 21? and γ ζ 3tf (we used ρ5)).
Let us now start from a covariant representation (π, U) of 21. Given

X £ 2lf we define π(X) by (26), where the expression under the integral
sign is continuous (by the strong continuity (3) of the translation auto-
morphisms) and of norm ?g \\ΣU\\ The fact that π is a * -representation
follows from an easy calculation using the Fubini theorem ([3] loc. cit.) and
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the permutability of integrals and continuous linear transformations.
We have

= fπ(Xu) U(u)dufπ(Yv) U(v)dv

= fdufπ(XuYv_u(u))U(v)dv

= fdυ π{f Xu Yv_u du} U(v) dv = π(X * 7)
and

A(X*) = f π((X*)J U(u) du = f π(X_u(u)*) U(u) du

= fϋ(u) π(X_u)* du = A(X)* .

The representation π is essential: let namely Ψ ζJt? be such that
π (X) Ψ = 0 for all X ζ 2tf. Using the notations of Lemma 4 we have for
all A ξ 21

0 = lim π(AεQμ)Ψ = n(A) lim / ε0 μ(u) U(u) du Ψ=π(A)Ψ
μ μ

whence Ψ = 0 due to the essential character of π.
Φ1 Φ2

We now prove that the correspondances π - > (π, U) and (π, U) - > π
respectively defined by (26) and (27 a, b) are the inverse of each other.
Let Y and Ψ be arbitrary respectively in 21? and & . (πr, U')
= Φj o Φ2{(π, U)} is such that, for all A ζ 21 and x £ T

π'(A)π(Y)Ψ=π(ρ(A)Y}Ψ=fπ(AYu) ϋ(u)Ψdu

= π(A) f π(Yu) U(u)Ψdu = π(A) A(Y}Ψ
and

ϋ'(x) π(Y)Ψ=π(V(x) Y}Ψ = f π(Yu_x(x)} U(u) Ψ du

= /U(x)π(Yu_x) U(u-x)Ψdu= U(x)π(Y)Ψ

where π = Φ%{(π, U)} is cyclic so that π' = π and U' = U. Conversely
A' = Φ2 o Φi{π} is such that, for all X £ 21?

A ' ( X ) π(Y)Ψ= fπ(Xu) U(u) π(Y)Ψdu = f π(ρ(Xu) V(u) Y}Ψ du

= π(X* Y)Ψ=π(X)π(Y)Ψ

whence π' — π (we had (π, U) = Φ-^{n} and used Fρ2) of Lemma 3.
Let now B be a bounded linear operator on 3? . If E ζ π(2l)' n ί7(T)'

(26) shows that jδ £ π(2tf)/. It follows from (28 a, b) that the converse is
also true. π(2l) on one side, π(Qi) and £7(2^) on the other generate there-
fore the same von Neumann algebra. The last part of the theorem follows
from the observation that cyclicity of a vector Ψ ζ 3? for a system of
operators 92ΐ (defined as the fact that 921 Ψ is a total set in 3?} is equi-
valent with cyclicity of Ψ for the von Neumann algebra generated by 921.

We will not discuss fully in this paper the relationship between
positive linear forms on 21 and positive linear forms on 21?. We merely
give the
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Theorem 4. Let Φ be a positive linear form an tyίζ and Eλ an approx-
imate unit of 2lf. The limit

Φ(A) = limΦ(ρ(A)Eλ) (30)

exists for all A ζ 2ί and defines a positive form Φ on 21. If π is the cyclic
representation of 2ίf generated by Φ,Ψ the corresponding cyclic vector and
π the representation of 21 associated to π by Theorem 3 one has

= (Ψ\π(A)\Ψ}. (31)

In other terms the representation of 21 generated by Φ is the cyclic component
of Ψ in the representation π of 21.

Proof: We have by (28 a)

= (Ψ\π(A)\Ψ)

§ IV. The JL*-character of 21?

We introduce this section by stating properties of 2lf which follow
from the fact that it is a Banach *- algebra with an approximate unit.
Firstly [7] every positive form on 2lf will automatically be continuous.
Secondly (see [6], 2.7) given X ζ 2ίf we have the equality of the four
different definitions

all ^representations A of 2lf

Sup
all irreducible representations A

Sup {y(Z**Z)V2} ( )

all positive forms φ of unit norm on 2l|"

Sup {y(Z**Z)V2}.
all pure normalized states φ

Moreover one defines in this way a pseudo-norm || || on 2lf which
satisfies the "Gelfand Neumark identity":

We will now prove the following Theorem — a further step towards
showing that our theory is a generalization of the L± -theory of a locally
compact group.

Theorem 5. 2lf is an A* -algebra i.e. (32) defines a norm on 2ljf. Under
this norm (the minimal regular norm, see [8] § 18^, 2lf is according to (32)
an incomplete C*-algebra. Its completion (the enveloping C*-algebra of
will be denoted Qί^.
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Proof of the theorem: we have to show that \\X\\ = 0 implies X = 0. To
this end we display a set Q of positive linear forms on 2i% such that
f ( X * * X) = 0 for all / ζ 6 implies X = 0. The set 6 is provided by the
following

Lemma 5. Let φ be a positive linear form on 21 and Z be an element of
21? n 2l|o. £e£ ^5 sef, /or each X ζ 21?

?*(*) = 9>{(£****3)o} (33)

TFe <7β£ m ί/w's way a positive linear form on 21? such that

φz(X* * Z) = / 9>{[(Z * Z)* „ (X * Z)_J («)} cZw . (34)

The proof of this lemma is straightforward: given Y, Z ζ 21? r\ 2l^c

one has Z* * 7 ζ 21? n 2l|o and

(Z* * Γ)0 = / (Z-J* fa) Y_u(u) du = f {(Γ_u)*Z_tt} M ^^ .

As the positive linear form φ is continuous one has

φ{(Z* * Γ)0} = / φ{(Z_u)* (u) Ύ_u(u)} du .

In particular φ{(Y* * Y)0} ^ 0. (33) is obtained by setting Y = X * Z
which is an element of ̂  r\ 21̂  by Theorem 2, (34) being then equal tc

We now resume the proof of the theorem. We take for @ the set oJ
all φz where φ runs through the positive forms on 21 and Z runs througt
21Ϊ1 π 2l|γ The integrand in the right hand side of (34) being continuous
φz ( X * * X ) = 0 implies

for all u £T. φ being arbitrary one has also

for all 99 and ,̂ whence, since 21 is a £7*-algebra, (X * Z)w = 0 for all u
X is thus such that X * Z = 0 for all Z £ 2111 n 2lξ0 Since we can choost
an approximate unit of 2lf within 21̂  * 21̂  we then have X = 0 by (22
of Lemma 4.

§ V. The algebra SI?7 (F)

In this section 21 will be the quasi-local algebra of a relativistic fielc
theory and T the group of space time translations. We denote by F
closed subset of the energy-momentum space T (in practice F will be (
closed subset of) the closed forward light cone F+) and focus our atten
tion on the covariant representations of 21 with energy momentun
spectrum lying within F (which we call the F-representations). In wha
follows we construct an A*- algebra 2lf(F) whose continuous *-represen
tations are in one-to-one correspondence with the F-representations
Let us first give the
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Definition 3. We denote by J ( V ) the (two-sided) *-ideal of 21? generated
by the elements A f (see definition in Lemma 4j, where A runs through 21
and f runs through all L^functions on T such that the support of their
Fourier-transform f does not intersect V. Furthermore J ( V ) denotes the
norm-closure of J ( V ) in 21? (i.e. the smallest closed *-ideal of 21? containing
J). We then call 21? (F) the quotient of 21? through its two-sided *-ideal
21? n J ( V ) . 2Ϊ?(F) will denote the quotient of 21? through J(F):

2l?(F) = 2l?/2l?n J(F) (35)

2Ϊf(F)-2Ϊf/J(F). (36)

21? n J(F) is the closure of J(F) C21? in the topology of 21? deter-
mined by the (7*-norm || ||. Since this topology is weaker than the
|| ||ι-topology, 21? r\ J ( V ) is also closed in the || ^-topology. Let A be an
arbitrary element of 21?, call A £ 21? (F) the corresponding class modulo
J(V). If we define

\\Al = Inf{μ + Kl\K ζ 21? A J(F)} (37)
and

μ| = Inf{μ + K\\ \K eSlf Λ J(F)} (38)

we get two norms on 21?(F) for both of which it is a normed *-algebra.
Under the || ||rnorm 21?(F) is a Banach *-algebra, under the || |-norm it
is an incomplete (7*-algebra whose completion coincides with 21?(F).

The following four kinds of objects are obviously mutually in a
one-to-one correspondence:
— the (continuous) *-representations of 2tf (F)
— the (continuous) * -representations of 2lf vanishing on J ( V ) r\ 21?
— the (continuous) *-representations of 21? (F)
— the (continuous) * -representations of 21? vanishing on /(F)
(note that J(V) is the closure of «7(F) r\ 21? in 2Ϊ?). This shows that the
|| ||-norm (38) on 21?(F) is the minimal regular norm.

On the other hand Theorem 3 establishes a one-to-one mapping
between *-representations π of 21? and covariant representations (π, U)
of 21. Let / be an arbitrary Z/rfunction on T and / its Fourier transform.
For each A ζ 21

π(Af) = π ( A ) f f ( x ) ϋ(x) dx = π(A) f f(p) dE(p) , (39)

where dE(p) is the spectral measure associated with the translations:

Ό(x) = f ei^ΛdE(p)9 xζT. (40)

If π(J(V) r\ 21?) = 0, (39) vanishes whenever the support of / does not
intersect F. Due to the arbitrariness of A ζ 21 and the cyclicity of π we
then have that

f f ( p ) d E ( p ) = Q, (41)
2 Commun. math. Phys., Vol. 3
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from which we conclude that the spectral measure dE (p) has its support
within F. Conversely if this is the case (41) and (40) vanish whenever
supp/n V = φ whence π ( J ( V ) n 2lf) = 0. We thus have obtained (i)
of the following

Theorem 6. (i) There is a one-to-one correspondence between covarίant
representations (π, U) of 21 with spectrum included in V and continuous
* -representations π of 2lf(F) (or, for that matter, ^-representations of

9 l ΐ ( V ) ) π is such that π = πoi where π is the representation of 2lf
associated by Theorem 3 with the system (π, U) and i the canonical mapping
from®? onto 2% (V).

(ii) // F C F+, π is irreducible if and only if π is irreducible.

(iϋ) Let πx and fίβ be two irreducible representations of SlffF), FC F+,
0^α> UΛ) and (πβ, Uβ) the corresponding covariant representations of 21.
Suppose furthermore that n^ and π2 are unitarily equivalent with inter-
twining operator W:

πκ(A)=Wπβ(A)W-ί, A ζ2l . (42)

Then there exists a character p of T such that

xζT. (43)

(iv) The spectrum 3$(V+) of &i(V+) is the set-theoretic product
21, x F/.

For the proof of (ϋ) and (iii) we shall use a result of BOUCHERS ([9] or
[10]) according to which, in a covariant representation (π, U) of 21 with
positive spectrum, the operators U(x), x ζ T, can be written as

where U1 and U2 are two -strongly continuous representations of T with
positive spectra such that

*7ι(*Kπ(2l)" ^ ^ (44)

U2(x)ζπ (<&)'' X ζ ' (45)

Let us consider a representation π of 2lf(F) and the associated
covariant representation (π, U) of 21. We have, by (44) and (45) :

T being Abelian, this implies

U2(T) C{π(Sl) w ZJi (Γ) vj ϋt(T)}' = {π(2t) w Z7(Γ)}' .

4 We recall that 2ίp denotes the subset of 21 containing covariant irreducible
representations with spectrum included in "F+.
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In the special case of irreducibility of the representation π (or equiv-
alently of the system (π, 27)), (π(2l) w U(T)}' reduces to the multiples
of the identity, so that

U2(x) = e^x I, xζT (46)

for some p ξ ί\ Accordingly one has

(47)

and π is irreducible. Conversely irreducibility of π obviously implies
irreducibility of π, which completes the proof of (ϋ).

To prove (iii) we write equation (42) for both A and A(x), thus
getting that

so that, by (ϋ), one has

for some p ζ ί1.

(iii) shows that the correspondence n 6 Slf ( V+) -> π £ ̂  is not one-
to-one (we are now considering unitary equivalence classes of representa-
tions rather than the representations themselves). The different π = (π, 27)
associated with a given irreducible π ζ 21̂  are all obtained from one of
them, say (π, 270) by multiplying the corresponding representation 270

of ΐ by a suitable multiplicative character eίΊ)X (notice that this multi-
plication has the effect of translating the spectrum of U0 by the vector
pζί1). The spectrum of 2lf(F+) is thereby parametrized by couples
(π, p) where π runs through §iv and p through a subset Sπ of ί1 which a
priori depends upon π. We now show that, by a suitable choice of 270 in
each "π- class", Sπ can be assumed to be the closed forward light cone so
that the spectrum of 3iι(V+) can be identified set theoretically with the

direct product ̂  x F+. Let n— (n, 27) be an element of 2lf (F+): the
spectrum ΣU of 27 has the property that the smallest closed convex cone
with vertex in the origin containing it is the forward closed light cone
([11] Lemma 9). Then there exists a maximal vector p ζ V+ such that
— p + ΣU C V+ (maximal for the order relation p1 ^ Pz<^ Pi — P% 6 F+).

Taking 270 = e~ίί)X U we then obtain the reference element mentioned
above in our π- class (it can be characterized geometrically by the fact
that its spectrum ΣUo is tangent — we expect this to be at infinity — to
the light cone).

The " F+ambiguity " in the passage from π to π explains the two
following facts
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1) If 21 is the quasi-local algebra of the free scalar neutral field with
non vanishing lowest mass, §iv contains only one element. Nevertheless
2lf(F-f) is not elementary5, the F+ ambiguity giving it F+ as a spectrum.

2) If 21 has an identity as in the case of free fermions 2ίf includes the
L± group algebra of the translation group T so that each character eiΊ)x

with pζV+ can be extended* to an irreducible representation (π, U) of
2ίf ( F) : for this representation we have a vector Ω such that

But Ω is nothing but a vacuum state for U' (x) = e~ίpx U(x).

Let us add a few remarks on the spectrum of 2lf(F+). It is not to be
expected that its Jacobson topology is just the product topology of the
relative Jacobson topology of 2tp and the Euclidian topology of F+. If

this were the case the Jacobson topology of 2(f ( F+) would be Hausdorίf
which, by definition, would mean that each primitive ideal should be
maximal. We do not expect this because one intuitively thinks that
inclusion of ideals is in some way connected with inclusion of spectra

and, for each element (π, p) of 2lf(F+), the corresponding spectrum of
momenta includes the spectra corresponding to a (π, pf) with a suitably
chosen p'.

In fact the HausdorίF character of the Jacobson topology of 2lf(F+)
would have the very strong and unlikely implication that the algebra
2lf ( F+) should be liminar (see [6] § 3 and 4) so that each irreducible
representation would map it into the compact operators of Hubert
space. This we know not to be the case when 21 has an identity (e.g.
(7* -algebra generated by the field operator of the free fermion field)
because in that case the .Lr algebra of the translation group T is included
in 21̂ , its representations being known not to be compact operators.

§ VI. Asymptotically Abelian algebras

We now wish to consider the formalism developed in section II— IV
in the context of certain special algebras which we call asymptotically
Abelian and which we define as follows.

Definition 4. Let 21 be a C* -algebra acted upon by an Abelian group T
of automorphisms with the properties i) to iϋ) of section II. We call 21
asymptotically Abelian if the following condition is satisfied for all A, B £21

>*]|lϊ^0. (48)

5 See [6], 4.7.3.
* If 2ί£ ( V ) is completely symmetric cf. note added in proof below.
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This definition is naturally motivated by physical considerations and
covers the quasi-local algebras of both relativistic field theory and sta-
tistical mechanics. In contrast to the situation in the previous section
T will now be just the group of space translations x and in the following
2ljf is the covariance algebra constructed with these three-dimensional
translations.

We are now going to restrict our attention to a special class of states
Φ over 21 and analyse the consequences of the asymptotic Abelian
structure. We recall

Definition 5. A state (i.e. a positive linear form) Φ over 21 is called
invariant if

Φ(AW) = Φ(A) (49)
for all A ζ 21 and xζT.

Definition 6. A state Φ over 21 is said to be clustering if, for all A, B ζ 21

Φ(A(ϊ)B)-Φ(A(ϊ))Φ(B)w^O. (50)

Now however we want to use a new definition whose role will appear
in the sequel

Definition 7. We first introduce the following notation. We write for
a function g over

(51)

whenever the limit exists. M (g) is called the Wiener mean of g. Now a state
will be called weakly clustering whenever the Wiener mean of the expression
(50) vanishes.

We will need the following properties of the mean (51) :

A) If g(x) is continuous and vanishes at infinity i.e.

<7(χ)ι^ro
then M ((?(.)) = 0 (consequently every clustering state is weakly clus-
tering).

B) Take g to be the Fourier transform of a bounded measure μ. Then

W= Σ \μ({p})? (52)

In the last sum only the points pn contribute which have a discrete
weight for the measure μ, in other terms this sum refers to the discrete
part of the measure μ.

C) If g is the Fourier transform of a continuous bounded measure
(i.e. one without discrete masses) then J4~(g(.)) = 0.
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A) is an immediate consequence of the definition (51). B) can be
adapted from a well known theorem of Wiener on Fourier series ([12]
vol. I p. 108, [13] p. 118)6

which is in turn a straightforward consequence of the Schwartz in-
equality.

D) If g is the Fourier transform of a bounded measure μ then

M(g(.) ) = μ({0}), (53)

i.e. the mean value of g is the value of μ at the origin which is of course
non-zero if μ has a discrete part at the origin. Statement D may be
deduced from C.

In the following we will consider, in addition to invariant states Φ
over 21, the states Φ over 21̂  constructed from the Φ in the following
manner

Φ(X) = fΦ(Xu)dn XίWζ (54)

the passage from Φ to Φ is the inverse of the process Φ~^ Φ described
by Theorem 4 of section 2 (unique in the case of an invariant state). We
notice that Φ is invariant as well as Φ :

Φ(X(x)) = Φ(X) Xζ&ϊ9xζT (55)

where X(x) is the translate of X by x defined by {X(x)}u = Xu(x),
uζT.

Given an invariant state Φ on 2ί it is well known that the Gelfand-
Segal construction [14] delivers a covariant representation (π, U) of 21
acting in a Hubert space $P in such a way that

Φ(A} = (Ω\π(A)\Ω) (56)
and

Z7(x)β = ί2, (57)

where Ω £ ffi is cyclic for π(2l). The Gelfand-Segal construction applied
to the state (54) on 21I7 delivers a representation π of 2lf acting in the
same Hubert space $P such that, in conformity with Theorems 3 and 4

and
π(X) = / π(XJ Z7(x) dx

Ω ζ 3tf being also cyclic for π(2lf).

We will now derive structure properties of the invariant states Φ and
their associated representations, whereby we will use the notations intro-
duced in the last paragraph.

6 We are indebted to Prof. P. BILLAED for pointing out this fact to us.
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Let us first consider the spectrum of U(x). A priori it contains both
a discrete and a continuous spectrum and we write accordingly

Z7(x) = Σ E(Pn] ^p*'x + / e ίp'x dE(f) (58)

where d(ψ\E (p)| 99) is a continuous measure for all ψ, φ £ 30? and E (pw) is
the (possibly infinite dimensional) projector onto all states \n) in 2f
such that

Z7(x) |w> = β ΐ P » ' x | w > . (59)

Of course one has E(0)Ω = Ω. We now prove the

Lemma 6. i^or an asymptotically Abelian algebra 21 we have

[E(pn) n(A) E(pn), E(pn) π(B) E(pn)] = 0 A, B ζ 21 (60)

0. (61)

Proof: Let us define, for arbitrary y, φ ζjj?

gn(x) = 0|-E(P«) [π(^(x))

n) π(A) C/(-

Due to the asymptotic Abelian character

0n(aO]ϊp^?0,

from which we conclude that

M{\gn(.)\*}=0.

Now gn is the Fourier transform of a measure so that we may (52) use to
conclude that

E (pn) π(A)E(pn- pm) π (B) E (pn) = ̂  (pn) π (B) E (pw + pn) π (A) E (pn) .

In particular for pw = 0 we see that part I of the Lemma is established.
The second part of the Lemma follows directly from property D) quoted
above.

We have now considered the case where we have invariant states,
but there remains the possibility that E(0) is more than one-dimensional.
However in the case that it is one-dimensional we have the remarkable
structure stated in the

Theorem 7. If Φ is an invariant state over an asymptotically Abelian
algebra 21, Φ the invariant extension of Φ to 2lf and π and π the correspond-
ing representations of these algebras on a Hilbert space ffl with cyclic vector
Ω determined by Φ and Φ we have equivalence of the following statements

1) Weak clustering of Φ:
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2) For all φ,ψζje

where EΩ denotes the projector on the vector Ω.
3) For all φ, ψ ζtf and A

4) Φ is a pure state of 2ίf i.e. π(2lf) is irreducible.
5) Ω is the only invariant vector of 3? i.e.

Proof: 1) and 2) are two ways of writing the same fact owing to the
cyclicity of Ω for π(2l). The equivalence of 2) and 3) is supplied by the
straightforward identity

(Ω\π(B}[π(A(κ))-(Ω\π(A}Ω)}π(C)\Ω}

= (Ω\n(B) [ π ( A ( x ) ) , π ( 0 ) ] \ Ω ' ) + (Ω\π(B)π(C) [U(x)-Ea]π(A)\Ω)

upon taking mean values (the first term on the right hand side has mean
value zero because of property A) above).

Let us now show that 2) implies 4). Take C £ ̂ (Slf)'. Then C com-
mutes with all £7(x) (see end of Theorem 3). Now, for any X, Y ζ Sίf

= 0

i.e. C is a scalar and π is irreducible.
Next we demonstrate that 5) follows from 4). We first note that

ή(X) E(0) = π{f Xn du} E(0)

and therefore deduce from Lemma 6 that E (0) π (Stf) E (0) is Abelian.
This property is incompatible with the irreducibility of π unless E (0) is
one-dimensional i.e. Ή(Q) — EΩ.

Now, using this fact and (61) of Lemma 6, we see that 2) is a direct
consequence of 5) which completes the proof of the theorem.

It is seen from the above theorem that the invariant states described
therein have physical characteristics which commend them as candidates
for equilibrium states in statistical mechanics. We would finally like to
demonstrate that if we have two asymptotically Abelian algebras 51 and
93 such that 21 C$3 then it is possible to extend an invariant weakly
clustering state over 21 to a state with similar properties over 93.

Theorem 8. // 2ί and 93 are asymptotically Abelian algebras such that
2ίc93 and Φ^ is an invariant weakly clustering state over 21 then there
exists at least one invariant weakly clustering state Φ& over 93 such that

Φ^ (A) = Φ^ (A) for all A ζ 21 .
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Proof. Let us first form the two covariant algebras 2tf and 23^ and
note that as 2lc23, *Άι C%$ι by construction. Now by (54) we can
construct from Φ^ an invariant state Φ<% over 2lf and it follows from
Theorem 7 that Φ^ is pure. It is known that a pure state over a
subalgebra can always be extended to a pure state over the full algebra
hence we can extend Φ^ over 2lf to a pure state Φ& over 23 f. However
this latter extension can be made in such a manner that Φc$ is an in-
variant state because the invariance of a state over a covariance algebra
is a property of the restriction of the state to the subalgebra Lλ(T) of the
translation group and as L± (T) C 21 f C 23 f then Φ<% and φ& coincide over
LI (T) (if 21 does not contain an identity then L± (T) is not strictly a subalgebra
of Slf but the preceding argument is nevertheless possible with the use
of an approximate identity). Finally we note that as Φc$ is an invariant
pure state over 93% then the state Φc& over 93 derived from Φ& (cf.
Theorem 4) is a weakly clustering state by Theorem 7.

We note that the concept of covariance algebras is essential for
deriving Theorem 8. This theorem solves to a considerable extent a
problem recently raised by one of us [17] in the context of the canonical
commutation relations. In this latter context one must consider an
algebra 21 of physically observable currents, heuristically described by
expressions such as φ+ (x) φ(y) where φ+(x), φ(y] are creation and
annihilation operators, but it is mathematically more convenient to
consider a larger algebra 93 which, again in a heuristic sense, contains the
non-observable fields φ(x) and φ+(y). Theorem 8 tells us that if we con-
sider only invariant weakly clustering states then we can, without loss
of generality, work with either algebra. Although the theorem has no
direct relevance to the extension from observables to fields when the
fields satisfy anti-commutation relations it is however straightforward to
develop a similar result in this case.

We conclude by commenting on the equivalences given by Theorem 7.
The equivalence of properties 3) and 4) is a generalisation of a Lemma
due to HAAG [15] and the equivalence of 1), 4) and 5) is a generalisation
of the well known equivalence of the uniqueness of Ω, irreducibility and
clustering. However in our general framework irreducibility is of 2lf, and
not of 2ί, as would be the case in relativistic field theory with the added
assumption of positive energy, and the clustering property which is
relevant is the weak and not the strong clustering. These two differences
can be understood if one comments that the positive energy assumption
firstly ensures that ϋ (x) is in the weak closure of π(2l) [9] and secondly
places strong continuity properties on the spectral measure associated
with U(x) [16]. In statistical mechanics the weak clustering property
is probably most appropriate for characterising the absence of long range
correlations at large distances even in systems with a periodic structure.
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Appendix

In the following we wish to comment upon the situation where 21 is
known to have a faithful representation in which T is unitarily imple-
mented without assuming separability of 21. In this case we cannot
derive assumption ϋi) of § II, however we will show that 21 can be replaced
by a "regularized" <7*-algebra 2ί whose set of covariant representations
includes those of 21.

Let us call < 0̂ the subset of the state space consisting of all states φ
such that #-> φ(B*A(x)B) is a measurable function for all A, B £ 21.
(ί0 is non-void (it is even weakly dense in 21*), norm-closed, invariant
in translations by elements of the algebra and invariant in the group T.
Consequently the linear hull 9C is the norm-closed set of ultraweakly
continuous forms in some representation τ (τ is the sum of all representa-
tions constructed with states in <f0) and the dual space 9C* of 9C can be
identified with the von Neumann algebra generated by τ(2t) so that 2ί
can be considered as a O*-subalgebra of 9C*.

Given A ζ 21 and χ ζL^T) we then see that we define a Aχ ζ 9£* by
defining its value for an arbitrary φ £ 96 as

Ψ(AX) = f X (x) Ψ(A (*)) dx

whereby

μj < MI MI - (62)
Our 21 is then defined as the (7*-subalgebra of 9C* generated by all Aχ,
^ £21, χζL^T). The action of T extends to £* by double trans-
position. Furthermore since

Aχ(x) = Aχ(._x}

for all A ζ 21, x ζ T and χ ζL^T) we see that T leaves invariant the set
of Aχ and is consequently represented in a strongly continuous way
(see (62)) in the automorphism group of 2t.

Let now (π, U) be a covariant representation of 21, π is then quasi-
equivalent to a subrepresentation of r and therefore extends to a W*-
representation of 9£* = τ(2l)" whose restriction to 21 affords a covariant
representation (π, U) of this algebra such that π(2l)" = π(2l)" (this is
seen using the theorem of the bipolar). In the case where 21 has a local
structure 0-+ 21(0) we can analogously define a local structure
0-* 21(0) of 21 such that π(2l(0))" - π(2l(0))".

We now prove injectivity of the mapping π -> π by showing how to
recover π from π. Generally, given a representation π of 21 and a ^4 ζ 21
let us consider the set of operators π(Aχ) where χκ is an approximate

unit in L^(T). This set is, by (62), contained in the ball of radius ||^4|| in
the set of bounded operators on the representation space. Since this ball
is compact for the weak topology of operators on the representation
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space there is a finer filter {α'} for which we have weak convergence of the
operators n(Aχ ) towards an operator σ^(A) which we now show to

coincide with π(A). For this let us notice that the definition

Bη = fη (x) ϋ(x)BU (x)~l dx

where η is continuous with compact support, determines a weakly
continuous map B -> Bηon the bounded operators of the representation
space. We then have that

weak limit π(Aχ *η) = [σ{Λ>}(A)]η = π(Aη) = \π(A)]η
α α

from which the conclusion follows due to the arbitrariness of η.

We notice that the same procedure applied to an arbitrary covariant
representation π' of SI instead of π yields a correspondence A-> a(A)
which is easily seen to be linear, continuous and positive. We leave
open the question of whether a is a representation of 21 — which
would imply that the map π-> π is bijective. We limit ourselves to
noticing that a proof of denumerability of the superselection sectors for
21 would imply the same fact for 2ί.
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Note added in proof. The proof of theorem 8 in § VI is insufficient as was pointed
out by D. RTJELLE who provided a counter example. However the proof would be
valid if the covariance algebras 2lf on Jδff where completely symmetric Banach
^-algebras. We conjecture that this is the case for a covariance algebra 51̂
whenever the group T posseses invariant means (in particular, if T is abelian).
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