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Abstract. The aim of this note is to characterize representations of the canonical
commutation or anticommutation relations which, on a subspace of the “space
of test-functions”, reduce to a sum of copies of the Fock representation.

1. Generalifies!

Let Z be a real separated prehilbert space. We assume that £ is
separable. One may in a standard way construct a complex Hilbert space
H (Fock space) and, for each f €%, operators a(f), a*(f) forming the
Fock representation of the canonical commutation relations (CCR) or
anticommutation relations (CAR) of Z.

In the case of the CAR the operators a(f), a*(f) are bounded and the
C*-algebra QU associated with the Fock representation of the CAR is
defined as the uniform closure of the algebra generated by all operators

a(f), a*(f). In the case of the CCR the operators ¢ (f V2 (a(f) + a*(f))

and 7z (f) =W§—(a(f) — a*(f)) are self-adjoint and one may define the

Weyl operators U(f) = exp(i¢(f)), V(f) = exp(iw(f)). The C*-algebra
A associated with the Fock representation of the CCR is defined as the
uniform closure of the algebra generated by all operators U(f), V(f). A
is irreducible and contains the identity operator 1 of 5.

A (CCR or CAR) representation of .# in a complex Hilbert space £
is defined by a *-homomorphism y of 2 into the bounded operators on
such that y (1) is the identity on & and, in the case of the CCR the

* Present address: Courant Institute of Mathematical Science, N. Y. U.

1 For a general description of CCR and CAR see GARDING and WIGHTMAN [4];
for CCR see LEw [5] and references given there to earlier work, in particular by
SeeaL; for C*-algebras see DixmieRr [3].
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functions ¢ — y(exp (it g(f))), ¢ - y(exp(itn(f))) of the real variable ¢
are strongly continuous for each f € £. There are then uniquely defined
self-adjoint operators ¢, (f), &, (f) on $ such that

YU h) =explig, (1), y(V(H) = exp(im,(f) - (1)
A linear functional ¢ on U which is positive (= 0) and normalized
(o(1) = 1) is called a state on . In the case of the CCR we shall always
assume that g is regular in the sense that for all 4, B €¢ A and f € &, the
functions (4 U (¢f) B) and o(A4 V (¢f) B) of the real variable ¢ are con-
tinuous. By the Gel’fand-Segal construction one obtains a complex
Hilbert space £, a vector 2 €% such that |2 =1 and a *-homo-
morphism y of Y into the bounded operators on $ satisfying the proper-
ties indicated above, £2 is cyclic with respect to y () and for all 4 €U
one has

0(d)=(Q,y(4)Q). 2)

A state p on 2 defines thus a cyclic representation of .&. Conversely
a cyclic representation of Z in §), defined by a *-homomorphism y of A
and a normalized vector £2 cyclic with respect to y (), yields a state
o by (2), and p determines the representation within unitary equivalence
(uniqueness of the Gel’fand construction). Although % is assumed to be
separable § will in general not be separable (2| is in general not norm-
separable in the case of the CCR).

If @ ¢ o and |D| = 1 the state we on A defined by

we(d)= (D, AD) forall AcA (3)
is called a vector state. The Gel’fand representation constructed from wge
is again the Fock representation.

If ¢ is a density matriz (i.e. a positive (= 0) operator with trace 1) on
J, the state g, on A defined by
os(4) =Tr(cd) forall 4¢2U (4)
is called a normal state (with respect to the Fock representation).
Let a (CCR or CAR) representation of # be defined on a Hilbert

space §) by a *-homomorphism § of 2 into the bounded operators on $.
If we can write 9 as the completed tensor product

=909, (5)
of two Hilbert spaces ; and 9, in such a way that
5= @1, (6)

and if the representation defined by &, on ), is the Fock representation
(i.e. if d; is implemented by an isometry of 5 onto 9,) our original
representation will be called normal. By choosing an orthonormal basis
in $, one sees that a normal representation is the same thing as a direct
sum of copies of the Fock representation.
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Lemma 1. The Gel’fand representation constructed from a normal state
0 on AU is normal.
Using the spectral decomposition of ¢ we may write for all 4 €2

es(4) = X cp0y,(4) ()

where the ¥, are orthonormal vectors of 5. Let the normalized vector
Y ¢ # ® o be defined by

1

and let the *-homomorphism ¢ of 2 into the bounded operators of
H ® H# be defined by
dd)=4®1. 9)
We have then for all 4 €
0s(4) = (¥, 6(4)¥). (10)

Let Hy be the closure of §(A) ¥ in s#° @ 5. The projection E on Hy
commutes with §(A) = A ® 1 and, since A is irreducible, it is of the form
E =1 @ E, where E; is a projection in 5. By the uniqueness of the
Gel’fand construction, the Gel'’fand representation constructed from g,
is defined by the restriction d, of d to $. Lemma 1 follows then from the
definition of a normal representation and the relations

Dy =H ® EgH (11)
Gp(A)=A®1, forall 4¢c (12)
where 1, is the identity in E,#.

2. Number operators

Let p be a *-homomorphism of ¢ into the bounded operators of a
complex Hilbert space § defining a (CCR or CAR) representation of .Z.
If f € & we write

b(f) = —V};(%m +im(h) (CCR)

b(f) = y(a(f) (CAR)

where g@,, 7, are given by (1). If |f| = 1 a number operator N (f)
= b(f)* b(f) is defined on &, N(f) is self-adjoint with spectrum con-
stituted by the non-negative integers (CCR) or 0 and 1 (CAR). We note
E,(f) the projection on the subspace corresponding to the eigenvalue n
of N (f) so that

(13)

N =2nE,(), 1=2E.(f). (14)

Let (f,,) be an orthonormal basis of £. If n = (n,,) is a family of non-
negative integers (CCR) or elements of {0,1} (CAR) such that |n|
16*
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=) Ny < +oo we define
" By =[] By, (fu) (15)

E,= Y Ep. (16)

Inj=n
If the ranges of the orthogonal projections E, span $ we define a self-
adjoint operator

N= X B, (17)

and we have in the sense of strong convergence on the domain of N:
N =2 N(fu) - (18)
m

We shall say that the representation has a total number operator N if

1. In the case of the CAR, N ewtsts for one choice of the orthonormal
basis (fn)

2. In the case of the CCR, N exists and is the same for every choice? of
the orthonormal basis (f,)-

Otherwise we shall say that there is no total number operator.

Lemma 2.3 4 representation of £ on $ is normal tf and only if it has
a total number operator N.

A total number operator is defined for the Fock representation and
therefore also for a normal representation.

To prove the converse we first show that, if N exists for one ortho-
normal basis (f,,) of &, the restriction of the representation to the sub-
space &, of & generated by finite linear combinations of the f,, is normal.
We assume thus that the ranges $, of the projections £, span 9.

Let n, n’ be such that n,, — n;, = 6,n,, then the CCR or CAR show
that b (fn,) 90 C Hnrs 0 (Frn))* D C Oy In fact C may be replaced by = in
these relations because n,1b(f,, )* b(f,,) reduces to the identity on $,
and 7,26 (f,,.) b(fn,)* reduces to the identity on §,.. In particular, every
vector in 9, is of the form M ¥ where M is a monomial in the b(f,,)*
and ¥ € 9.

Let (¥,) be an orthonormal basis of $¢and let $, be the subspace of
$ spanned by vectors of the form PY¥, where P is a polynomial in the
b(f,)*. The spaces 9, are orthogonal and the above remarks show that
they span 9.

By reference to a standard construction of the Fock space and Fock
representation one sees that the representation of £, on 9 defined by y
reduces to the Fock representation on each §,, it is thus a sum of copies
of the Fock representation, i.e. normal.

2 The authors are thankful to I. Segal for pointing out that Lemma 2 is false
if one only assumes the existence of IV for one basis, counterexamples have been
constructed by J. Chaiken (private communication).

3 See GArRDING and WicHTMAN [4] and WieHTMAN and SCHEWEBER [7].



A Theorem on Canonical Commutation and Anticommutation Relations 227

In the case of the CAR, the fact that the representation is normal
when restricted to &£, implies that it is normal because £, is dense in
& and f - a(f) is continuous (see next footnote).

In the case of the CCR, our assumptions imply that for any f € &,
a (f)* a(f) vanishes on 9, hence a (f) ¥, = 0 for all «. Using the commuta-
tion relations shows then that the matrix elements of @ (f) are those of the
Fock representation.

Remark 1. Since the construction of the Fock representation of .# is
independent of the choice of a basis in &, Lemma 2 shows that the
existence and definition of a total number operator for the CAR are also
independent of the choice of a basis.

Remark 2. For a representation of the CAR without total number
operator, let £’ be the subspace of & spanned by the ranges £, of the
projections K. The above proof shows that the representation leaves &’
stable and that its restriction to £’ is normal.

3. Normaley of an induced representation

Let ¥ = %, ® &£, where £, is a real Hilbert space and £, a real
prehilbert spacet. We let ;, 2, be the C*-algebras associated with the
Fock representations of %, resp. %, in the Fock spaces 5, resp. 5,
and Q;, 2, be the C*-subalgebras of U generated by the U (f), V (f) (CCR)
or the a(f), a*(f) (CAR) with f¢.#; resp. f € F,. One can identify
naturally the Fock space 5 of & with the completed tensor product of
'y and Hy:

H=H,Q Hy (19)

in such a way that 9, ® 1, is identified with 2l;. In the case of the CCR,
1, ® 2, is also identified with @, (but this is not so for the CAR since
91, 9, do not commute). Notice that it follows from our definitions that
the finite sums Y’ A§ A% with 4% € 9l;, A% € 9, are uniformly dense in .

%

Let a representation of .2 be defined by a *-homomorphism 3 of
into the bounded operators in a complex Hilbert space £, and let " be
the *-homomorphism of 2, defined by »'(4) = v(4 ® 1,). We say that
the representation of ., on &) defined by 7’ is the representation induced
by the above one on .%;.

We consider now to the case where the representation defined by 7
is the Gel'fand representation constructed from a state ¢ on 2 (in the
case of the CCR we assume as usual that g is regular). There exists then

4 In the case of the CAR, we might without loss of generality assume that %,
(and therefore %) is complete (cf. [2]). We have indeed by virtue of the CAR,
laHil = lla* (D] = [f]; hence a(f) and a*(f) are continuous in f and the C*-algebra
U, generated by the a(f), a*(f) with f € %, is identical to the C*-algebra generated
by the a(f), a*(f) with f in the completion Z, of Z,.
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a normalized vector 2 €9, cyclic with respect to y(2) and such that

e(4) = wg(y(4)) = (2, y(4) Q) (20)

for all A €. With these notations we prove

Theorem. The condition

A. If the projections E, are defined by (16) for the representation
defined by the *-homomorphism y’', then

2 wo(By) =1 (21)

ts implied by and, in the case of the CAR, equivalent to, the following equi-
valent conditions

B. The representation of £, on 9 defined by y' has a total number
operator N'.

C. The representation of £, on 9 defined by y' is normal.

D. There exists a density matriz o on 5, such that

04 ® 1,) = wo(y'(4)) = Tr(c4) = ¢,(4) (22)
forall 4 €,.

The implication B = A is obvious, and the equivalence B <« C
follows directly from Lemma 2. We prove now successively 4= B
(for CAR), C> D, D= B.

A= B (CAR)

Equation (21) expresses that {2 is contained in the subspace 9’ of 9
spanned by the ranges %, of the projections E,. We have to prove that
$' =9, or equivalently that p(A) 2CH’ or, since the finite sums
3 A A with A3 €9, 4§ €9, are uniformly dense in 2, that »(3l;) x

x y(@,) 2C 9. Since 2¢H' and y(@,) H,C 9, it remains to check
that p(@) 9" =y, ® 1,)9' = ") H'CH’, but this follows from
Remark 2 at the end of Section 2.

C=>D

By definition, condition B means that one can write $ = 9, ® 9,
and 9’ = y; ® 14, where y; is implemented by an isometry W of #,;
onto £,. Let (¥,) be an orthonormal basis of §,, then an isometry W, of
o, onto 9, ® ¥, is defined by W, ¥ = W¥ ® ¥,. Let c2Q, be the
component of 2 in 9, ® V¥,, where [2,]| = 1; we have then

2 =1 (23)
and for all 4 €2, )
04 ® 1) = wo(y' (4) = X caw, (W, AW

:Zc“(Wa_lQ’AWa_lQ“) . (24)
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If K, is the projection on W,;10Q, in 5}, (23) implies that
o= c.E, (25)

is a density matrix and D follows from (24) and (25).

D= B

Let $, be the closure in $ of 9'(2,) Q2. By the uniqueness of the
Gel’fand construction, the restriction to 9, of the representation defined
by 9’ in $ is, by (22), identical to the Gel'fand representation constructed
from the normal state g, on 2, and thus normal by Lemma 1. This
restricted representation has thus a total number operator N''. From
this follows the existence of a total number operator N’ for the represen-
tation defined by 9" in 9: if P € 9o and A,¢€ Uy, then N’ y(4,)¥
— y(A)N" V.

Remark. In the case of the CCR, C may be rewritten as C’. One may
write 9 = H; ® 9, and there exist *-homomorphisms y1, y3 of Uy, resp.
U, tnto the bounded operators on £, resp. g, such that

y(41 ® 4y) = p1(4y) ® yz(4,)
and y1 is implemented by an isometry of H#; onto 9.

It is clear that ¢" = C. To prove that C'= C’ we note that C implies
the existence of the decomposition § = &; ® 9, and of y; such that
¥ =1 ® 1g, and y; is implemented by an isometry of 5#; onto 9.
Since y(1; ® ;) is in the commutant of (A, ® 1) = ' (2Ay)
= 1(2,) ® 1, and since y1 (2;) is irreducible, every operator y(1; ® 4,)
with 4, €2, is of the form 1, ® y;(4,), which concludes the proof.

4. Physical interpretation

The mathematical situation described by the theorem of Section 3 is
of interest in the study of quantum mechanical systems with an infinite
number of degrees of freedom. For instance, if . is the space of real
square-integrable functions with compact support in R, ¢ may be taken
to be the expectation value functional describing the state of an infinite
system of bosons (CCR) or fermions (CAR) in thermodynamic equi-
librium in R* (see [1], [2] and [6]). Let then &, be the space of real
square-integrable functions on a bounded (measurable) subset A of R*.
The restriction of g to 9, = U, ® 1, will describe the particles contained
in the region A. Condition B (or A: in the case of CAR they are equivalent)
expresses that the probability of finding an infinite number of particles
simultaneously in A vanishes. This condition is always satisfied for
particles with hard cores; in general its violation would correspond to a
catastrophic behaviour of the system from the thermodynamic point of
view. The theorem tells us then that the restriction of p to the region A
(i.e. to 2A; ® 1,) is given by a density matrix. For more details see [6].
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