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Abstraet. The spectrum condition implies that energy and momentum are
limits of local observables.

I. Introduction and results

In the algebraic theory of local observables the inhomogeneous
Lorentz group appears only as a group of automorphisms. Such a setup
does in general not guaranty the implementability of these automorphisms
by unitary operators in the representations space of the local observables.
Even if we assume the existence of such unitary operators we have no
reason to believe that they give rise to a continuous representation of
this group. In other words, for such a representation energy, momentum
and angular momentum cannot be defined. The importance of these
quantities for the physical interpretation forces us to postulate the existen-
ce of a strongly continuous representation of the inhomogeneous Lorentz
group which fulfils the spectrum condition. From this assumption arises
immediately the question whether energy, momentum and angular
momentum are observables.

Before we go on in our discussion let us try to state the problem
more precisely. The above postulate implies the existence of a least one
continuous representation of the inhomogeneous Lorentz group which
implements the automorphisms of the local observables. However, such
a representation need not be the only representation which fulfils these
requirements. In particular it might happen that one of the representa-
tions consists of elements of the v. Neumann algebra generated by all
local observables. When this is the case the energy, momentum and
angular momentum are observable quantities.

The purpose of this note is to show that at least energy and momen-
tum are observable quantities. This is true for general reasons which have
nothing to do with the special properties of local observables but only
with the spectrum condition. We will prove the following
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Theorem. Let 2 be a v. Neumann algebra and G be an n-parametric
Abelian group. Assume we have a strongly continuous unitary represen-
tation U (g) of G such that

H)U@AU(g)=A forall g€G.

2) The spectrum of the representation is contained in a proper cone
(apex not necessarily at the origin).

Then

a) The center of U is pointwise invariant.

b) There exists a strongly continuous unitary representation V (g) €U
and V(g) A V-1(g9) = U(g9) AU-(g) for every element 4 ¢ 2.

This theorem solves the above mentioned problem for the trans-
lations ans shows that at least energy and momentum are observable
quantities. Statement a) of this theorem is known and proved first by
AraxI ([1] Prop. 1). But our method of proof will be different from
ARrAKT’s. Our proof is based on a new result in the theory of v. Neumann
algebras which says that every norm-continuous connected group of
automorphisms consists of inner automorphisms. This result is due to
Kap1son, RingrosE [2], [3] and Sakar [4]. By reduction to our method
G. F. DELI’ANTONIO (private communication) showed that a weakly
continuous one-parameter group of automorphisms of a v. Neumann
algebra is induced by a strongly continuous representation of the group
inside the algebra if it satisfies certain conditions implying the semi-
boundedness of the spectrum.

For the homogeneous part of the Lorentz group we do not know
whether it can be chosen to be an inner group of automorphisms. How-
ever, there are indications that this does not follow from general reason-
ing. This means that in order to decide this question one has to take into
account the special algebraic structure of the local observables.

II. Proofs

Lemma 1. Let 2 be a v. Neumann algebra and ¢ be an automorphism
of 2. Then the following statements 1 and 2 resp. 1’ and 2 are equivalent:

1) ¢ is unitarily implementable (¢ is spatial).

1) ¢ is unitarily implementable by a unitary operator in the v.
Neumann algebra (¢ is spatial and inner).

2) resp. 2’) There exists an increasing sequence of projections in the
v. Neumann algebra with

a’) ¢ (En) = Em

b) the central supports F, of E, tend to 1i. e. lim F, =1,

n—>00

c) resp. ¢’) For each algebra E,AE, the automorphism ¢ restricted
to this algebra is unitarily implementable resp. is unitarily implementable
by an element of E,AE,.
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Proof. From 1 resp. 1’ follows 2 resp. 2’ by setting K, = 1.

Let us assume now 2 resp. 2’ and denote by U, the unitary operator
defined in E,$ which implements ¢ restricted to E,AE,. Define in
F,9 the operator V, by

VnZ AvEn"/’v = 2 ¢(Av) UnEnwv; 4, 691 .
We have: ’ ’
‘nzmm%

= (2 AU X () VB
= § By, Uy (B, AT ALE,) U, Byy,)
=§%Wﬁ&%%=§&%%
Hence V, is isometric and linear. Now ¥V, mapsF, 9 =AEL,H onto
F,$ or V,is unitary in F, 9. If, in particular, 2¢ holds, ie. U, ¢ £,A K,

then V, isin F,UAF,.
Let us now define V=2V, (F,—F,_;). This expression defines
n

2-

a unitary operator and we have for 4 in the v. Neumann algebra
VAV =X V,F,(1—F, ) A1—F, )F,Vit
=2/ Sl’(Fn(l —F, ;) A1 _Fn—-l)Fn)
=2 F,(1—F, ) ¢(4)=¢(4).

If all V,, are from F,2 then V is an element in Q. This proves the lemma.

Lemma 2. Let 2 be a v. Neumann algebra and ¢ an automorphism of
Q. Assume we have an increasing family of projections £, with

a) $(B,) = I,

b) The central supports F, of E, tend to 1.

Assume ¢ restricted to E,AE, leaves each central element of this
algebra fixed, then ¢ leaves each central element of U fixed.

Proof. Let G be a central projection of £, A E,. Then the weakly closed
two-sided ideal in A generated by @ is clearly invariant under ¢. Now
each weakly closed two-sided ideal in Q is of the form FQ, where F
is a central projection of U ([5], I, § 4, 6). Since F2 is invariant under ¢
we see that ¢ (F') = F. Let now F be any central projection of 2 then F E,,
is central projection of £, A H,. Hence F' E,, is invariant. Is F, the central
support of E, then the two-sided ideal generated by FE, is FE,2.
Hence F F, is invariant. Since this holds for all n we have F is invariant.

Lemma 3. Let U be a v. Neumann algebra and G be a Lie group.
Assume we have for every g ¢ G an automorphism ¢, of . Assume,
moreover, we have a strongly continuous unitary representation of G
such that U(g) AU-(g9) = ¢,(4) for all g €G and all 4 €A. Let us

4%
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assume we have an increasing sequence E, of projections in 9 such that

1) ¢,(E,) = E, for all g,

2) The central supports F,, of £, converge to 1,

3) Ulg) E. = Ut(g) U3(g) B, with Ut (9) € E,AE,, U (g) €A E, and
U%(g) is a strongly continuous representation of G in E,$).

Then U(g) = Uy(g) Us(g) with Uy(g) €A, Uy(g) €A’ and U(g)
is a strongly continuous representation of G.

Proof. Since U (g) E,, and U%(g) E, are strongly continuous represen-
tations we have that also U%(g) E, is a strongly continuous representa-
tion of G. Let F,, be the central support of E, then there exist uniquely
defined unitary operators U%(g)F, in F,’ with U%(9)E, = U%(g).
Since U%(g) is strongly continuous we have a dense set 9, in E,9 of
vectors which are simultaneously analytic vectors for every one-para-
metric subgroup of . Now A%, is such a dense set in F,%. Hence the
representation U%(g) in F,,$) is strongly continuous (see e.g. NELSON [6]).
But this implies that also U%(g) = F,U(g) U%(g~?) € AF, is strongly
continuous. Defining U, (9) = 3 (F, — F,_;) U%(g) we see that U, (g) €2
and is strongly continuous.

Lemma 4. Let 2 be a v. Neumann algebra and G be an n-parametric
Abelian group, such that for every g ¢ G we have an automorphism ¢,
of 2. Assume we have a strongly continuous unitary representation of ¢
which implements ¢,. If the spectrum of the representation is contained
in a proper cone then there exists an increasing family of projections
E, ¢ with

1) B, tends to 1,

2) ¢g (En) = En for all g,

3) ¢, restricted to E,AH, is norm-continuous.

Proof. Since the cone C' is a proper cone we can introduce coordinates

n
Py - - . Do, such that C is contained in p, = 0, a pf — 23 p? > 0 with
2

0 < @ < 0. Since we have a continuous group representation we might
write U(x) = [e?*dH, x €@G. Let us define the projections G; by
¢

G,= [ dE, and the projections E;, by E;9 = A'G;9. E, is clearly
¢, <2

a projgction from . We want to show that E, has the properties of

this lemma.

1) Since G; — 1 for A — oo follows E; — 1 because G; < K.

2) The space G;9 is from its construction invariant under all U ().
Since U (x) implements also an automorphism for ' we have that E;9
is also invariant under the action of U (x). Hence the projections Z,
have to commute with U (z) for all x € G.
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3) Now we want to demonstrate that U (x) gives norm-continuous
automorphisms on the algebra E;E, Consider the matrix element
ford' €U, AcU zcGand y, d €H:

(;A;Gm, U(z) AU () %‘A;Gl(pﬂ) = f(z).
This function is bounded for all = by
lf (@) = |
On the other hand we see that
= (2 4Gy L A,U@ AU ) G

is the boundary value of an analytic function holomorphic in the tube

ZA;AGWS# .
“

Ima; > 0,— (Imoc1 Z (Ima;)? > 0 and we have:

@+ iyl = Z 4% 4, G| | U (—2 — i) G Il =
= ;ly[e“% .
In the same way we get:
f(@)= (U(x) A*U-1 (@) Gay,, 3] A;*A;G”s,,)

v
is the boundary value of an analytic function holomorphic in the tube

Imw, <0,— (Im ;)2 2 (Ima;)* > 0 and is bounded there by

]f x+iy)| £ M el

Since both functions have the same boundary values we find by the
“edge of the wedge”’-theorem (e.g. [7], 2—5) that f(x) is an entire func-
tion bounded by [f(z)| < max (M, M) 212,

Using now the Phragmen-Lindeléf theorem (e.g. [8] 5.6.) we find

If (=) “Z A6,

Using now Schwartz’s lemma (e.g. [9] IIT § 6) we get for a dense set of
vectors in £ ,155

(v, U@) B2 A B, U () ) — (y, Bi A B ¢)| = 2||=] | 4] [y] [ ] €2
with [z = Vlz la? or

|U @) E; AE, U~ (z) — B, AE;)| < 2| 4] ||| €2* q.e.d.

Proof of the theorem. G is an n-parametric Abelian group and U (g) a

strongly continuous representation of it. The spectrum of this represen-

tation is by assumption contained in a proper cone. Since we can shift
4a
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the apex by multiplication with a one-dimensional representation of G
we can assume that the apex is at the origin. Now, by Lemma 4, we
can find an increasing family of projections E, ¢ with E,—1,
¢,(E,) = E, and ¢, acts norm-continuously on the algebra E,UE,.
From the result of Kapison, RiNGROSE and SAra1 [2], [3], [4] follows
the existence of a norm-continuous inner representation U%(g) C E,AE,
of G which implements ¢,. The theorem follows now from Lemma 3.
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