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Abstraet. Detailed derivations are given of the simplest properties of nested
Hilbert spaces and of operators between them.

1. Introduction

A nested Hilbert space is, loosely speaking, the union of a family of
Hilbert spaces some of which are suitably embedded into others. There
exists a “‘central” Hilbert space H, The remaining spaces come in
pairs H,, H; which are in duality with respect to the scalar product in H,,.

Such objects have a “self-dual” character which makes them relatives
of ordinary Hilbert spaces. On the other hand, they are general enough
to accomodate various improper functions and operators of quantum
mechanics. For example, Wick products of fields (without smearing) are
operators — in a sense to be discussed below — in a suitable nested
Hilbert space.

1.1 Example: Denote by I the ordered set of real numbers. For
every s €I, let H, be the Hilbert space of (classes of) complex-valued
measurable functions defined on an euclidean space and such that

[ |f(@)|? exp(—s|z|) do < .

For s = r, denote by E,, the natural embedding which associates, to
every f. € H,, the same function considered as an element of H,. Notice
that E,, is continuous and injective. The range of K, is dense in H,.

Denote by Hj the union of all the spaces H. (Actually, this in an
algebraic inductive limit; see below.) Denote by &7 the natural embedd-
ing of the Hilbert space H; into the vector space Hj.
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2 ALEXANDER GROSSMANN:

For typographical convenience, write § to denote —s. If f and g in H;
are such that, for some s € I, f belongs to E; H, and g to E;5 H; then a
scalar product

flgy = [ *(2) g(2) dx (L1)

is defined. Notice that (1.1) has the form of the scalar product in H, = L®
but that we do not require both f and g to be in L®. The exponential
increase of — say — f at infinity can be compensated by a corresponding
decrease in g.

It is useful to classify the functions in H; by associating to every
such function f the set J(f) C I of all numbers r such that f € E;, H,.
For example, if f is, respectively, exp(—a?), 1/(1 + a?), 2, exp(2|z|)
(in one dimension), then J(f) = (—oo o) = I, resp. [0 =), (0 ), (4 ).

The adjoint of E,, is the mapping

(Ber)fs : [ (@) —~ exp[(r — ) |e|] f () (1.2)
from H, into H,.
Notice that the mapping

Uz [ (@) > exp(r |2]) f () (1.3)
establishes a unitary correspondence between H, and H; and that
(Bor)fs = w7 Bis s - (1.4)

1.2 Example: Denote by H, the Hilbert space of (classes of) functions
f (z, y) which are square integrable with respect to the Lebesgue measure
in the plane. Consider in H, the orthonormal basis {%;(x) k;(y)} where
hy(x) is the (properly normalized) product of a Hermite polynomial

and of exp (—— —;— x?) .

Let r =r(k,7) (k,7=0,1, 2, ...) be a double sequence of strictly
positive numbers. Denote by I the set of all such sequences, partially
ordered in the natural way: r < s means that r(k, §) < s(k, ) for all £, 5.
Given any sequence 7 € I, consider the sequence 7 defined by 7(k,4)
= 1/r(k, ). Notice that the correspondence r <> 7 is an order-reversing
involution analogous to the correspondence s« —s in Example 1.1.

To every r € I associate the prehilbert space consisting of all finite
linear combinations of the vectors 7, (x) %;(y); the scalar product of

f, y) = ,I; 2 Cxj by () by (y)
and of 7

g, y) = %‘ Z dys () by (y)
7
is the number

1
2 2 e iy
7

P 72 (ks 5)
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where the star denotes complex conjugation. Denote by H, the comple-
tion of this prehilbert space.

If r < s,then H, C H,. One can introduce the operators X, of embedd-
ing as in Example 1.1. Consider the unitary mapping u;, from H, into H;,
defined by:

(e (@ () = a3 P 2) T )

linear extension and closure. It can be verified that (1.4) holds.

Consider again, the vector space H;= U H,; the union is now
over all double sequences of positive numbers. Define £, and J(f)
as in Example 1.1. That is: » € J (f) means f € B, H,.

At this point, a legitimate question is why we are complicating
matters by considering the full partially ordered set I, when any cofinal
subset of I (in particular, any totally ordered cofinal subset) would give
the same supply of elements.

The answer, is roughly, that the set J(f) gives a useful description
of the “regularity’ of a vector f in H;. A mutilation of I can lead to a
decrease of the amount of information contained in J (f).

In order to illustrate this, consider in H; the vectors

1w 9) = d(@) exp (= 5 7 (1.5)
and

9(e,9) = exp (=52 8(0) (1.6)

Here ¢ is the Dirac d-function. One should clearly require the scalar
product {flg) to be defined since

ffé(x) d(y) exp (—%xz——;:—gﬁ) drxdy=1.

This means, as will be seen below, that we require the existence of
at least one r €I such that r €J(f) and 7 €J(g). This condition can
easily be satisfied if I is the partially ordered set of all double sequences
of positive numbers. Indeed, if 3/, 7=1(k, §) < co for every j, thenr € J (f).
If 37 (%, 7) < oo for every k, then 7 ¢ J(g). These two conditions are
compatible: one can take e. g. r(k, j) = (k/j)2. On the other hand, consider
e. g. the subset I' C I consisting of double sequences of the form r(k, §)
= r'(k + 4). It is clear that I" is cofinal with I; however, the above
conditions cannot be satisfied within I’ and even less within a totally
ordered subset of I'.

In Sec. 3a, a nested Hilbert space is defined as an algebraic inductive
limit of a family H,.(r € I) of Hilbert spaces. A certain number of condi-
tions are imposed on the set I and on the family E,, of mappings with
respect to which the limit is taken. These restrictions will be now dis-
cussed in a qualitative way.

1*



4 ALEXANDER GROSSMANN:

First the conditions on I (see Sec. 2¢): The discussion of Example 1.2
has shown that I should in general be only partially ordered. It can be
seen from the same example that it would be unduly restrictive to assume
that every r € I is comparable to o.

One has to assume, however, that I is directed to the right, because
this insures the existence of the inductive limit. The idea that the
spaces H, come in pairs H,, H; is expressed by postulating the existence,
in I, of an order-reversing involution r < 7. The last requirement is the
existence of a o €I such that 6 = o. (This condition could be dropped
without dramatic consequences.)

Next: The mappings E,.(s = r) are assumed to be injective, conti-
nuous and with dense range. For the sake of completeness, the simplest
properties of such mappings are derived in Sec. 2¢ and 2d; a class of
examples is exhibited in Sec. 2g. It is also assumed, of course, that the
family E,,(r = s) satisfies the usual conditions required to insure the
existence of the inductive limit.

One has now to express precisely the idea that H, and H; are in
duality with respect to the scalar product in H,. This is often done by
using one of the two spaces as a space of testing functions and by defining
the other as a suitable set of linear functionals. For our purposes, this
is not convenient: First of all, it destroys the symmetry between H,
and H; which is one of our main themes. Secondly, the procedure is not
directly applicable if » and 7 are not comparable to o. For example,
each of the vectors (1.5) and (1.6) could with equal justification be called
a testing function and a linear functional.

A suitable way of expressing the duality requirement is given in
Section 3a. The condition (N H,) of that section requires the nesting
E;5 to be “unitarily related” to the adjoint (#,,)¥ of E,,. More precisely,
it postulates the existence of a family of unitary operators u,; such that
(1.4) holds.

While H, is a Hilbert space, its image E;, H, under the natural
embedding is just a vector subspace of the vector space Hy. It is useful
to consider the family of all vector subspaces of H; which are of the form
for some r € 1. Ber Hy (L.7)

The condition (NH,;) of Sec. 3a requires that the intersection of
any two vector subspaces of the form (1.7) be again a subspace of the
form (1.7). It is trivially satisfied if I is totally ordered. In the general
case, it insures the existence of “‘sufficiently”’ many Hilbert spaces H,.

From (N H,) one can deduce [with the help of (N H,)] a dual state-
ment: The linear span of any two subspaces of the form (1.7) is again a
subspace of the form (1.7). These and related statements are proved in
Section 3b by an adaptation of methods of L. Scawarrz [1].
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Let H; be a nested Hilbert space. What is a suitable definition of
an operator in Hy?

A natural answer would be: An operator in H; is a linear mapping
defined on a union of subspaces of the form (1.7) and mapping each of
these subspace into a subspace of the same form.

For example, convolution by exp(|z]) is an operator in the nested
Hilbert space of Example 1.1. The differentiation and the multiplication
by d(x) d(y) are operators in the nested Hilbert space of Example 1.2.
Notice, incidentally, that the first two of these three operators are
defined on all of H; and that the last two are not operators in the “wrong’’
nested Hilbert space.

The above definition is not quite complete; another natural require-
ment is that the domain of an operator should not be ,artificially
restricted”. It is technically convenient to insure simultaneously the
validity of all these requirements by defining an operator as an element
of a suitable algebraic inductive limit of Banach spaces of bounded
operators between Hilbert spaces (Section 4a). It follows from this
definition that the domain of a sum of operators may well be larger than
the intersection of the domains of the summands.

Every operator in a nested Hilbert space has unique adjoint which
is an operator in the same space (Section 4c). The correspondence
A < A* between an operator and its adjoint is antilinear, involutory
and bijective; everything is happening as if 4 were a bounded operator
in an ordinary Hilbert space. In the examples above, the first and the
third operator is selfadjoint.

Actually the sections 4a to 4e do not deal with operators in a nested
Hilbert space but, more generally, with operators between nested
Hilbert spaces. This generality is needed in the applications. For
example, one obtains a theorem on the representation of linear func-
tionals (analogous to the classical Riesz-Fréchet theorem) by letting
one of the spaces to be the set of complex numbers (Section 4e). Products
of operators are studied in Section 4d. Again, the domain of a product
may be larger than the domains of the factors.

A class of examples of nested Hilbert spaces is studied in Sections 5a
to 5c.

The upshot of all this is a Dirac notation supplemented by the
systematic use of the sets J (h) and J (4). This machinery will be applied
to concrete problems in later papers; its utility will of course always
depend on a judicious choice of the space Hj.

Some of the results of this paper have been stated without proof in a
previous publication [2] which is concerned with a particular nested
Hilbert space. The definition given in [2] assumes I to be totally ordered
and is thus less general than the one given here.
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In a rigged Hilbert space of GEL’FAND and VILENKIN [3], the set I
consists of all the integers, and the mappings E,, are required to satisfy
some additional conditions. There is not much overlap between the
present paper and [3] because we stress the analogy to Hilbert space
and avoid the theory of topological vector spaces.

2. Preliminaries
a) Hilbert spaces

For the terminology, see e. g. R1Esz [4] or DUNFORD-SCHWARTZ [5].

Several Hilbert spaces will be considered simultaneously and denoted
by H,, H,, ... . Elements of H, are denoted by f,, g,, . . . . A bounded
linear operator from H, into H is denoted e. g. by A,,. The adjoint of 4,
is the bounded linear operator from H; into H,, denoted by (4,,)¥ and
defined by

(gr’ (Asr);'ks fs) = (Asr 9rs fs) (21)

for every g, € H, and every f, ¢ H,. On the l.h.s. of (2.1) the scalar
product is in H,; on the r. h. s. it is in H,. There is no need to indicate
this by (, ), or (, ), since the subscripts are carried by the vectors and
the operators. The scalar product (f,, g,) is linear in ¢, and antilinear in f,.

Similar conventions are adopted for norms: [f,| is the norm in H,,
and || 4,,|| the bound norm of 4, (with respect to the norms in H, and H).

b) Polar decomposition

2.1 Proposition: Let A, be any bounded operator from H, into H,.
Denote by [4,,],, the operator

[Asr]rr = [(Asr);ks As'r]ll2 (22)
(positive square root). Then A4, can be decomposed into a product
Asr = Wsr [Asr]'m‘ (2.3)

where W, is an isometric correspondence between the closure of the
range of [4,,],, and the closure of the range of A,.
Proof: For every f, € H, the equation (2.2) gives

([AST]TT ff’ [AST]TT va) = (AST fT? AST fT)

i e. " (4 1r fr“ = “Asr fru It A= [Aorlrr 1r and g, = 4,,f,, write g,
= W, h, and extend by closure. Then g,= W, h,= W, [A;],fr
= A, [, gives (2.3).

¢) Nesting

2.2 Definition: A linear transformation E,, from a Hilbert space H,
into a Hilbert space H, is called a nesting if the three conditions below
hold:
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(Ns;) By, is bounded (and defined on all of H,).

(NVsy) By, is injective. (Injective means one-to-one into; bijective
one-to-one onto.)

(N's;) The range of E,, is dense in H,.

2.3 Proposition: If E,, is a nesting then its adjoint (E,,)¥ is also a
nesting.

Proof: (a) (B, is injective: Let (E,)f f; = 0. Then (g,, (E.,)%fs)
= 0 for every g, € H,. Since the range of £, is dense, it follows that f, = 0.

(b) The range of (,,)f; is dense: Let g, be such that (g,, (Z,,)f ) =0
for every f, € H,. Then (Z,, g,, f,) = 0 for every f, € H so that K, g, = 0.
Since E,, is injective, it follows that g, = 0. This proves the proposition.

2.4 Proposition: Let E,, be a bounded linear transformation from H,
into H,. Let

By = Ugy[Ess (2.4)

be the polar decomposition of E,. Then E, is a nesting if and only if U,
is unitary and [#,,],, is injective.

Proof: (a) If E,, is a nesting, then [E,,],, is injective: Indeed,
([Es}]r'r fr: [Esr]rr fr) = (Esr fr: Esr fr) so that [Esr]rr fr =0 gives Esr fr =0
i.e.f,=0.

(b) If [E,,],, is injective, then the range of [H,,],, is dense in H,:
Indeed, if (g,, [, ], f-) = O for all f. € H, then ([E,.];, ¢, f;) = O so that
(Esrlirgr=0ie.9,=0.

(c) If E,, is a nesting, then U, is unitary: Follows from (b) and from
Proposition 2.1.

(d) If U,, is unitary and [E,,]., injective, then E , is a nesting.
Direct verification.

2.5 Proposition: If ,, and E,, are nestings then the product £, Z,,
is a nesting from H, into H,,.

Proof: (Ns;) and (Ns,) are immediate. In order to prove (NVs,),
let f;, € Hy be such that (f, By B, g,) = 0 for all g, € H,. Then ((By)% fz
E,.g,)=0.80 (E,)¥ [, = 0 since E,, H, is dense in H,. By proposition
2.3 it follows that f, = 0. This proves the assertion.

d) Nesting and bilinear functionals

Let H, and H; be Hilbert spaces. A bilinear functional on H, and H
is a complex-valued function B(f,, g,) (f, € H,, g, € H;) which is linear
in the argument g, and antilinear in the argument f,. A bilinear functional
B is called nondegenerate if (a) for every f, ¢ H, there exists at least one
gs € Hsuch that B(f,, g,) = 0 and (b) for every g, ¢ H, there exists at least
one f, € H, such that B(f,, g;) =+ 0.

A bilinear functional B is said to be bounded if there exists a constant
y > 0 such that |B(f,, g;)| = y |f] |gs] for all f, € H,, g, € H,.
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2.6 Proposition: If E,, is a nesting from H, into H, then the cor-
respondence

{f‘r’ gs}_)B f?" gS fT’ ngs)
(f-€H,, 9, € Hy)

is a bounded nondegenerate bilinear functional on H, and H,. Conversely,
given any bounded nondegenerate bilinear functional B on H, and H,,
the operator E,, defined by the above equality is a nesting.

The proof is easy and may be omitted, since the proposition will not be
used.

e) Ordered sets (see e. g. BOURBAKI [6])

By order we mean “partial order” (not all pairs of elements have to be
comparable). An order-reversing involution in an ordered set P is a
bijective correspondence r «» 7 in P such that < 7if and only if p = r
and that 7 = 7.

If D C P is such that r € D, p < r entails p € D then D is called an
initial subset of P. Same terminology for final subsets.

An ordered set P is directed to the right (left) if any two elements 7,
q € P have at least one common successor s = r, g (predecessor p < 7, q).

By I or by I', I", ... we shall denote throughout this paper a set
which satisfies the following conditions:

(I,) I is directed to the right.

(I,) In I there is defined an order-reversing involution r« f.
(Consequently, I is also directed to the left.)

(I;) There exists an element o € I such that 6 = o.

Let I and I be two sets that satisfy the above conditions. In the set
I x I’ of pairs {r, '} (r €I, v" € I') we shall consider two order relations:

{r,r'} <, {s,8'} iff r<s and r<¢ (2.5)
{r,r}<,{s,s'} iff r=s and r<s'. (2.6)

Denote by (I x I'), the set I x I' endowed with the order (2.5) and
by (I x I'), the same set endowed with the order (2.6).

2.7 Proposition: If I and I’ satisfy the conditions (1), (I,), (I;) then
(I x Iy and (I x I'), also satisfy the same conditions.

Proof: (a) If s=r, g and p<r, ¢ and s’ = ¢, ¢’ then {s,s'} =

= {r, 7} {88} 21{g, ¢} {p, 8} 2, {r, 7'}, {p, '} 2{q,q}

(b) The order-reversing involution is defined, in both (I x I’); and
(I x I')y, as
{r,r}e {77} .

(c) Define o, = 0, = {0, 0'}. Then 0, =0, and 6, = 0,. This proves
the proposition.
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If S is a subset of I, then § denotes the set of elements 7(r € S).
If A is a subset of I x I’ then A* denotes the set of elements {F', 7}
({r,r'} €4). It is a subset of I' x I.

f) Algebraic inductive limit

It will prove convenient to define inductive limits in a way a little
more restrictive than is customary (see e. g. BoUrRBAKI [7]).

Let P be an ordered set directed to the right. For every p € Plet V,
be a vector space. For every p € P and every ¢ = p let E,, be an
injective linear mapping from ¥, into V,. Assume:

(Ind,) E,, is the identity in ¥V, for every p € P.

(Indy) Ifg=r = pthen E,, = E, . E,,.

In the disjoint union pl€JP V, define an equivalence relation by writing

fo ~ fr (where f, €V, f, € V,) if and only if there exists a s = p, r such that
E,,f, = Eq f.. The set of classes has a natural structure of vector space
which will be denoted by Vp and called the algebraic inductive limit of
the family V, with respect to the mappings E,, and the set P. This is
written as

Ve=[Vy; Byp; P1. 2.7

The word ‘“‘algebraic” is a reminder that topology is not involved.

For every p € P the natural embedding of V, into Vp is denoted
by Ep,. It is easy to show that Ep,, is linear and injective. Furthermore,
if s = r then

EPT = EPs Esr . (28)

If f¢Vp and if f= Ey,f,, then f, is called the representative of f
in V,. If f, is the representative of f in V,, if f, is the representative of f
in ¥ and if s = p, then

f s = E 5D f D

For every f € V, denote by J (f) the set of all » € P such that f ¢ By, V,
(i. e. such that f has a representative in V,). This J(f) is a non-empty
final subset of P. It is easy to verify that

J(0) = P (0 the zero vector of Vp).

J(Afy=J(f) (4anon zero complex number, f € Vp).

J(F+9)29() NI (9).

If s = r, then

E Ps Vs 2 EPr Vr
by (2.8).
g) Nestings between L®)-spaces

For the terminology on measures, see e. g. Haumos [8].
2.8 Theorem: Let 4 and p’ be two totally o-finite positive measures
over a set X. Assume that u and p’ are equivalent, so that both Radon-
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Nikodym derivatives du/du’ and du'[dp exist. Assume furthermore
that du'/d p is essentially bounded (with respect to u). Then

(i) L® (X5 p) < LO (X5 p).

(ii) The natural embedding of L® (X;u) into L®(X;u’) in a
nesting.

Proof: (a) The fact that du'/dyu is essentially bounded gives, for
every f ¢ L& (X; )

[i@eaw = [ @[5 du= const [ |2 du

which proves (i) and (Ns,).

(b) If f=0 in L®(X; u’) then f(z) =0 almost everywhere with
respect to u’. By the equivalence of u and of ', f(x) = 0 almost every-
where with respect to u; so f=0 in L®(X; u) which verifies (Ns,).

(¢) Every simple function on X that belongs to L® (X ; u) belongs
also to L® (X; u'). These functions are dense in L® (X; 4') so that (N s;)
holds. This proves the theorem.

Consider in particular the case where X is the set IV of positive
integers. Write {® (u) for L& (N; p).

Let {4} and {A;} (k= 1,2,...) be two sequences of positive numbers.
Define the measures g and y’ on N by

pr= ()% and pf= (3. (2.9)

Then I® (u) and I® (u') consist of the sequences z;, of complex numbers
such that

2w lnlP() 2 <o and 3 [gP(4) " <o
respectively.
2.9 Proposition: Let 1, and 2, be two sequences of positive numbers
such that 4,/4; is bounded. Define the measures x4 and u’ by (2.9). Then
the natural embedding of I®) () into I® (u') is a nesting.

Proof: The assertion is a special case of Theorem 2.8.

3. Nested Hilbert spaces
a) Definitions

Let I be a set satisfying the conditions (I;), (Z,), (I5) of Section 2f.
For every r €1 let H, be a Hilbert space. For every r €I and every
s = rlet E,, be a nesting (Section 2¢) of H, into H,. Assume that the
conditions (Ind,), (Ind,) of Section 2f hold so that the algebraic inductive
limit

Hy=[H,; Es; 1]

is defined. This vector space will be called a nested Hilbert space if the
following conditions are satisfied:
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(NH,) If r, ¢ are any two elements of I then there exists a p < 7, ¢
such that E, H, is the intersection of E;, H, and of E;, H, That is:

EIpHﬂ=EIrHrﬂEIqu (3'1)

Notice that (NH,) is trivially satisfied if I is totally ordered. In that
case p is the smaller of the elements r, g.

(NH,) For every q €1 there exists a unitary mapping ug, from H,
onto Hy such that

Ugo =1 (3.2a)
(Esr);ks = U7 EFE Uss (3.2b)
(rél;s=r).
Notice that
U Ugp =1

for every r € I. [Take r = s in (3.2b) and use (Ind,) of Section 21.]

3.1 Proposition: Given the spaces H,.(r € I) and the nestings E.(s = r),
there can exist at most one family u;, of unitary operators such that
(3.2a) and (3.2b) hold.

Proof: (a) Let ¢ < o. Then, by (3.2a) and (3.2Db),

(Bod)fo = ez Ego -
This determines u,; on Bz, H, which is dense in H; by (Ns,) of Section 2.
Since ug, is unitary, it is thus unambiguously defined.
(b) Let g be arbitrary. Let p be a common predecessor of ¢ and of o.
[Such a p exists by (I,) and (I,), Section 2e.] Then uz, is determined by
(a). Furthermore, by (3.2b)

(qu));q = Upp Ez'lﬁ Ug g -
Since wu,; K35 is injective, this determines uz,. So the proposition is
proved.
b) The spaces H(,, and Hy,

In order to exploit the conditions (NH,) and (INH,), it is technically
convenient to introduce some auxialiary spaces which will be studied in
this section. The notations and assumptions of Section 3a will be used
without specific reference.

Let r, ¢ be any two elements of I. Denote by H,® H, the Hilbert
direct sum of the Hilbert spaces H, and H,. Elements of H.® H, are

pairs (;;) (f, € H,, g, € H,). The scalar product in H, & H, of (f ') and of
(Z’) is the number (f,, k) + (gq bg)-
q

Consider in H, ® H, the set H|,,; consisting of pairs (;’ ) having
q
the following property: There exists a ¢ € E; H, N Ej, H, such that
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f, =t.and g, = —t,. In words: f, is the representative of ¢ in H, and —g,
is the representative of ¢ in H,.

3.2 Proposition: H,,; is a closed subspace of H, ® H,.
(n)
Proof: Let s be any common successor of r and of g. Let ( b t“") be a

convergent sequence of elements of H,,. Then the sequences E, (™
and E,, ¥ converge, since E,, and E,, are continuous, and E,, im{™

. . . 1i ts_n)
= B, lim{{Msince B, t{ = B, t{ for every n. This shows that ( iy )

— lim g™
belongs to Hj, ,; and so proves the proposition.
So: The set Hy,,;, endowed with the scalar product inherited from
H,e® H, is a Hilbert space.
Denote by H, the orthogonal complement of Hy,, in H, & H,.

That is: H(,, consists of pairs (f ') such that (f,, t,) = (9, £,) for every

t€E;. H.n Ep, H,. With the scalar product inherited from H, & H,,
it is a Hilbert space.

Let z be any common successor of r and of ¢. That is: z = r, q.
Consider the mapping Z,, , from Hy, , into H,, defined by:

e

Ez(rq) (g) Ezrfr+Ezng

() emea):

3.3 Proposition: E,(, , is a nesting.

Proof: (a) E,(, , is clearly continuous.

(b) E,q is injective: If B, f, + B,,9,=0, then K. f, = —E, g,
shows that f, and —g, are the r and g representatives, respectxvely, of

some t € By, H. N E;, H, So (f ) €H{,,. This gives f,=0 and g, =0
since H{, ,; is the orthogonal complement of Hy, .

(c) Let (é’) be any element of H,.® H ,. Then there exists a (;’) €H .y
f , fl
such that E,, , (;:) =E, f.+E,,q9, Indeed, (;'q) is the sum of its

projections on Hy,, and on Hi,,y:
()= () () (33)
(B)ettes. (E) et

Now E,, f,' + E,,9; = 0 by the definition of Hy, .. So E,, f, + E,, 9,
= E,, fy + E,,g, which verifies (c). The element (f ') is unique by (b).
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(d) The range of E,(,, is dense in H,: Notice that E,,. H, is dense
in H,. If f, is any vector in H,, then there exists, by (c), a vector ( ; f) €
[

¢ iy such that B, ( g) _ B, },. [Take g, — 0 in (c).]

This completes the proof of Proposition 3.3.
Let @ < r, ¢ be any common predecessor of r and of ¢. Consider a
mapping Ey, .1, of H, into H|, ), defined by
El‘ﬂ wﬂ
E[rq]a, Wo = (___E“wa) (wa €H,) -
It is clear that Ep,,, is continuous. A simple calculation shows that the
adjoint (E[r ala) :[r a] of Eyq14 1s given by

i
(E[rq]a):zk[rq] (——-tq) = (Er a):r L+ (Eq a)gq tq

((_t'tq) €Hp g )

Let u;, and u;, be the operators defined by (NH,). Consider the
operator ( g;'_u_o) which is clearly a unitary mapping from H,® H, onto
(44
H; ® Hj;. The adjoint (and inverse) of (u;' O) is (u'_' O) .

0 —ug ) \0—ug,

(3.4)

3.4 Proposition: The image of H(,, under (g"_ ui(:) is Hzg. The

image of Hy, ,) under (g”_ u_O) is Hi).
aq
Proof: It is enough to prove the second assertion since Hy, , is the
t
orthogonal complement of Hp,.,;. Let (——'t) be any element of H,,,
2

v

and (_hh_) any element of H ;5. Then the scalar product of (u;' 0)
q

0 — Uz,
t, h: .
(_ tq) and of (—hi) 18 (g, uz, t) — (hg, Ug o ty)-
Let p < r,q be such that E;, H. N E;, H,= E;, H, [see (NH;)].
Then t, = E,,t, and t, = E,, t,.
So:
(hf_‘7 Uz p Erp tp) - (h&’ Ug ¢ Eqp tp)
= ((Erp):;r Up7 hF: tp) - ((Eap);;q Uqg hi’ tﬂ)
= (Upp Eﬁ bz, tp) - (um_) Eiﬁ k&’ tp)
= (Upp hz’» tp) — (upihin ty) =0.

. t,
So the image of (_ t,,) belongs to H ;).

Conversely, let (2;) belong to H ) ; then (f;, hz) = (g5, hg) for every

h éEI; H; /'\Ela Ha. So:
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Let § < 7, g be such that E;z H; N E;; H; = Er5 Hg.
Then h; = E;; h; and by = ;3 h;. So
(fe> Bis hs) = (93, Byz hs) , e
(o s (B« s 1) = g o (o) 4 s 1)
(Bsr tri fr, w55 bs) = (Bsq %og 9g Uss hs)
for every &z € H;. This means that

or

E,, Ury f? = Esquqagé
i.e. that u,; fr =1¢, u,g9;=1t, witht € B, H. N E;, H,. So

(g’;_uw) (fr ) € H[r q]

T Usy
() €7 ) o
This completes the proof of Proposition 3.4.

which means that

o e w 0
Denote by %5, o7 the restriction of (g ‘—UE«) to Hy, i and by %51 ¢ o)
. w0
the restriction of (g T ) to H, -
aq

3.5 Proposition: Let @ be any common predecessor of r and of g,
so that @ is a common successor of 7 and of g. Then

;o = Yo (Bl q1a)atr o Uir ol ) - (3.5)

Proof: Let (f " ) be any element of H ;5. Then Ej; ;4 (f ) = Hz; f5
+ K35 gz- On the other hand, by (3.4) and (3.2b)

fz
Uga (E(r q] a);k[r a1 Y[r a1 (FQ) (95)

s F-
= u&a(E[r q]a)ff [rdq] (_;;;;E)
= &a((Era):r Uz f7 + (Eqa):tkq gz Ja)
= Eg7 fr + Esq 95
which proves the assertion.
Corollary: E, 1, is a nesting.
Indeed, this assertion follows from Propositions 2.3 and 2.5.
3.6 Proposition: |, ,;, is bijective if and only if Ej ;g is bijective.
Indeed, a nesting is bijective if and only if its adjoint is bijective;
this can e.g. be seen from the polar decomposition, Proposition 2.4.
So the assertion follows from Eq. (3.5).
3.7 Proposition: Let z be some common successor of r and of g.
Then E,(,, is bijective if and only if E;, H,=E; . H,+ E;,H, i.e.
if B, H, is the linear span in H; of E;, H, and of B, H,,.



Elementary Properties of Nested Hilbert Spaces 15

Proof: (a) Assume that E, (., is bijective. This means that every

h, € H, can be written as E,, f. + E,, g, where (;’) €H,py.SoE, H, ¢
gEIrHr—’“EIqu' ‘

On the other hand, E;, H,2E;.H, and Ej, H,2 E;,H, since
z=r,q. So E;,H,2E;, H,+ E;, H, since E;, H, is a vector space.
Consequently E;, H, = E;, H, + E; , H,,.

(b) Assume that E;, H, = E;, H. 4+ E;, H,.

This means that every b = E;, h, € E;, H, can be written as a sum
h=f+g, f=E;nf¢E,H, and g= ElngeEIqu' So Ejp, b,
=K, B, + E;,E,,q9, which means that b, = E,, f, + E,, 9, Con-
sider the vector (]g( ') € H, ® H, and the projection (l;) of (;' ) on H, .

[2 a [
Then E, (., (;',) =8, f.+E,,9,=h, [see part (c) in the proof of
Proposition 3.3]. Consequently X, , is bijective. This proves the
proposition.

3.8 Proposition: Let a be some common predecessor of r and of g.
Then By, 41, is bijective if and only if By, H, = By, H, N By, H,.

Proof: (a) Assume that K|, ,y, is bijective. Then every (——t't ) €Hp,y
2.

Erawa
_Eqawa
there exists a w = By, w, € B1, H, such that §, = B, w,, t,= B, w,;
consequently ¢ = E;, E,,w,= Er, w, € By, H,. So E;, H NnE;,H,C
C By, H,. On the other hand By, H. N E; H,2E;,H,, since a < 7, g.
So EIrHrnEquq=EIa Ha'

(b) Conversely, let E;, H,=E; . H. N E;,H, This means that
every t ¢ By, H. N E;,H, can be written as ¢ = E; ¢,. Then every

(_t' tq) € Hy,, is of the form (—E];“Ziata) i.e.is in the range of B, 41, This
shows that Ey, ;. is bijective and so proves the proposition.
Summarizing, we have
3.9 Theorem: Let H; be a nested Hilbert spaces and let r, ¢ be any
two elements of I. Let s = r, ¢ be a common successor of 7 and of ¢.
Then the following four conditions are equivalent:

() BrsHy= Eq. H, + EIGHQ'
(i) Brs Hs = Bz H; N B Hy.

(iii) Ky g is bijective.

’

can be written as ( ) This means: Given any ¢ € By, H.NE; . H,,

(iv) Egs is bijective.

¢) Scalar product

If h is any vector in a nested Hilbert space H, then the final subset
J (k) I is directed to the left. Indeed, let r € J (k) and ¢ € J (k). By (NH,),
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there exists a p < r,q such that E; H, = E;, H N E;, H, Then
p € J (k) which verifies the assertion.

Denote by J (k) the set of all 7 € I such that 7 € J (k). So J (h) C I is an
initial subset, directed to the right.

3.10 Theorem: Let f € H; and g € H; be such that J (f) N J (g) is not
empty. Then the number (u,; f;, 9,) = (f;, 4z, g,) is independent of the
choice of r € J (f) N J (g).

Proof: (a) The intersection J(f) N J(g) is directed to the right and
to the left.

(b) Let r € J(f) nJ(9) and g €J(f)y N J(g). Let p€J(f) nJ (g) and
2€J(fynJ(g) be such that p<r,g<z2 Then z2<7,¢g<p and
consequently, by (3.2b),

(fs uzr 92) = (B [z, %r By 9)
= ((Ez'r);kz Uy z fE’ Erp gv) = (u,3 [z Ezz) gz:)

= (qu fi> gz) .
Similarly
(fﬁ’ UG q ga) = (qu .fir gz) s

which proves the theorem.
Notice that the directedness of J(f) N J(g) was necessary to insure
the existence of the representatives f; and g,.

3.11 Definition: If f and g are vectors in H; such that J(f) N J(9)
is not empty, then the number (u,; f;, 9,) (r €J (f) N J (g)) will be called
the scalar product of f and of g. It will be denoted by {f|g).

The scalar product is not defined for all pairs of vectors but precisely
for pairs such that J (f) N J (g) is not empty.

If 0 € J(f) and o € J (g) then {f|g)> = (fo, go)- So the scalar product in
Hj is an extension of the scalar product in H,,.

It is now necessary to show that the existence of {f|g) and of {f|h)
implies the existence of (f|g + k).

For every f € H;, denote by Hj(; the union

E, H,.

Hyp= U
0 red(f)

3.12 Proposition: Hy ;) is a vector subspace of Hj.

Proof: Let g € Hy(; and h € Hj(;. This means that there exists a
r € J(f) such that g ¢ E;; H;, and that there exists a ¢ € J(f) such that
h EEIE Ha. Let P <, q be such that EIp Hp = EIqu N EIT Hf.
Then p€J(f) and 7 €J(f). Notice that E;; Hy= E;; H; + E;; H;,
by Theorem 3.9. So % + g € Er; H; S Hjy(;) which proves the assertion.
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If {f|g) is defined, then {g|f) is also defined since J (g) N J (f) consists
of all elements r such that 7 ¢ J(f) N J(g). Furthermore {g|f) is the
complex conjugate of {f|g) since

(uir 9r ]‘i)* = (9r U7 .fi)* = (U7 fi’ 9r) -
Let f, g, h € H; be such that {f|g) and {(f|h) are defined. Let 4 and u
be arbitrary complex numbers. Then {f|Ag + wh) is defined and

(Hlag + nhy = 2{flgy + p iRy -
Also, {Ag + wh|f) is defined and

Ag + phlf) = 2*{glf) + w*<blf) -
These assertions follow from Proposition 3.12.

3.13 Proposition: Assume that the set I has the following property:

(I,) If s € I is comparable to 8, then s is comparable to o.

Let f € Hy be such that f == 0 and that {f|f) is defined. Then {f|f) > 0.

Proof: The assumption that {f|f) is defined means that J(f) N J (f)
is not empty. Let 7 be any element of J (f) N J (f). Then 7 € J (f) N J (f),
since J (f) N J(f) is symmetric with respect to the involution 7« 7.
Let s € J (f) n J (f) be a common successor of 7 and of 7. Such an s exists
since J (f) N J (f) is directed to the right. Then § is a common predecessor
of r and of 7; consequently § < s. By the assumption (I,), then, s is
comparable to 0 and § < o < s. Since J (f) N J (f) is the intersection of
a final and an initial subset of I, it follows that o € J (f) N J (f). Conse-

quently {f|f) = (fo, fo) > 0, q. e. d.

4, Operators
a) Definitions
Let Hy=[H,; E,,;I| and Fp = [F,; Ey,.; I'] be nested Hilbert
spaces. Let (I x I'), be the ordered set defined by (2.6).
For every pair {r, r'} € (I x I'),, let L(r; r') be the Banach space of all
bounded linear operators from H, into F.. If {s,s'} =, {r, 7'} then the

correspondence
By(s,s'sr,0): App—> By Ay By (4.1)

is an injective linear mapping from L(r; #’) into L(s; s').

In order to verify that B, (s, s"; r, ') is injective,let By 4., E, = 0.
This means By A, B, f, = 0 for every f, ¢ H,. Since E,, is injective,
it follows that A,., E,,f,= 0 for every f,¢ H,. So E.; H, has to be
contained in the null-space of 4, . which is a closed subspace of H,
since 4,, is continuous. Now E,; H, is dense in H, so that the null-space
of A,., is all of H,. This means 4,., = 0.

The family H,(s, s"; r, ') ({r, 7"} € (L x I'),, {s, 8"} =, {r, r'}) satisfies
the conditions (Ind,), (Ind,) of Section 2f.

Commun. math, Phys., Vol. 2 2
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4.1 Definition: Denote by L(Hj; Fy) the algebraic inductive limit
of the vector spaces L (r; r') with respect to the mappings E,(s, s'; r, r').

An element of L(H;; Fp) will be called an operator from H; into Fp.
This name will be justified in Section 4b.

4.2 Notation: The natural embedding of L(r; »’') into L(H;; Fp) will
be denoted by E,(I x I'; r, r').

The representative of A ¢ L(Hy; Fyp) in L(r,7') will be denoted
by 4,,.

The set of pairs {r, r'} such that 4 has a representative in L(r, r’)
is denoted by J(4) in accordance with the conventions of Section 2f.
It is a final subset of (I x I'),.

It is convenient to introduce the sets

D(A) = pr; J(4), (4.2)
R(A4) = prp J(4) . (4.3)

That is: D(A) is the initial subset of I consisting of elements r such
that {r, 7'} € J (4) for at least one 7" € I'.

R(A) is the final subset of I’ consisting of elements r’ such that
{r,r'} € J(A) for at least one r € I.

b) The vector Ak
4.3 Proposition: Let 4 ¢ L(H;; Fy) and let & € H; be such that

DAY NTh) + ¢. (4.4)

[i. e. that the intersection of the initial subset D(A4)< I and of the final
subset J (k) C I is not empty.] Then the vector £, 4., h,is independent
of the choice of r€D(4) N J (k) and of the choice of {r,r'} € J(4).

Proof: Let {r,r'} €J(A4), {¢. ¢’} €J(4), r€J (k) and ¢ €J (k). Since
J (k) is directed to the left there exists a common predecessor p of r
and of ¢ in J (k). Let s’ be any common successor of " and of ¢’. Then
{p,s}eJ(A)and Ay, =By Ay, B,y=Eg¢ ¢ Ay By

Consequently By, A, by = Byt App Bpp by = Agp by =By Ay ih,
which proves the assertion.

The vectotr By A, b, will be denoted by A% and called the image
of  under 4.

So: Ak is defined if and only if D(4) N J (k) s not empty.

We have to verify now that the set J(4) has properties analogous
to those established in Section 3ec.

Let r, g €I and o', ¢’ €I’ be such that all four pairs {r, 7'}, {r, ¢'},
{g, 7'} and {q, ¢’} belong to J (4). Consider the bounded linear mapping

Aoy A,,,)
4.5
(_'Aa'r ""‘Aq'a ( )
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from H, ® H, into F, ® F. The image of (;) CH o H,is
(A ot A ) ( e+ . )
_Aa’r fr I Aq’a 9e _'(Af)q' — (A g)q'

where f = E;, f, and g = E;, g,. Notice that the range of (4.5) is contain-
ed in F. ,; and that the image of any vector in Hy,,; is zero; indeed,

(4.6)

if (gf] :) € H{, 4, then f = —g. So: The image, under (4.5), of any vector

(g’) € H. ® H,is the image of the orthogonal projection of (é’) onH, .
['4 [Z

Denote by A 41(-q the restriction of (4.5) to H, .

Let s = r,q be such that £;  H=E; H, + E;  H, Let p" < 1', ¢
be such that B F, = Ep..F. N Ep F,. Then the bounded map-
pings E.(. o and Ep. ., are bijective by Theorem 3.9. Consequently
they have bounded inverses (see e. g. [5], p. 57) which will be denoted
by (Es(r a))(_;q])'s and (Ep’ ['r'a’])[_r’}’} o

We shall now verify that

Er'aJ’ (E[r' q’]p’);[}"q’] A[r’ a'1(rq (Es (r q))z;q%s Esr = Ar‘r (4'7 a)
and that

Eq’p’ (E[r' a']p’);[}"q'] A[r' a'1(rq) (Es(r q))(_r-q])'s Esa = Aq'q . (4-7b)

Let h, be any vector in H,. Then (E,( o) dsEs, by is the pair (; ') €
g

€H, such that E,.f.+ E,,9,= E,, h,.. Notice that E;.f.+ E;,9,
= Eyp, h,. Consequently

Ay 10 (gq) = (_(ﬁ);;,,:(ﬁ Z;),) = (—(‘/(ij)h),,) :

B 10)y [lf’q’] (_(zlAh }),,')’d,) = (4h)y ,

and finally B, ,(4h), = (4hk), = Ay, h,. This proves (4.7a). The proof
of (4.7D) is the same.

So we have established

4.4 Proposition: Let 4 ¢ L(H;; Fy). Let r, ¢ € I and r', ¢’ € I' be such
that all four pairs {r, '}, {r,¢'}, {¢, '}, {¢, ¢’} belong to J(A4). Let
s = r,qbesuchthat B;  H = E;, H. + E; , H,and p’ < r', ¢’ such that
By Fy=Ep,FonEpyFg. Then {s, p'} € J(4). The representative
of 4 between H, and F is

Ay 5= (B q’]p’);[];’q’] A 160 Bsr a))(_;q%s . (4.8)

Here Ay (g is the restriction of (4.5) to H(, and the mappings
E,,y and E[. 1, are described in Theorem 3.9.

Then

2%
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4.5 Corollary: For every A € L(H;; Fy) the set D (4) has the following
property: If r£D(4), g€ D(4) and if s = r,q is such that E; H,
=87, H.+ E;,H, then s¢D(4). In particular, D(A4) is directed
to the right.

4.6 Proposition: If 4% and Ag are defined then 4 (h + ¢) is defined.

Indeed, let r € D(A) N J(k), g€ D(A) N J(g). Let s = r, q¢ be such
that By, Hy= E;, H, + E;,H,. Then s¢D(A4). On the other hand,
s €J (k) N J(g) since J (k) and J(g) are final subsets. So s €J (b + g) 2
2J (k) N J(g). This proves that D(4) N J (k + g) is not empty.

In other words: The domain

HD(A) = EIr Hr (4.9)

)
reD (4)
of 4 is a vector subspace of H;.

4.7 Proposition: If A ¢ L(H;; Fp), BEL(H;; Fp) and h € H; are
such that Ak and Bh are defined, then (4 + B) h is defined.

Indeed, let r€D(A)NJ (k) and ¢ € D(B) N J(h). Let p < r,q be
such that B;, H,= E;. H. N E;, H, Then p € J (). On the other hand,
p€D(A) nD(B) since D(4) and D(B) are initial subsets of I. So
pED(A+ B)2D(4) n D(B). Consequently the intersection J (k) N
ND(A + B) is not empty, q.e.d. It is clear that ((A)h=A(h)
= { (4 h) for every complex {. So the results of this section can be sum-
marized in the statement that A4 is linear in A and in 4.

¢) Adjoint operators and matriz elements

Let A€ L(Hy; Fr) and let {r,»'} €J(4). Consider the bounded
operator (A*)zz from F; into H; defined by

(A*)zz = uir(Ar'r);kr’ Uyt - (4.10)

Denote by B, (I’ x I;7,7)the natural embedding of L (¥',7) into L (¥ ; Hy)
(see Section 4a. The roles of I and I’ are here interchanged).

4.8 Proposition: The operator A* = E,(I' x I; 7, 7) (A*);7 is
independent of the choice of {r, 7'} € J(4); so the notation on the L. h. s.
of (4.10) is justified.

Proof: Let {r, r'} € J(4) and {g, ¢’} € J (4). Let {s, s’} be any common
successor, in (I x I'),, of {r, 7'} and of {q, ¢'}. Then 4y ;= By, Ay, B,
= By Ay B, The adjoint of the last equality becomes, with the help
of (3.2b) and (4.10),

Esi(A%)iw By gy = Byq(A%) By -

This proves the proposition.
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The operator A* ¢ L(F; H;) defined by Proposition 4.4 is called the
adjoint of the operator A ¢ L(Hy; Fy).

The proof of Proposition 4.4 shows also that J(4*)2J*(A4) where
J*(A) is defined as in Section 2e.

The definition (4.10) gives immediately that

A% = 4 (4.11)

for every A € L(H;; Fy). [It is enough to verify the equality (4.11)
for one representative since an operator is determined by any one of
its representatives.] It follows that J (4**) = J(4) 2 J*(4*). So J*(4) 2
2 J(4*) and finally

J*¥(A4)=J(4%). (4.12)
In particular, taking the I-projections and I’-projections we obtain
D(4%) = R(A) (4.13)

and
R(4*)=D(4). (4.14)

4.9 Theorem: The correspondence 4 <« A* between L(Hj; Fy) and
L(Fp; Hy) is antilinear, involutory and bijective.

Proof: (a) The antilinearity follows from the antilinearity of the
correspondence (4.10) between 4,., and (4*);;, and from the linearity of
E,I' x I;7,7).

(b) The correspondence 4 «+» A* is involutory by (4.11).

(c¢) The correspondence 4 — A* is injective: If (4*);7 = 0, then
A, = 0 since the operators u;, and u,.; are unitary. The correspondence
A — A* is bijective since every B € L(F» Hy;) can be written as B = A*
with 4 = B*. This completes the proof of the theorem.

If h€Hy and f€Fy, then J(h) x J(f) denotes the set of all pairs
{r, 7'} such that r € J (k) and 7' € J (f). It is a non-empty initial subset of
(I x I,.

Let A € L(Hy; Fp), h € Hy and f € F. be such that the intersection
of J(A) and of J () x J (f) is not empty. This means that there exists a
{r,7"} €I x I' such that reJ(h), ' ¢J(f) and {r,r'} € J(4). Then
r€J (k) N D(A) so that A% is defined. Furthermore Ah = Epo Ayy b,
so that 7’ € J (4 k). Consequently J (f) N J (Ah) is not empty so that the
scalar product (f|4g) is defined (in F.). Denote this scalar product by
{f |4| &) and call it the matrix element of 4 between % and f.

So: The matriz element {f |A| k) is defined if and only if the initial
subset J (k) x J(f) S (I x I'), and the final subset J(A)< (I x I'), have o
non-empty intersection.

It is important to notice that there can exist pairs of vectors & € Hy,
f € Fy, such that {f|4 %) is defined and that {f |4| &) is not defined. For
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example, let 4 and kb be such that 4% is defined and that A% = 0. Then
{f|A k) is defined for all f € Fy,, since J(4h) = J(0) = I'. On the other
hand, the matrix element {f |4] %) need not be defined for all f € Fj,
since the intersection of J(h) x J(f) and of J(4) may well be empty.

In general: If {r, 7'} € J(4) then r' € J(AR) for all h ¢ E;, H,. This
ensures a common ‘“‘goodness” of all vectors in A E;, H,. Individual
vectors Ah(k € E;, H,) may however have much larger J(45) than this
assured minimum. So J (&’) 2 J (2) does not imply that J(4A") 2 J (4 R).
Consequently, the existence of (f|4%) does not imply the existence of
(f|4AR") for all &’ such that J (h’) 2 J (k). On the other hand, the existence
of {f|4|h) [i.e. the condition (J (k) x J(f)) N J(A4) = ¢], does imply
the existence of {f' |4'| k') for all ', 4’, A’ such that J(f') 2 J(f),
J(4") 2 J(A4) and J(B') 2 J (k).

4.10 Proposition: If {f |4| k) is defined, then A*f and {(4*f|k)
(scalar product in H;) are defined. Furthermore {(A* f|h) = {f |4]| k)
— (fl4h.

Proof: Let {r,r'}¢J(A4), rcJ(h), v ¢J(f). Then {F',7}€J*(4)
= J(4*).So 7 € D(A*) N J (f) which shows that A* f is defined. Further-
more 7 € J (A* f) which shows that J(4* f) N J (k) is not empty so that
{A4* f|h) is defined. Finally, by (4.10)

<A* flh> = (urF(A* f)i: hr)
= (uﬁ' Uz y (Ar’r);kr' Uy 3 fi-" hr)
= (ur’?" f’?’: Ar’r kr) = <ﬂA h)

which proves the assertion.

4.11 Proposition: If {f |4| k) and {f | B| &) are defined then {f |4 +
+ BJh) is defined. If {f || k), {f |4| %), {f'|A| k) and {f' |4|R") are
defined, then {f + ' |4| & + A") is defined. The matrix element {f |4| k)
is linear in %, antilinear in f and linear in 4. The complex conjugate of
(ALY s (b 1477, )

Proof: (a) Assume that (J(f) x J(h)) NnJ(4) and (J(f) x J (k) N
N J(B) are not empty. Let {r, '} € (J(h) x J(f)) nJ(4) and {g,q'} €
€(J () x J(f)) nJ(B). Let p < r,q be such that E;, H,= E;, H, N
NE,H, and s’ = 1',q" be such that Ep ¢ Fy = Epo Fro + Ep o F .
Then {p, s’} €J (k) x J(f) by the results of Section 3c. Furthermore,
{p, s’} is a common successor, in (I x I'),, of {r, 7'} and of {g, ¢'}. Since
J(4) and J(B) are final subsets of (I x I’),, it follows that {p, s’} €
€J(A)NnJ(B)CJ (4 + B).So(J (k) x J(f)) " J (4 + B) contains {p, s’}
and is consequently not empty. This means that {f |4 4+ B| k) is defined.

(b) Assume that the sets (J (h) x J (f)) N J (4), (J () x J (1)) N J (4),
@) x T nJI(4) and (J(&') x J(f)) nJ(4) are all non-empty.
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Let {a,a’} €(J (k) x J(f)) nJ(4), {b,b}c(J(R) % J(f))r\J(A)
{e,c} () x J(f)) nJ(4) and {d,d'}c(J(H') x J(f')) nJ(4). Let
r < a,b be such that E; ,H,= E;, H, N\ E;, H,. Then r GJ(h). Simi-
larly,let ¢ < ¢, dbesuchthat E;, H, = E; , H, N E;4 H;. Theng €J (B').
Let = d/, ¢’ be such that E;.F.,=E;p,F,+ Ep,F,. Then
7 €J(f). Similarly, let ¢’ = b’, d’ be such that By, Fp = Epy Fyy +
+ Ep gy Fy. Then ¢ €J(f)). Furthermore, {r,r'} =,{a,a'}; {r.q} =,
=,{b,0}; {g, 7"} =,{c, ¢’} and {g,¢'} =,{d, d'}. Since J(4) is a final
subset of (I x I'),, it follows that all four pairs {r, 7'}, {r, ¢'}, {g, 7'} and
{g, ¢'} belong to J (4). Consequently Proposition 4.4 applies:

If s = r,qissuch that B; H = E; H, 4+ E;,H,, andif p’' < », ¢
is such that By, F = Bp.F.NEp,F,, then {s, p'} € J(A4). Notice
that s€J(R) N J(B') S J (b + A') since J (k) and J (k') are final subsets.
Similarly p' € J () NI (f) S T (f + ).

Consequently {s, p'} €(J(h + k') x J(f + f)) " J(4) which shows
that {f + /' |A]| b + A"} is defined.

(c) The assertions about linearity and complex conjugation can be
easily verified.

This concludes the proof of Proposition 4.11.

d) Product of operators

Let HI = [Hr; Esr; I]> FI’ = [Fr'; Es'r’; I’] and Gl” = [Gr”; Es”r";
I'"] be nested Hilbert spaces. Let 4 € L(Hy; Fy) and B¢ L(Fp; Gyp).

Assume that R(4) n D (B)is not empty (see Section 4a for notations).
Then

4.12 Proposition: The operator E,(I x I'"; r,r"") B, A, € L(Hy;
Gy-) is independent of the choice of ' € R(4) N D(B), {r,r'} €J(4)
and {r’, "'} ¢ J(B).

Proof: Let r"¢R(A)NnD(B), ¢ ¢R(A)NnD B), {r r } cJ(4),
{g. ¢y €J(A4), {r',r"'}€J(B) and {¢’, ¢"’} € J(B). Let ' = r’, ¢’ be such
that By o Fy = Ep, F, + EI «Fg. Then {s', r”} €J(B) and {s',q""} €
€ J (B) by Proposition 4.4. If s = ", ¢" and if p < r, ¢, then

Es"r” Br”r' Ar'r Er:a = Es”r” Br” s Es'r’ Ar‘r Erp
= Es”r" Br"s' As’r Erp = Bs"s‘ As’p
Similarly By y» Byr g Ay g Bgp = Byrg Ag . So
Es"r" Br"r’ Ar'r Em = Es" a’ Ba" I'd Aa’a Eap

which proves the proposition.
The operator defined by Proposition 4.12 will be denoted by BA
and called the product of B and of 4.
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So: The product B A is defined if and only if the intersection of the final
subset R(A) C I' and of the initial subset D(B) C I’ is not empty.

4.13 Proposition: If BA and C4 are defined, then (B4 C)A4 is
defined. If BA and BC are defined then B(4 + C) is defined. The
product B A is linear in B and in 4.

Proof: (a) Assume that R(4) " D(B) and R(4) n D(C) are not
empty. Let r' € R(A) N D(B) and ¢' € R(A) n D(0). Let p" < 7', ¢ be
such that E;, F,=E; . F.NEpyF, Then p €R(4A) by (4.13),
by Theorem 3.9, and by the Corollary to Proposition 4.4. Furthermore
p' €D(B) N D(C) since D(B) and D(C) are initial subsets of I’. So
' €D(B+ C) 2 D(B) A D(0).

This proves that R (4) n D(B + C) is not empty i. e. that (B + C)4
is defined.

(b) Assume that R(4) N D(B) and R(C) n D(B) are not empty.
Let " ¢ R(A) N D(B) and ¢' € R(C) n D(B). Let ' = r', ¢’ be such that
EpyFy=E; . F.+ B F,. Then s €D(B) by the corollary to
Proposition 4.4. Furthermore s' € R(C) N R(4) € B(C + A) since R(C)
and R(4) are final subsets of I'. So s’ ¢ B(C 4+ A) N D(B) which proves
that B(A + C) is defined.

(¢) The assertion about linearity is immediately verified. This
concludes the proof of the proposition.

4.14 Proposition: Let 4 € L(Hy; Fy) and B¢ L(Fy; Gp) be such
that BA is defined. Then A* B* is defined and

A* B* = (BA)* . (4.15)
Proof: Let {r,r'} € J (A*) and {s’, 7"’} ¢ J (B). Then, by (4.12), {f"",7'} €
€J(B*) and {7, 7} €J(4). So 7 € R(B*) n D(4*) which shows that
A* B* is defined. Furthermore, the representative of A* B* between
G5 and H; is
(A* B*)z50 = (A%)ip (B*)3 5
= Uy (A n)f o Wir e (Bpor ) oo o
= Uzp (Br"r' Ar’r);kr” Uprr 10 = uir((BA)r”r)fr” U507
= (BA)*);7-

which proves the assertion.

e) Linear functionals and their adjoints

The set C of complex numbers, being a one-dimensional Hilbert
space, can be considered as a nested Hilbert space. If H; is an arbitrary
nested Hilbert space, then one can study the spaces L(C; Hj) and
L(H;; C), defined as in Section 4a.
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Consider first the space L(C; r) of linear maps from C into the Hilbert
space H,. If A, is any vector in H,, denote by |k,) the map which associat-
es, to every { € C, the vector |h,) (= Ch,€H,. Clearly |h,) € L(C; 7).
Every element of L(C;r) can be written in the form |f.), with a unique
.f € H r

If s = r (r € I), then the correspondence (4.1) becomes

Ik,) > By 1) . (4.16)
In the present discussion, the set I corresponds to the set I’ and also to
the set (I x I'), of Section 4a.

Notice that

Esrlhr) = IEsr kr) . (4.17)
Indeed, for every (€C, one has E.,|h)l=E,Clh.=CE,h,
= IE or ) C.

Following Section 4a, define L(C; H;) as the algebraic inductive
limit of the spaces L (C; r) with respect to the mappings (4.16). Denote
by E,(I; r) the natural embedding of L(C; r) into L(C; Hy).

4.15 Proposition: Let » € Hy, and let r, ¢ be elements of J(%). Then
E,(I;7)|h,) = E,(I; q)|h,). In other words: The element E,(I; r)|k,) of
L(C; Hy) does not depend on the choice of 7 € J (h).

Proof: If b, and h, are representatives of A, then there exists an
s=r,q such that E h, = E  h, By (4.17), then, E|h,) = E,|h,)
which proves the assertion.

For every h ¢ Hy, denote by |k) the element of L(C; H;) defined by
Proposition 4.15.

4.16 Proposition: The correspondence between # and |k) is a linear
bijection between H; and L (C; Hy).

Proof: (a) It is easy to verify that the correspondence % — |h) is
linear and injective.

(b) Let 4 be any element of L(C; H;) and let 4, , be any one of its
representatives. Then there exists a A, € H, such that 4, = |&,), since
A, ,€L(C;r). With the help of (4.17) one sees that A = E;, h,. This
proves the proposition.

Consider now the mapping { — |k) {, defined as in Section 4b. It is

given by
[BYC=Ch. (4.18)
Indeed, if |A,) is any representative of |k}, then |h) (= E,(I;r) |h,)
= CEIr hr =(h.
Notice also that
R(|p)) = J(R). (4.19)

Indeed, if » € J (k) and if A, is the representative of k in H,, then |&,)
is the representative of |A) in L(C; r). Conversely if |k,) is a represent-
ative of |h) in L(C; r), then h, is a representative of » in H,.
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The set D (|k})) is trivial; it consists of a single element.

Denote by <h| the adjoint of |h) (see Section 4c). Then <h| is an
element of L(H;; C). It follows from Theorem 4.9 that every element of
L(Hy; C) can be written in the form <#| in a unique way.

It follows from (4.13) that D({k|) = J (k) so that the domain of the
linear mapping g - <{h| g is Hj .

Let r € I and &, € H,. Then the (Hilbert space) adjoint of the mapping
|k,) is the mapping (k,| which associates, to every g, € H,, the number
(%, g,). From the definition 4.10 it follows that the representative of {A|
between H; and C is (k,|u, ;.

So: If g € Hy(,, then

Chlg = <Rlg) - (4.20)
The scalar product {k|g) is defined if and only if (h|g is defined.

These results can be put into a form which is reminiscent of the
classical Riesz-Fréchet theorem on the representations of continuous
linear functionals in a Hilbert space.

Let D C I be an initial subset which has the following property:

(D) If r €D and g € D are arbitrary, then there exists an s = 7, ¢
such that s € D and that E;  H,= E;, H,+ E; , H,.

It follows from (D) that Hp = r’%JD E;, H, is a vector subspace of H;.

Define a regular linear functional in H; as a complex-valued linear
mapping ! which

(i) Is defined on a vector subspace of the form Hp, where D is an
initial subset of I satisfying the condition (D,).

(ii) Is bounded in the following sense: If r € D, then there exists a
number y, > 0 such that

for every &, € H,. The dependence of y, on r € D is arbitrary.
(iii) Is maximal in the following sense: There exists no linear func-
tional [ satisfying (i), (ii) and such that I is a proper restriction of I.
Then
4.17 Proposition: For every & € H;, the mapping

g—><klgy (g €Hsm) (4.22)

is a regular linear functional.

Conversely, if 7 is any regular linear functional in H;, then there exists
one and only one 4 € H; such that [ is the mapping (4.22).

The proof consists in showing that regular linear functionals are
precisely the ones given by L(C; H;). It will be omitted.

Let H; and Fp be nested Hilbert spaces. Let 2 € H; and f € Fp be
arbitrary. Then the product |f){h|€ L(H;;Fp) is defined by the
criterion of Section 4b. Indeed R ({%|) and D(|f)) are the trivial one-
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element set that indexes C. If g € Hj(;), then |f) (hlg = {(h|g) f. Notice
that e. g. D(|f) {h|) may contain (properly) D({k|) = Hj ). This is the
case if f = 0 and J (k) == 1.

5. Nested Hilbert space associated to an orthonormal basis

We are given a separable Hilbert space H, and an orthonormal basis
{rF} (k=1,2,...) in H,. It is shown below that there exists a nested
Hilbert space around H, which is, in a certain sense, naturally associated
to this basis. A suitable choice of H, and of the basis {h{¥} allows us to
construct nested Hilbert spaces with desirable special properties. In
order to have the results in a form ready for applications, we shall
consider the case that the basis {1’} is given as an n-tuple sequence.

a) The set I

Throughout this part of the paper, » will be a fixed integer such that
n = 1. Let
r(k)y=r(ky, ... k) (b, ky.. 0 k,=1,2,...)

be an n-tuple sequence of strictly positive numbers (r(k) > 0). In the
set It of all such sequences define an order relation by writing » = p
if and only if r(k) = p(k) for every k. There exists in I™ an order-
reversing involution: If » € I, then 7 is defined by 7 (k) = 1/r(k). Notice
that the element o, defined by o(k) =1 for every £k, satisfies o= o.
Furthermore, a common successor of 7 € I® and of ¢ € I® is max(r(k),
g(k)). So the set I satisfies the conditions of Section 2e.

b) The Hilbert spaces H,
Let H be a separable Hilbert space and

(A} = (e T (B ..k, =1,2,3,...) (5.1)

an orthonormal basis of H,. Denote by V the subset of H, consisting of
the finite linear combinations of the vectors 2. Let r be any element
of I, Consider the prehilbert space obtained by defining the scalar
product of fo € V and of g, € V as
%’ (for 1) r=2 (k) (hg?, go) - (5.2)
(The sum contains only a finite number of non-zero terms.) Denote
by H, the completion of this prehilbert space; it is a Hilbert space.
5.1 Proposition: If s = r (r € I®™) then H, 2 H,. The natural embedd-
ing of H, into H is a nesting — to be denoted by E,, — which satisfies

1B, =1. (5:3)
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The family of nestings E,,(r € I, s = r) satisfies the conditions (Ind,)
and (Ind,) of Section 2f.

Proof: Let r ¢ I®™ be given. To every f, € V associate the sequence
(R, f,) of complex numbers. The closure (in H,) of this correspondence
is a unitary mapping from H, onto I® (u) where y is the discrete measure
given by u; = r~2(k). The assertions then follow from Propositions 2.9
and 2.5. (Every unitary mapping is a nesting.)

¢) The nested Hilbert space H

Let H{ = [H,; E,,; I™] be the algebraic inductive limit of the
family H,, considered in the preceding section, with respect to the
nestings E,,. The purpose of this section is to show that H{ is a nested
Hilbert space. Denote by E;, the natural embedding of H, into H{®.
Consider in H{” the vectors

B® = E; B . (5.4)

Here {A{} is the orthonormal basis (5.1). For every r ¢ I®, consider
also the vectors

e k) = ¢ (k) h®) (5.5)
Notice that
J (h™) = J (e By = () (5.6)
and that
[AP] = =2 (k) . (5.7)

By (5.2), the representatives e{: ¥ form an orthonormal basis in H,:

(egr: k)’ eg_r: :i)) — 5” .
Here 61”- = 67617', [N 6]‘"7'”.

It follows from (5.4) and (5.5) that, for s = 7,

B,, 0 = L0 o (5.8)

Furthermore, by (5.7) and (5.8),
R 59)

For every r ¢ I™, define u;, by
U, €70 = TR (5.10)

linear extension and closure. It is clear that u;, is a unitary mapping
from H, onto H;.

5.2 Proposition: The family u;, satisfies the condition (NH,) of
Section 3a.

Proof: (a) ugo = 1 by (5.10), since 6 = o.
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(b) Remember that 7(k) = 1/r (k). Then, by (5.10), (5.8) and (5.9),

u,,.E Uz e(s,k) Uy E~§e(§§;k)

@)

k K o ,
&;W oFI) — SE;‘“”=(EMm69“-

=1

Since this is true for every k, the assertion of the proposition follows.
Let f ¢ H?, and r € J (f). Then, by (5.10) and (5.5)

(s 1) = %‘ |(f,, ri®) |2 = %‘ |(Wsr fps 7, €T 0) 2
= Akg (g fr, €7 )2 = %‘ 7 (k)| (uz fr, BEP)[2
= %' r=2(k) | (g fr, B2 (5.11)
Let f¢ H and r¢J (f). Then the representative f, can be expanded

with respect to the basis {¢{”* ®}. This gives

fr = A:J (fn e;r;k)) eﬁr;k) = 4’? (Uzr fr, Uzy e;r;k)) eg_r;k)
= %: (uir fr: 6(7;;,6)) e;_r; ® = 17? (uir fr! h(Fk)) kﬁk) (512)

where the sums are all strongly convergent in H,.
Let f€HY, and r, ¢€J (f). Let @ be any common predecessor of r
and of ¢q. Then, with the help of (5.6) we obtain

(u;T ff’ h; (u'r’r ETG fa& T) = (fa’ ra ar qu ")
= (fas %aa Eaz bz) = (fa %az Pa) -
Similarly (45, fe hg) = (fas %az Pa), SO that
(wzp fr Bz) = (u(zq fq, k&) . (5.13)

5.3 Proposition: Let r» and ¢ be any two elements of I®. Define
p€I™ by
p(k) = min(r(k), q(k)) . (5.14)
That is: For every k, p(k) is the smaller of the two numbers r(k), g (k).
Then p < r, g and
E,,H,=E;,HNE H,. (6.15)

Proof : The only part of the statement that requires proof is E;, H, 2
2E;. H.nE;,H, We shall first prove the following assertion: Let
¢ (k) be an n-tuple sequence of numbers such that the series 3 ¢ (k) A%

P

and > c(k) kg‘) are strongly convergent, in H, and H, respectively.
P
Then the series 37 ¢ (k) A is strongly convergent in H,.
k
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Indeed, denote by 3’ the summation over a finite subset. Then,
by (5.7) and the orthogonality of the A* (resp. the A{*¥)), we have

127 ¢ (k) KR = %" le (k)[* r=2(k)
|27 k) WP = X7 e (k)P g2 (k)
127 e (k) P2 = %" (k)2 p=2(k) = %:' le(k)[2 (r=2 (k) + ¢~ * (k)
= 127 ey P+ 157 o(k) BP*
So 1t the partial sums of X7 o(k) P and of X' o(k) h? are Cauchy
sequences, then the partial sums of %’ ¢ (k) ¥ are also Cauchy sequences.

Since H, is complete, the series ) c(k) ¥ is strongly convergent.

%
Now let f € Er, H, N By, H,. Write ¢(k) = (g, fr, B¥) = (ugq fo B
[see (5.13)]. Then, by (5.12), we have the strongly convergent expansion

fr= 2 c(k) KP
k
fq=%‘6(k) h(qk) .

It follows that the series 37 ¢ (k) A% is strongly convergent in H,,. Denote
its sum by f,. Then k

By fy =2 o(k) Bpy 1P = X o(k) BP = 1,
k k

which shows that f, should be denoted by f, and that it is the represent-
ative of f in H,. So f € E;, H,, which proves the proposition.

Acknowledgements. It is a pleasure to acknowledge the hospitality of the Courant
Institute of Mathematical Sciences during the academic years 1963—1964 and
1964—1965 when most of this work was completed.

References

[1] ScawarTz, L.: J. d’Analyse Mathématique (Jerusalem), XIII, 115 (1964).

[2] GrossMaNN, A.: J. Math. Phys. 6, 54 (1965).

[8] GeL’FaxDp, I. M., and N. YA ViLENKIN: Generalized Functions, Volume IV.
Moscow: State Publishing House of Mathematical and Physical Literature
1961.

[4] Rigsz, F., and B. Sz-Nagy: Lecons d’analyse fonctionnelle. Budapest: Aka-
demiai Kiado 1952.

[5] Duxnrorp, N., and J. T. ScEwARTZ: Linear operators I. New York: Interscience
1958.

[6] BourBaxi, N.: Eléments de mathématique; Théorie des ensembles, Fascicule
de résultats. Paris: Hermann 1963.

[7] — Eléments de mathématique; Algébre linéaire. Paris: Hermann 1962.

[8] Harmos, P. R.: Measure theory. Toronto, New York, London: Von Nostrand
1950.





