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in a Quantum Field Theory*
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Abstract, For the case of a field theory with a nuclear space of test functions
(for instance, the space of strongly decreasing test functions) compact sets of states
are constructed; these correspond to sets of localized states. Only such states are
considered which are elements of a fixed subspace of the entire Hubert space. This sub-
space belongs to the m-point functions of order less than a certain fixed 2 n.

1. Introduction

If one compares the possibilities of a pure scattering theory with
those of a quantum field theory, one is inclined to suppose that the
methods of a quantum field theory are more adapted to express localized
quantities. It is not quite obvious that a quantum field theory can indeed
perform this. It is well known that one can construct in a relativistic quan-
tum field theory dense subspaces of the whole Hubert space by applying
only very restricted subalgebras generated by the field operators to the
cyclic vacuum-state. For example, the algebra with test functions all
lying in a small neighborhood of a fixed point of four-dimensional space
leads to a dense subspace of § .

It is the intention of the following remarks to get a preliminary
idea about the possibilities of the localization of states in a quantum
field theory. In this we are guided, roughly speaking, by the concept
that two states which are localized at a certain time in two non-over-
lapping regions of three-dimensional space should be orthogonal or nearly
orthogonal to each other [1]. Another approach to the problem of locali-
zation is that of KNIGHT [2] and LICHT [3] ("strict-localization"), who
begin with the concept of localized observables.

As it may be more interesting to clarify the problem in the relativistic
case, we will make the approach in a theory which essentially fulfills
WIGHTMAN'S axioms [4]. But not all the axioms are needed for the proof
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266 SIEGFRIED SCHLIEDER:

of the statements made below. It will be noted in the special cases which of
the axioms are used, if it is not obvious by itself.

The results depend upon relations which exist between the space of
test functions and the generated Hubert space [4]. These have been
presented in several papers [5—7] in the second section one finds a short
survey applying these relations to the special case we treat in this paper.

For the following remarks results are used which are valid for the
asymptotic properties of matrix-elements with respect to the translation
of the states in Minkowski space. One can find these results in papers
chiefly written in Zurich [6—10]. For simplicity the following remarks
are developed for the case of a real scalar field A (x). Some concepts and
theorems are taken from topology. These are explained in the text and
references are given where necessary.

2. The topological space of test functions and the Hubert space of states
in a special case

One can show with rather general assumptions that field operators
A (x) defined at the point x make no sense [11]. One has to treat them as
operator-valued distributions, i.e., multiply them by certain test functions
and then integrate (see, however [12]):

/ A (x) φ(x) dx .

In this manner one gets well-defined operators in Hubert space.
Thereby use is frequently made of the space of strongly decreasing test
functions SP. The following remarks are valid for a more extended class
of test functions. For instance the countably-normed nuclear Hubert
spaces belong to this class [13] (compare also [14]). Let Φ be such a
space and let the countable sequence of norms defined by means of a
countable number of scalar products be denoted by

ii « o > « i i , . . . , i « . , . . .

One introduces the scalar-products in such a manner that

II I I. £ II IU+x
holds. For example, for Sf (E1) (the strongly decreasing test functions in
one variable) one defines the norm || ||n by means of the scalar product

(<P, X)n = / (1 + xΎn Σ Ψ{k) (x) X{k) (a) dx .
& = 0

One has to extend the sum up to the n-th. derivative. By using this
sequence of increasing norms for the definition of a fundamental system
of neighborhoods of zero, one gets a topology which becomes more and
more refined. It can be proven that the final topology is the same as that
obtained from the usual definition of norms by L. SCHWARTZ [15].
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In the case of several variables, which is treated later on, proof will
be given in the Appendix.

Changing the point of view somewhat, one can introduce a sequence
of Hubert spaces

Φ0,Φ1,...,Φn9...

Each space of this sequence is the completion of Φ with respect to the
corresponding norm it follows that

Φ o 5 ΦiD ••• Z>Φn^ ••••

One gets Φ back again if one performs the intersection of all the spaces:

What property must be added so that this countably-normed Hubert
space is a nuclear one ? To answer this question one should initially look
at the concept of a nuclear operator. A nuclear operator B which, for
example, maps one Hubert space § 2 into a second Hubert space § 2

can be written in its polar- decomposition B = J A, where J is an isometric
mapping from ^ i n t o ί ^ , and A is a bounded Hermitian operator in § x

with a positive spectrum. A then has the property that its spectrum is
oo

discrete and the sum over its positive eigen-values converges: Σ λn< oo.
n = 0

The nuclear operators therefore form a special subclass of the class of
completely-continuous operators.

For the sequence of space Φo, Φv . . ., Φn, . . . one can define a system
of mappings gQr: Φr -> ΦQ, r > q: each element of Φ is an element of
Φr and of ΦQ. The symbol gQr is defined as the unique continuation of the
identity mapping for the elements of Φ into the whole space Φr. The
property of nuclearity of Φ is defined in the following way:

(A) To each space Φq one can find a certain space Φr so that the map-
ping ggr from Φr into ΦQ is performed by a nuclear operator.

In the next section we wish to discuss the special case of the Hubert
space of states given by the 2π-point distribution:

(Ω, A fa) A (X2) . . . A (x2n) Ω) (Ω the vacuum-state).

To this distribution belongs a linear space of states of the form

{A (Ψl) A (ψ2) ...A (Ψm) Ω} , Ψj 6 Sf{W),

which becomes a certain Hubert space via completion. For simplicity
this will be denoted by ί) in this paper. From the nuclear theorem of
L. SCHWARTZ [17], valid for nuclear space of test functions, one knows
that ξ) contains the more general states

{ JA{x1)i . . .,A(xm) φ(xv ...,xm) dxv ...,dxm Ω} φ

1 8 *
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Therefore, one can look upon the construction of § as a mapping from the
space of test functions £f {E^m), now identified with Φ, into the Hubert
space ξ). The properties of this mapping have been investigated in the
more general case of the construction of the whole Hubert space by several
authors [5—7]. From these papers the following properties of Φ, § ,
and the mapping j from Φ into £j are known and will be used in the follow-
ing sections:

(B) the mapping j is continuous,
(C) the spaces Φ and ξ> are separable.

Besides Φ and j there is given a group of symmetry G (here it is as-
sumed that G is the Poincare group Lj). The group G induces linear
continuous transformations T(a,Λ) in Φ and is represented by unitary
operators U(a,Λ) in ξ). The transformations of G commute with j:

j{T(a,Λ)φ}=U(a,Λ){j(φ)}. (1)

3. Sets of Φ which are mapped into compact sets of S>

One can imagine the following situation:
a) The physical system is enclosed in a box with potential walls of

infinite height.
b) The number of kinds of particles enclosed in the box is finite and

the rest-masses of the particles are not equal to zero. Thereby one assumes
that the box is large enough that one can describe a state of the system
as a superposition of free particle states.

If one regards the states with energy between zero (only the given
vacuum-state has energy zero) and a certain upper limit for the energy,
then one gets a finite-dimensional subspace of the Hilber space. As one
cannot expect to get such a simple situation in the case of a quantum,
field theory, HAAG has proposed that in this case one should try to describe
sets of localized states with an upper limit for the energy by the concept
of compact sets of states in the Hubert space*.

In a metric space the compactness of a set is usually defined by a
property of sequences. (A subset M of a metric space is called relative
compact if each sequence with an infinite number of different elements
in M has at least one point of accumulation, and is called compact if
the points of accumulation lie in M.) However, in connection with the
situation described at the beginning of this section, another definition
can be used. In a metric space each compact set M has a finite ε-net
(see e.g. [16], p. 56). This means for instance, in the case of a Hubert
space: given an arbitrary fixed ε > 0 one can introduce a finite number

* I am very grateful to Professor HAAG for giving me in a private discussion the
suggestion of the physical situation described at the beginning of this section.
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of states yk ζ M in such a way that there can be found for each x ζ_M
at least one yk with \\x — yk\\ ^ ε .

Therefore with respect to the limitations of physical observations a
compact set of states is closely related to a finite set.

For the space Sf{E*m) one has the countable set of norms

\\φ\\l = f (1 + ρ 2 ) 2 «JΓ φM φW dx (2)
* = 0

where
M l

Λ 2 V o*2 ^2 /̂».0\2 I v2 /Q\

i = l
a n d

Ĵ(AJ) . φ(k) __ ^ 9 V i , . . . , 9 ^ φ ( # l 5 . . . , xm) X ^

X 3V i, . . .,dVkφ(xv . . .,xm) .

If one regards sets of the form || φ\\ \ ^ c2, then the function (1 + ρ2)2 3 under
the integral sign implies a restriction with respect to the properties of the
function in the α -space, while the sum restricts the properties in the mo-
mentum-space. For a more refined investigation it would therefore be
appropriate to introduce norms

WΨWQI Q2 ~ I (1 ~̂ ~ Q2)2qi Σ Ψ^ ' Ψ^ ά χ

which loosen the connection between both properties. For simplicity we
are at the moment not interested in doing this. From the topological
point of view it is sufficient to know that the special norms given above,

define by the inequalities \φ\Q ^ —» n« = 1, 2, 33 . . . a countable funda-
nq

mental system of neighborhoods of zero for the topology in Sf resp.
in Φ. This statement is proven in the Appendix.

The linear continuous mapping j from Φ into § must be bounded
with respect to a certain norm in Φ, for example, with respect to )| | | β :

Therefore one can continue j from Φ to the Hilbertspace Φq, the
completion of Φ with respect to || | |g with the same bound C. If j q is the
symbol for this continuation, then jq(ΦQ) still lies in ί). If appropriately
restricted the mapping jQ involves linear continuous mappings j t from
Φt -» S) for t ^ q. Using the property (A) of nuclear spaces a special
space Φ r , within the family {Φt}, can be chosen in such a way that
gqr is nuclear. So one gets:

Lemma 1. A bounded set of Φ r , e.g., Wr: \\φ\\r ^ c is mapped by
j r into a compact* set K of £j.

* The set jr (W
e

r) itself is in general only relatively compact.
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Proof: j r = jQgqr; gqrmaps Ψ% into a compact set Qc of Φq and ?α

is continuous; therefore Qc is mapped into a compact set of £j.
The magnitude of the norm || | | r and the mapping j r from Φr into §

are important for the following sections. But if one tries to compare
different elements of $) with respect to the magnitude of the r-norm of
their inverse images the difficulty arises that j r is not unique. Therefore
one can proceed in the following manner: If N is the linear set of elements
of Φr which is mapped into the zero element of § , it follows from the
continuity of j r that N is a closed linear subspace of Φr. Therefore one can
introduce in the quotient-spaceΦ,./^ = Φr a norm by the following de-
finition (see e.g. [16], p. 86):

\\φ\\r = inf i^l,; φζΦr; ψk^Φr. (5)
<Pk£oc

The symbol α is a class of elements which is mapped into the same ele-
ment of $), while Φr is again a Hubert space. I t is obvious that the mapping
j r from Φr into ξ) which is now unique has the property given by:

Lemma l a . A bounded set of Φr, e.g., ||g5||r <̂  c denoted by Ψ% is
mapped by j r into a compact set of £).

The transformations of T leave N and its orthogonal complement Nc

in Φr invariant. Therefore the operation of performing the inferior and a
transformation T (g) induced by an element g of 0 commute:

(D) if φeζoc has the property |9?e||r ^ \\ψk\\r f° r a ^ <Pk(.<z ̂ en
\\T<Pe\\r ^ hk\\r^OΐXk 6 βand Tφeζβ. The symbols α resp. β are classes
mapped resp. into the same elements of $).

In the following we will use the shorter notations ί) = Φr and / = j r .
The linear space /(§) is denoted by ©. (© is dense in §.)

From Lemma 1 resp. Lemma 1 a a simple conclusion can be drawn.
By means of the property (C) it is clear that one can construct a countable
orthonormal basis for ξ) with elements from ©. If {hv} with. (hv> hκ) = δvκ

is such a basis and if {φv} are the inverse images for the {hv} : f(φv) = K,
then the following lemma is valid.

Lemma 2: Each bounded neighborhood Wc

r: \φ\r ^ c contains only
a finite number of the inverse images φv for the basic vectors hv.

Proof: If Wc

r would contain an infinite number of the φv the set
f(Wγ) would contain an infinite set of orthonormal vectors; /(TF?) could
therefore not be situated in a compact subset in § . This is contrary to
Lemma 1.

From Lemma 2 follows that one can introduce an ordering for the
elements of an orthonormal base in ί) of the described type (with inverse
images in $)) with respect to the magnitude of the r-norm of its inverse
images:
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Only a finite number of elements can have the same magnitude of the
r-norm and the values of the r-norm have no point of accumulation.

4. Definition of localized states

In this section a certain definition of the localization of states will be
given. In the next two sections some properties of the states which are
localized by this definition, are investigated. By these properties one
gets a certain justification for the definition of localization given below.

To get compact sets of states in the Hubert space $) one was led to
consider a certain r-norm in the space of test functions Φ. However, this
use of the r-norm is still not adequate for the definition of localization
of a state at a certain point. From (2) and (3) it follows that for the
countable set of norms, and therefore also for the r-norm, the point
x = 0 is distinguished. However, the concept of localization in a certain
region of a state or a set of states should not prefer one distinguished re-
gion above another one. Therefore, one could try to use a more general
set of norms with (1 + Σ (Xj — α)2)2r instead of the norms with the func-
tion (1 + Σ xf)2r in the integrand. Rather than doing that, it is more
appropriate to consider for each element h of §) the set of the elements
{hb} obtained by applying all possible translations U (b) to h.

Definition: A normed state h of §> shall be called localized at the
point x = a (in the sense of r) in degree c if one has for the inverse image of
λ _ β = ϊ 7 ( - α ) λ :

| f . J r = c and \\φ_h\\r^c

with b as an arbitrary 4-vector; φ_b is mapped into h_b == U(—b) h.
From the structure of the r-norm given by (2), (3), and (4) one can

deduce that an absolute minimum must exist if one applies all trans-
lations to a state h of ©. But it is not obvious λvhether this absolute
minimum for the r-norm is reached by several translations %, α2, . . . or
just by one. The following lemma shows that the point where the minimum
is reached is unique.

Lemma 3: From ||$_αJ| r = | |$_ α J r ^ ||$-&||r> ° arbitrary, it follows
Oj = α2. The symbols φ-aχ, φ-a2 resp. φ_b are the inverse images for

h_ai= U(—ajh , h__a2= U(—a2) h resp. h_b= U(—b)h .

Proof: Let us assume that there is a state hx and a corresponding
inverse image φ1 with absolute minimum at two different points. Then
one finds a second state h corresponding to an inverse image with the
property that for a suitable 4-vector c Φ 0 the following equation and
inequality are valid:

\\φ+c\\r=\\φ,c\\rίί\\φ_b\\r (6)
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with arbitrary b. One has

m

m

where p is a positive function of its elements depending on the defining
test function for h and its derivatives up to the order r. From (6 a) it
follows that the terms belonging to an uneven power of C do not con-
tribute to the norm but the terms with an even power of C have a strict
minimum for c = 0. By obtaining this contradiction to the equation (6),
the proof of the lemma is completed.

Remark: The proof was carried out regarding only one representa-
tive in of the whole class φ of $) = l r. However, this simplification is
correct by means of the property (D) in Section 3.

From Lemma 3 it is clear that each state has one and only one centre
of localization in the sense of the definition given above. It is not difficult
to recognize the following property:

(E) the centre of localization of a. state is situated within the convex
hull of the support of the test function corresponding to this state.

This has some value for the following two remarks.
a) If one has two states hx and h2 localized at the same point, e.g. at

the point x — 0, a superposition of hx and h2 is in general not localized at
the point x = 0. This feature is originated by interference phenomena of
the involved states. One can find simple examples of this. Let us for in-
stance assume that the support of φ (xv . . ., xm) is a convex set that does
not contain the origin. Then the states Λx resp. h2 corresponding to

are both localized at x = 0 (which can be proven by means of an argument
based on symmetry relations). However, the superposition hx + h2 and
hλ — h2 are localized at different points,unequal to x = 0 this is obvious by
property (E). On the other hand property (E) guarantees that for two
states which belong to test functions with supports within the same small
part of the space E*m, the centre of localization cannot change its
position very much if one regards arbitrary superpositions of these
states.

b) The r-norms used above combine in a special manner restrictions
with regard to x-space and momentum-space. Lemma 1 is clearly also
valid for sets of test functions which are still more restricted, but with a
looser connection between the restrictions in position and in momenta:
i.e.,

t

f (1 + p 2 ) 2 s Σ Φ{k) ' <P(k) dx < c 2 with s > r, t > r .
β = 0
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These norms may also be used for the construction of compact sets in
the Hubert space £) and can be minimized for each state by applying a
suitable translation to this state. If for a certain state and a certain
norm one gets a minimum for the translation as t it is not clear from the
beginning how much ast may differ from the value a, where the minimum
of the formerly used r-norm is assumed. Then again property (E) shows
that in the case of test functions with small compact supports ast and a
cannot be very much different from each other as both are situated in the
convex hull of the support. This section should be completed by a remark
which distinguishes two concepts from one another. One concept is the
localization of a state (of §>) at a certain point, for instance at the point
x = 0. This idea finds its expression in the definition given in this section.
One can also introduce the concept of sets of states localized at a certain
point, e.g., at x = 0. Each state of the set has the property that the corre-
sponding r-norm has its minimum exactly at x = 0. This concept cannot
be extended to the linear hull of such a set; this follows from reasons
given in a).

The second concept is the localization of a set of states (of ξ>) in a
neighborhood of a point, for instance in a neighborhood of x — 0. Such
a set Ko of states is given by considering the corresponding set in ί) for
the inverse images given by \φ\r ^ c. The corresponding set for x = a
is || φ_ a\\ < c where φ is mapped into h and φ_ a into h_ a. A state of the
set Ko will in general not have its minimum of the r-norm at the point
x = 0. The set Ko can contain elements, where the minimum of the
r-norm is reached at a distant point from x = 0. But the definition of the
r-norm shows that such a state can only be represented in § by a vector
of rather small length.

Clearly a set of states localized in a neighborhood of a certain point
is not a linear space either. This statement even holds for the normed
superposition of two normed states with inverse images in \\φ\\r ^ c.
While in the preceeding remarks the limitations of the ideas introduced
so far became visible, it is the aim of the next section to make some
constructive applications.

5. States localized at the origin

At the beginning of this section a property is listed which shows that

certain orthonormal-bases in ξ) with inverse images in ξ) may be useful.
(Γ) If hx resp. h2 from ® are two orthonormal states and if \\φ1\\r = cv

II ΦAr = C2> (Φv Φz)r — 0> ci = C2 then a normed superposition
+ a2h2 (with lαj 2 + |α 2 | 2 = 1) has an inverse image with

Equation (F) can be easily derived from the definition of the r-norm.
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To introduce a suitable orthonormal base we look for the symmetry-
group in § . The group 0 (where 0 is the Poincaregroup L>) is represented
by unitary operators in § ; but equations (2), (3), and (4) show that the
r-norm is not invariant under the transformations of this group. On the
other hand one can see that the definition of each norm of the countable
set of norms of Φ} especially the r-norm, is invariant with respect to the
transformations of the group 0 4, the orthogonal group in the 4-dimensio-
nal Euclidian space. As each element of this group maps S) onto§ one
has a unitary representation for 0 4 im § however, 0 4 is not represented
by unitary operators in ί). The groups Lt and 04have in common the sub-
group 03, the orthogonal group in the ordinary 3-dimensional Euclidian
space. In this special case it follows from property (1) that

f{U^(g)φ}=Uίΰ(g){f(φ)}, gζθs, (7)

where U% resp. U$ are the unitary operators in $) resp. § correspond-
ing to g. If m(m + 1) is an eigenvalue for M2, the square of the operator
of angular momentum, and m3 is the eigenvalue of its third component
equation (7) shows that

f(φm,mz,κ) ~ 2J 'ιm,mz,v
v

The elements φm>mZi>t and hmm3}V possess the same eigenvalues m(m + 1)
resp. m3 for M2 resp. M3 the indices κ and v characterise further quantum
numbers.

Denoting by § m j W 3 the subspace of § with eigenvalues m(m-f 1)
resp. m3, and denoting by $)m>mz the corresponding subspace of $) one
has the obvious property that /(§w > m 3) = ®m>m3 is situated within £) W j m s

and is dense in this subspace of § . Therefore one can introduce in § m > W 3

by the method of Schmidt an orthonormal base {hnhms>v} with elements
from © m > w v Applying to a certain hm>msV the unitary transformations be-
longing to O3 and performing suitable linear combinations one gets the
representation space § m > „ belonging to an irreducible representation of O3.
From the property of isomorphism between the representations U$
resp. U$ it follows:

(G) to inverse images of the normed states of an irreducible representa-
tion $)mi v belong r-norms of the same magnitude.

With respect to the localization centre one finds:
Lemma 4: A state hmtV belonging to the representation space of an

irreducible representation ξ)m,v is localized at a point x with x = 0 .
Proof: If the state were localized at a point with x = c φ 0 then

m

\ \ φ - c \ \ * = / [ 1 +Σ (*, + c)2YrΊ>(Xv ...>*m) ^ i , ,dxm

9 = 1

should be minimal. The positive function p(xv . . ., xm) depends on the
first r derivatives of the test function φ(xv . . ., xm) as φ belongs to the
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eigenvalue m(m + 1) of M 2 one has p{x\, xx, . . ., x^, xTO) ^ P(xί>—xi>
, . . ., a Jj, — # m ) , and therefore

/ [1 + 1 1 fa + c)2]2r pfa, . . ., a j ίa*. . . ., ί s m

= / [1 + 2 1 fa - c)a]a

7 = 1

This is in contradiction to the assumption made above the conclusion is
the same as in the proof of Lemma 3.

Therefore the base {hm>m$iV} is a suitable one for the description of
states localized at a point with x = 0.

6. Asymptotic properties under translations

The asymptotic properties of matrix elements of individual states
with respect to relative translations of these states were extensively clari-
fied in the papers [6—8]. In one of those papers the uniformity of the
asymptotic convergence with respect to bounded sets in Φ is proven.

The contents of the following two lemmas give some information about

uniformity of convergence with respect to the r-norm in S).

The asymptotic properties depend on:
a) individual features of the special theory employed, especially on

the spectrum of the 4-momentum operator; b) the direction of the
translation (e.g., timelike or spacelike). One can condense the results of
both influences into one symbol: • 0 (convergence in the sense Z).

The first lemma of this section is a simple application of the contents
of Sections 4 and 5. Regarding elements hv, lκ in $) with inverse images
in Φ itself, one knows that

\(Jlv,[I j

is valid, where PΩ is proj. operator onto Ω. (For instance in the case where

Ω is an isolated eigenstate for f\ and if α is spacelike, then > 0
means t h a t the covergence is faster t h a n each negative power of λ).

Lemma 5: For normalised elements hVi lκ the convergence

is uniform if hv resp. lκ vary in a set which possesses inverse images in Φ
and if | | 0 , | | r ^ cv \\χκ\\r ̂  c2; f(φp) - j{ψv) = hv; f(χκ) = j(χκ) = lκ .

The proof of Lemma 5 is obvious. Only two finite dimensional sub-
spaces can be spanned by the normalised vectors with inverse images
situated inside the two sets \\φ\\r ^ cλ resp. \χ\r ^ c2. Therefore the
convergence must be uniform.
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With respect to the more general class of non-normalized states,
another result can be derived.

Lemma 6: From
\(hVί [I-PΩ]U(λa) 1)1^-^0

where hv and lκ possess inverse images in Φ it follows

\(h> V ~ P^ U (λa) QI T=^ ° uniformly

if the inverse images φμ resp. χt of hμ resp. lt vary in the bounded sets

Proof: From \{hVί [I — PΩ] U(λa) lκ)\ j ~ ^ 0 for hv, lκ with inverse
images in Φ it follows \(hμ [I — PΩ] U (λa) lt)\ j — ^ 0 for hμ, lL representing
arbitrary states in £j. One can derive this since Uiλ^a) has a bound for
its norm not dependent on p and j(Φ) is dense in 9). If the convergence
were not uniform one could find for a sequence λp -> oo two sequences
{K}> {h} a n ( i a certain ε such that \(kV9 [I — PΩ] U{λpa) lv)\ ^ ε for all p.
Since the ||ftj resp. p̂ H are situated in two compact sets Kx resp. K2,
one can extract from the sequences {hv} resp. {ϊ^} two sequences {hs}
resp. { y withes->h0respJ s-> ?0. The property |(&S[I— P β ] C7(Asα)Zs)| ^
^ ε for each s is still retained. With [/ — PΩ] ϋ{λsa) = Bs and \\BS\\ = 1
it follows that |(Aβ, J5&is)| ^ |(Λ0, J5S, Zo)| + |(Aβ - Ao, BβZ0)| +
+ |(A8, 5S, Zs — Z0)l

 S i n c e \(K Bslo)\ -> 0, A8 -» Ao, ζ -> Zo and since the
operators 5 S are uniformly bounded \(hs, Bs, ls)\ must become arbitrarily
small; this is in contradiction to the assumption.

One can regard the uniformity of convergence as a significant property
for sets of states localised in the neighborhood of certain points. If one
compares the quality of convergence for different matrix elements from
the view-point of physical interpretation, it is more appropriate to use
only normalized states in ξ). Therefore in some respect Lemma 5 may
be more applicable. However, Lemma 6 implies also some information if
one wishes to compare the properties of convergence of matrix elements
for normalised states in ξ) which differ with respect to the magnitude
of the r-norm in ί). Taking for example at first a set of states with in-
verse images having \φ\r <: 1 from Lemma 6 it follows that

\(K[I—PΩ] U(λa) hκ)\ ^ ε for λ ^ λ0 (8)
and

If one has two normalized states lx resp. l2 from /(§) = §) with inverse

images having || φτ\\r = cτ resp. || φ2\\r = c2 then
1

Ψi = 1 and
1

Therefore for these two states one gets for λ ^ λ0 the same ε as in (7),
and for the original states this gives

\(lv [I - PΩ] ϋ(λa) yI ^c^c^ε for λ ^ λ0 .
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Since each bounded neighborhood, especially \\φ\\r ^ 1, is an absorbing*
set in §), it is therefore possible to give to an arbitrary pair of states of ξ>
an upperlimit for their convergence properties if the uniform bound for
the set with origin element in \φ\r ^ 1 is known.

7. Generalisation and concluding remarks

So far the special case of a linear continuous mapping from the space
of test functions <9*'(j£4m) into a Hubert space was considered. One can
perform the same approach for the more general case

Φn = ¥{E±) Θ ^(E8) e θ £f(β*n)
where n is an arbitrary fixed number. Each space £f (Elk) of the sum is
a countably normed nuclear space and the mapping from Φn into the
Hubert space is bounded in each space with respect to a certain norm
|| || Qk. For each qk there exists an r7c such that the bounded sets with respect
to || \\n are mapped into compact sets of the Hubert space. One has only
a finite number of spaces £f(E*k). Thus a set of elements of Φn having
components in several- or all subspaces Sf (E^) with the condition that
each component lies in a certain fixed bounded set
|| Ira ^ ckf is mapped into a compact set of the Hubert space. This
follows from a well-known topological theorem: if Kl9 K2, . . ., Kn are
compact (resp. relatively compact)sets of a vector space, then K± -\-Ks -f-
+ + Kn is also a compact (resp. relatively compact) set (see e.g. [17]).
For a metric space like the Hubert space, this theorem follows im-
mediately from the property mentioned in Section 2.: Each compact
(resp. relatively compact) set Km has a finite ε — net. One can proceed
through Sections 3, 4, 5, and 6, and prove the corresponding lemmas for
$n. One can also give a corresponding definition of localisation of a
state at a point x = a; also in this more general case a is unique.

However, for the passage Φn to Φ where Φ is the inductive limit
(see e.g. [13]) for n -> oo some further reasoning is needed. Not until
then can one judge how much the situation may change compared to the
case of a finite direct sum of nuclear spaces.

With respect to the inhomogeneous Lorentz group only the sub-
group of translations and the subgroup (93 (the 3-dimensional orthogonal
group) have been considered. Therefore, it would be of some interest to
study the entire symmetry group, especially the one parameter non-
compact subgroup of the homogeneous Lorentz group.
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Appendix

Equivalence of the Systems of norms

The purpose of this remark is to show that the system of norms intro-
duced by L. SCHWARTZ and the system of norms used in this paper, a
generalisation of the system of norms used by GELFAND-WILLENKΠSΓ*, ge-
nerates the same topology in £f (Eίm). Regarding two fundamental systems
of neighborhoods of the zero-element for the two systems of norms, one
has to show that in each neighborhood of the first system lies a neigh-
borhood of the second and vice versa.

L. SCHWARTZ : Systems of norms:

\\<p\\'s,t^ max sup \(l + ρ2)8 φ™ (x)\ ,
x

4m

x = {xv x2, . . ., x± m}, ρ2 = Σ xh Ψ{k) (x) = dvs - - > dvk ψ (a

The symbol max includes all partial derivatives up to the order t.
One gets a fundamental system of neighborhoods by the sets:

W's,t,c:\\ψ\\'s,t<c.

System of norms used in this paper:

] (1 + QΎ* Σ Ψm • φM d*i, , dxim

4m

ψψ) φ W = Σ dvx> . . . , d V k φ ( X i > - -> x * m ) d V l , . . . , d V k φ { x l y . . . , x A n )
Vi,... ,V]i == 1

Fundamental system of neighborhoods:

a) For each WVtd one can find a certain Wf

s>t)C with W'8itfCC Wy^.
Proof:

\\φ\\l =

/
π -{-

oo.

IMI! g suP|(i + Q*Y* Σ φik)

x Jc = O

g g(p) • Bis max sup |(1 + ρψ°ψm φW\ <L g(p) B%t (\φ\'tιP)*,

* GELFAND-WiLLEiiKiN: Verallgemeinerte Funktionen, Bd. IV. S. 83
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where g is a certain finite integer. Therefore if φ fulfills: g(p) B%8(\\ <p\\'8)V)
2

^ d2

} then φ belongs to WVt d.

b) In each W'Stt>c lies a certain W9td .
Proof: For x1 ^ 0 one has

1

A corresponding inequality is valid for xx Ξ> 0. Therefore one gets

max |(1 + ρ*) dVi, . . ., dn φfo,. . . ,^) g /°° (1 + u\- x\ + ρ2)s|
x = — oo

and more generally

from the Schwartz inequality one derives

ί

sup max |(1 + ρ2)s φ&ψ ̂  f (l + ρl)*s Σ ψ{l

k x £ = 0

with
4m

Choosing )̂ ̂  max (4m + ί, 5) one has

I Ike £1 L
Therefore WPiCC WS)t>c follows for an appropriate p.

It is thus concluded from a) and b) that the two sets of norms generate
the same topology in £f(E*m).

Besides this it is obvious that the sets W 1 form a fundamental
P Ί£

system of neighborhoods of zero (as pointed out in the paragraph follow-
ing equation (4)).
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