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1 Introduction

In 1920, Hardy [3] proved the following integral inequality, if p > 1, f (x) ≥ 0 and F(x) =∫ x
0 f (t) dt, then ∫ ∞

0

[F
x

]p
dx ≤

[
p

p−1

]p∫ ∞
0

f p dx. (1.1)

Its discrete version essentially takes the same form with sums instead of integrals [8]. After
that (1.1) attracted the attention of researchers and mathematicians. One can find over two
hundred papers, articles and notes by searching the words “Hardy”and “inequality”in the
review journals Zentralblatt für Mathematik (or Mathematical reviews). Almost at the end
of the 20th century, sufficient material related to (1.1) was available in different forms in
generalizations, estimations and improvements both in discrete and continuous settings (see
for instance [6]). There is a related inequality, the so called exponential integral inequality
(or Polya-Knopp inequality) [9, 10]∫ ∞

0
exp
[
1
x

∫ x

0
log f (t) dt

]
dx ≤ e

∫ ∞
0

f (x) dx, (1.2)
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which holds for positive functions f ∈ L1(0,∞). Inequalities (1.1) and (1.2) are closely
related, since (1.2) can be obtained from (1.1) by replacing f with f 1/p and letting p→∞.
Therefore, Polya-Knopp’s inequality may be considered as the limiting form of Hardy’s
inequality. In 2002, Kaijser et al. [8] pointed out that both (1.1) and (1.2) are special cases
of the much more general Hardy-Knopp-type inequality for positive functions f∫ ∞

0
Φ

[
1
x

∫ x

0
f (t) dt

]
dx
x
≤

∫ ∞
0
Φ[ f (x)]

dx
x
, (1.3)

where, Φ is a convex function on (0,∞). One year later A. Čižmešija et al. [1] gave the
weighted version of (1.1) generalizing (1.3). Hardy’s inequality has many applications in
different fields of both applied and pure mathematics. In 1988, Stefan Hilger [4] introduced
the notion of time scale’s calculus which unifies continuous and discrete analysis.

This paper is organized in the following way. After this Introduction, in Section 2 some
basic facts and results are discussed. In Section 3, log−convexity of Hardy-Polya-Knopp
type differences is proved and in Section 4, some improvements and reverses of relations
(2.5) to (2.7) are given.

2 Preliminaries

A time scale (or measure chain) is a non-empty closed subset of the reals, R, together
with the topology of subspace of R and we usually denote it by the symbol T. The two
most popular examples are T = R and T = Z. For any interval I of R (open or closed)
IT = I∩T is called a time scale interval. We define the forward and backward jump operators
σ,ρ : T→ T by:

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

(supplemented by inf ∅= supT and sup∅= infT, where ∅ denotes the empty set). If σ(t)= t,
t ∈ T, we say t is right dense. If ρ(t) = t, t ∈ T, we say t is left dense. If σ(t) > t, t ∈ T, we
say t is right scattered. If ρ(t) < t, t ∈ T, we say t is left scattered. The set Tk is defined to be
T if T does not have a left scattered maximum; otherwise it is T without this left scattered
maximum. The graininess µ : T→ [0,∞) is defined by:

µ(t) = σ(t)− t.

Hence the graininess function is constant 0 if T =R while it is constant 1 if T = Z. However,
a time scale T could have nonconstant graininess. Let f : T→ R be a function, then fσ :
T→ R is defined by fσ(t) = f (σ(t)) for t ∈ T, where σ(t) is defined above. We also, say
that f is delta differentiable (or simply: differentiable) at t ∈ Tk provided there exists an α
such that for all ε > 0 there is a neighborhood ℵ of t with

| f (σ(t))− f (s)−α(σ(t)− s)| ≤ ε |σ(t)− s| for all s ∈ ℵ.

In this case we denote the α by f ∆(t), and if f is differentiable for every t ∈ Tk, then f is
said to be differentiable on T and f ∆ is a new function on Tk. If f is differentiable at t ∈ Tk,
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then it is easy to see that

f ∆(t) =


lims→t(s∈T)

f (t)− f (s)
t−s if µ(t) = 0

f (σ(t))− f (t)
µ(t) , if µ(t) > 0.

Several useful delta derivative formulas can be recorded in [17, Lemma 1,2] (see also [16]).
A function f : T→ R is said to be rd-continuous, provided it is continuous at every

right-dense point and if the left sided limit exists at every left dense point. We denote by
Crd(T,R) the set of all rd-continuous functions f : T→R. The importance of rd-continuous
functions is revealed by the following existence result by Hilger [5]: Every rd-continuous
function possess an antiderivative. Here, F is called an antiderivative of a function f defined
on T if F∆ = f holds on Tk. In this case we define an integral by:∫ t

s
f (τ) ∆τ = F(t)−F(s), for s, t ∈ T.

Let T1 and T2 be two given time scales and set T1×T2 = {(x,y) : x ∈T1,y ∈T2}. Then T1×T2
is a complete metric space with metric d defined by:

d((x,y), (x́, ý)) =
√

(x− x́)2+ (y− ý)2 for all (x,y), (x́, ý) ∈ T1×T2.

Let f be a real-valued function on T1 ×T2. The function f is called rd-continuous in t2 if
for every α1 ∈ T1, the function f (α1, t2) is rd-continuous on T2. The function f is called
rd-continuous in t1 if for every α2 ∈ T2, the function f (t1,α2) is rd-continuous on T1.

Let CCrd denote the set of functions f (t1, t2) on T1×T2 with the properties:

• f is rd-continuous in t1,

• f is rd-continuous in t2,

• if (x1, x2) ∈ T1×T2 with x1, x2 right-dense points, then f is continuous at (x1, x2),

• if x1 and x2 are both left-dense, then the limit of f (t1, t2) exists as (t1, t2) approaches
(x1, x2) along any path in the region

R(x1, x2) = {(t1, t2) : t1 ∈ [a, x1]T1 , t2 ∈ [c, x2]T2}.

Let CC1
rd be the set of all functions in CCrd for which both the partial derivatives, ∆i,

1 ≤ i ≤ 2, with respect to first and second components of the function f respectively, exist
and are in CCrd. In 2005 P. Řehák [15] proved a time scale version of Hardy’s inequality
as: ∫ ∞

a


∫ σ(t)

a f (s) ∆s

σ(t)−a


p

∆t ≤
[

p
p−1

]p∫ ∞
a

[ f (t)]p ∆t, (2.1)

where, p > 1 and f is a non-negative function. Let AK be a general Hardy type operator on
time scale defined by:

AK f (t, s) =
1

K(t, s)

∫ t

a
k(s,y) f (y) ∆y, (2.2)
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where, t, s> a, f ∈Crd([a,b),R) is a delta integrable function, k(x,y) ∈CC1
rd([a,b)×[c,d),R)

is a non-negative delta integrable function and

K(t, s) =
∫ t

a
k(s,y) ∆y.

Recently, Özkan et al. [12] proved a strengthened time scale Hardy-Knopp-type inequality
as:

Theorem 2.1. Let u ∈ Crd([a,b),R) be a non-negative function such that the delta integral∫ b
t

u(x)
(x−a)(σ(x)−a)∆x exists as a finite number. Consider the weight function v defined by:

v(t) = (t−a)
∫ b

t

u(x)
(x−a)(σ(x)−a)

∆x, t ∈ [a,b).

If Φ : (c,d)→ R is continuous and convex, where c,d ∈ R, then the inequality∫ b

a
u(x) Φ

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a
≤

∫ b

a
v(x)Φ[ f (x)]

∆x
x−a

, (2.3)

holds for all delta integrable functions f ∈Crd([a,b),R) such that f (x) ∈ (c,d).

Moreover in [11], U. M. Özkan et al. extended (2.1) and (2.3) to a Hardy-Knopp-type
integral inequality for several functions and a Hardy-Knopp-type integral inequality with a
general kernel to arbitrary time scales as:

Theorem 2.2. Let the conditions of Theorem 2.1 be satisfied and, let f1, ..., fk be non-
negative delta integrable functions such that Fk(x) = 1

x−a

∫ x
a fk(s)∆s, 1 ≤ k ≤ n, exists as

a finite number, then

∫ b

a
u(x) Φ


 n∏

k=1

Fσ
k (x)

1/n
 ∆x

x−a
≤

∫ b

a
v(x)Φ

[∑n
k=1 fk(x)

n

]
∆x

x−a
, (2.4)

holds for all delta integrable functions fk ∈Crd([a,b),R) such that fk(x) ∈ (c,d).

Theorem 2.3. Suppose k(x,y) ∈CC1
rd([a,b)×[c,d),R) and u ∈Crd([a,b),R) are non-negative

functions such that the delta integral
∫ b

y
k(x,y)

Kσ(x,x) u(x) ∆x
x−a exists as a finite number. Consider

the weight function v defined by:

v(y) = (y−a)
∫ b

y

k(x,y)
Kσ(x, x)

u(x)
∆x

x−a
, y ∈ [a,b).

If Φ : (c,d)→ R is continuous and convex, where c,d ∈ R, then∫ b

a
u(x) Φ

[
AK fσ(x, x)

] ∆x
x−a

≤

∫ b

a
v(x)Φ

[
f (x)
] ∆x

x−a
,

holds for all delta integrable functions f ∈Crd([a,b),R) such that f (x) ∈ (c,d).
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The following consequences of these results were also discussed in [11, 12].∫ b

a

 n∏
k=1

Fσ
k (x)

p/n ∆x
x−a

≤
1

np(b−a)

∫ b

a
(b− x)

 n∑
k=1

fk(x)

p ∆x
x−a

. (2.5)

∫ b

a

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]p
∆x

x−a
≤

1
b−a

∫ b

a
(b− x)[ f (x)]p ∆x

x−a
, (2.6)

for p > 1 and f ≥ 0, such that the delta integral
∫ b

a [ f (x)]p ∆x
x−a exists as a finite number.∫ b

a
exp
[

1
σ(x)−a

∫ σ(x)

a
ln f (t) ∆t

]
∆x

x−a
≤

1
b−a

∫ b

a
(b− x) f (x)

∆x
x−a

, (2.7)

for f > 0, such that the delta integral
∫ b

a f (x) ∆x
x−a exists as a finite number.

3 Log-Convexity Of Hardy-Polya-Knopp Type Differences

Definition 3.1. [2] A function f : T→ R is called convex on IT, if

f (λ t+ (1−λ) s) ≤ λ f (t)+ (1−λ) f (s), (3.1)

for all s, t ∈ IT and all λ ∈ [0,1] such that λt+(1−λ)s ∈ IT. The function f is strictly convex on
IT if the inequality (3.1) is strict for distinct s, t ∈ IT and λ ∈ (0,1). The function f is concave
(respectively, strictly concave) on IT, if − f is convex (respectively, strictly convex).

Lemma 3.2. [7] Consider the function:

ϕs(x) =



xs

s(s−1) , s , 0,1;

− log x, s = 0;

x log x, s = 1.

Then, ϕs(x) is convex for x > 0.

Lemma 3.3. [7] Consider another function:

ψs(x) =


1
s2 esx, s , 0;

1
2 x2, s = 0.

Then, ψs(x) is convex.

The following lemma is equivalent to the definition of convex function [14, p.2].

Lemma 3.4. If φ is continuous and convex for all s1, s2, s3 in an open interval I for which
s1 < s2 < s3, then

φ(s1)(s3− s2)+φ(s2)(s1− s3)+φ(s3)(s2− s1) ≥ 0.
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The following lemma from log−convexity theory, playing a key role, is given as:

Lemma 3.5. [13] A positive function f is log−convex in Jensen sense on an open interval
I, that is, for each s, t ∈ I

f (s) f (t) ≥ f 2
( s+ t

2

)
if and only if the relation

m2 f (s)+2 m w f
( s+ t

2

)
+w2 f (t) ≥ 0,

holds for each real m, w and s, t ∈ I.

Theorem 3.6. Let the conditions of Theorem 2.2 be satisfied, and let ϕs be given by Lemma
3.2. Consider F : R→ R+, defined by:

F(s)=
∫ b

a
v(x) ϕs

[∑n
k=1 fk(x)

n

]
∆x

x−a
−

∫ b

a
u(x) ϕs


 n∏

k=1

Fσ
k (x)

1/n
 ∆x

x−a
. (3.2)

Then, F is log−convex, that is, the following inequality is valid:

[F(p)]r−s ≤ [F(r)]p−s [F(s)]r−p for −∞ < s < p < r <∞. (3.3)

Proof. Let us consider the function Φ defined by

Φ(x,m,w,r, s, p) ≡ Φ(x) = m2ϕs(x)+2 m w ϕr(x)+w2ϕp(x), where r =
s+ p

2
; m,w ∈ R.

Φ′′(x) = m2 xs−2+2 m w xr−2+w2xp−2 = (m x
s
2−1+w x

p
2−1)2 ≥ 0.

Φ is convex for x ∈ R+; therefore (3.2) is equivalent to

m2F(s)+2 m wF(r)+w2F(p) ≥ 0,

i.e., by Lemma 3.5
[F(r)]2 ≤ F(s) F(p).

So F is log−convex in Jensen sense. Since

lim
s→0

F(s) = F(0) and lim
s→1

F(s) = F(1),

F is continuous for s ∈R and therefore log F is convex. Lemma 3.4 for −∞ < s < p < r <∞
yields:

(r− s) log F(p) ≤ (r− p) log F(s)+ (p− s) log F(r),

which is equivalent to (3.3). �

Theorem 3.7. Let the conditions of Theorem 2.3 be satisfied, and let ϕs be given by Lemma
3.2. Consider F̃ : R→ R+, defined by:

F̃(s) =
∫ b

a
v(x) ϕs

[
f (x)
] ∆x

x−a
−

∫ b

a
u(x) ϕs

[
Ak fσ(x, x)

] ∆x
x−a

. (3.4)

Then, F̃ is log−convex, that is, the following inequality is valid:

[F̃(p)]r−s ≤ [F̃(r)]p−s [F̃(s)]r−p for −∞ < s < p < r <∞. (3.5)
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If we use ψs for ϕs, we get the followings.

Theorem 3.8. Let the conditions of Theorem 2.2 be satisfied, and let ψs be given by Lemma
3.3. Consider G : R→ R+, defined by:

G(s) =
∫ b

a
v(x) ψs

[
f (x)
] ∆x

x−a
−

∫ b

a
u(x) ψs

[
Ak fσ(x, x)

] ∆x
x−a

. (3.6)

Then, G is log−convex, that is, the following inequality is valid:

[G(p)]r−s ≤ [G(r)]p−s [G(s)]r−p for −∞ < s < p < r <∞. (3.7)

4 Improvements And Reverses of Hardy-Polya-Knopp Type In-
equality

Theorem 4.1. Let p ∈R\{0,1} and, let fk, 1 ≤ k ≤ n, be a family of positive delta integrable
functions such that Fk(x) = 1

x−a

∫ x
a fk(s)∆s exists as a finite number, then

1
p (p−1)

 1
np(b−a)

∫ b

a
(b− x)

 n∑
k=1

fk(x)

p ∆x
x−a

−

∫ b

a

 n∏
k=1

Fσ
k (x)

p/n∆x
x−a


≤ [H(s)](p−r)/(s−r) [H(r)](s−p)/(s−r) for −∞ < s < p < r <∞. (4.1)

1
p (p−1)

 1
np(b−a)

∫ b

a
(b− x)

 n∑
k=1

fk(x)

p ∆x
x−a

−

∫ b

a

 n∏
k=1

Fσ
k (x)

p/n∆x
x−a


≥ [H(s)](p−r)/(s−r) [H(r)](s−p)/(s−r) (4.2)

for −∞ < p < r < s <∞ and −∞ < r < s < p <∞, where

H(r) =
1

b−a

∫ b

a
(b− x) ϕr

[∑n
k=1 fk(x)

n

]
∆x

x−a
−

∫ b

a
ϕr


 n∏

k=1

Fσ
k (x)

1/n
 ∆x
x−a

. (4.3)

Proof. The proof follows from Theorem 3.6 by choosing the weight function u(x) ≡ 1, so
that

v(x) =


(x−a)

∫ b
x

∆t
(t−a)(σ(t)−a) =

b−x
b−a , b <∞;

1, b =∞.

In this case (3.2) becomes

F(s) =


1

(b−a)

∫ b
a (b− x) ϕs

[∑n
k=1 fk(x)

n

]
∆x
x−a −

∫ b
a ϕs

[(∏n
k=1 Fσ

k (x)
)1/n] ∆x

x−a , b <∞;

∫ ∞
a ϕs

[∑n
k=1 fk(x)

n

]
∆x
x−a −

∫ ∞
a ϕs

[(∏n
k=1 Fσ

k (x)
)1/n] ∆x

x−a .
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Now for b <∞ (3.3) becomes

1
b−a

∫ b

a
(b− x) ϕp

[∑n
k=1 fk(x)

n

]
∆x

x−a
−

∫ b

a
ϕp


 n∏

k=1

Fσ
k (x)

1/n
 ∆x

x−a

≤ [H(s)](p−r)/(s−r) [H(r)](s−p)/(s−r). (4.4)

For p ∈ R\{0,1} and b <∞ we get (4.1) and

1
p (p−1)

n−p
∫ ∞

a

 n∑
k=1

fk(x)

p ∆x
x−a

−

∫ ∞
a

 n∏
k=1

Fσ
k (x)

p/n ∆x
x−a


≤ [Ĥ(s)](p−r)/(s−r) [Ĥ(r)](s−p)/(s−r) for −∞ < s < p < r <∞,

where,

Ĥ(r) =
∫ ∞

a
ϕr

[∑n
k=1 fk(x)

n

]
∆x

x−a
−

∫ ∞
a
ϕr


 n∏

k=1

Fσ
k (x)

1/n
 ∆x

x−a
.

If in (3.3) s→ r, p→ s, r→ p and s→ p, p→ r, r→ s, then

1
b−a

∫ b

a
(b− x) ϕp

[∑n
k=1 fk(x)

n

]
∆x

x−a
−

∫ b

a
ϕp


 n∏

k=1

Fσ
k (x)

1/n
 ∆x

x−a

≥ [H(s)](p−r)/(s−r) [H(r)](s−p)/(s−r). (4.5)

And from here for p ∈ R\{0,1} we get (4.2) �

Theorem 4.2. Let p ∈ R\{0,1} and, let f be a non-negative delta integrable function such
that the delta integral

∫ b
a (b− x)[ f (x)]p ∆x

x−a exists as a finite number, then

1
p (p−1)

 1
b−a

∫ b

a
(b− x)[ f (x)]p ∆x

x−a
−

∫ b

a

[
1

σ(x)−a

∫ σ(x)

a
f (t)∆t

]p
∆x

x−a


≤ [H̃(s)](p−r)/(s−r) [H̃(r)](s−p)/(s−r) for ∞ < s < p < r <∞. (4.6)

1
p (p−1)

 1
b−a

∫ b

a
(b− x)[ f (x)]p ∆x

x−a
−

∫ b

a

[
1

σ(x)−a

∫ σ(x)

a
f (t)∆t

]p
∆x

x−a


≥ [H̃(s)](p−r)/(s−r) [H̃(r)](s−p)/(s−r) (4.7)

for −∞ < p < r < s <∞ and −∞ < r < s < p <∞, where

H̃(r) =
1

b−a

∫ b

a
(b− x)ϕr

[
f (x)
] ∆x

x−a
−

∫ b

a
ϕr

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a
. (4.8)
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Proof. The proof follows from Theorem 3.7 by choosing k(x,y) ≡ 1 ≡ u(x), so that

AK fσ(x, x) =
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t.

v(x) =


b−x
b−a , b <∞;

1, b =∞.

In this case (3.4) becomes

F̃(s) =


1

b−a

∫ b
a (b− x) ϕs[ f (x)] ∆x

x−a −
∫ b

a ϕs

[
1

σ(x)−a

∫ σ(x)
a f (t) ∆t

]
∆x
x−a , b <∞;

∫ ∞
a ϕs[ f (x)] ∆x

x−a −
∫ ∞

a ϕs

[
1

σ(x)−a

∫ σ(x)
a f (t) ∆t

]
∆x
x−a .

Now for b <∞ (3.5) becomes

1
b−a

∫ b

a
(b− x) ϕp[ f (x)]

∆x
x−a

−

∫ b

a
ϕp

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a

≤ [H̃(s)](p−r)/(s−r) [H̃(r)](s−p)/(s−r). (4.9)

From here for p ∈ R\{0,1} we get (4.6).
If in (3.5) s→ r, p→ s, r→ p and s→ p, p→ r, r→ s, then

1
b−a

∫ b

a
(b− x) ϕp[ f (x)]

∆x
x−a

−

∫ b

a
ϕp

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a

≥ [H̃(s)](p−r)/(s−r) [H̃(r)](s−p)/(s−r). (4.10)

And from here for p ∈ R\{0,1} we get (4.7). �

Theorem 4.3. Let f be a positive function such that the delta integral
∫ b

a (b− x) f (x)×
∆x
x−a exists as a finite number, then

1
b−a

∫ b

a
(b− x) f (x)

∆x
x−a

−

∫ b

a
exp
[

1
σ(x)−a

∫ σ(x)

a
ln f (t) ∆t

]
∆x

x−a

≤ [P̃(s)](1−r)/(s−r) [P̃(r)](s−1)/(s−r) for −∞ < s < 1 < r <∞. (4.11)

1
b−a

∫ b

a
(b− x) f (x)

∆x
x−a

−

∫ b

a
exp
[

1
σ(x)−a

∫ σ(x)

a
ln f (t) ∆t

]
∆x

x−a

≥ [P̃(s)](1−r)/(s−r) [P̃(r)](s−1)/(s−r) (4.12)

for −∞ < 1 < r < s <∞ and −∞ < r < s < 1 <∞, where

P̃(r) =
1

b−a

∫ b

a
(b− x) ψr

[
ln f (x)

] ∆x
x−a
− ∫ b

a
ψr

[
1

σ(x)−a

∫ σ(x)

a
ln f (t)∆t

]
∆x

x−a
. (4.13)
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Proof. The proof follows from Theorem 3.8 by choosing k(x,y) ≡ 1 ≡ u(x), so that

G(s) =


1

b−a

∫ b
a (b− x) ψs[ f (x)] ∆x

x−a −
∫ b

a ψs

[
1

σ(x)−a

∫ σ(x)
a f (t) ∆t

]
∆x
x−a , b <∞;

∫ ∞
a ψs[ f (x)] ∆x

x−a −
∫ ∞

a ψs

[
1

σ(x)−a

∫ σ(x)
a f (t) ∆t

]
∆x
x−a .

From here for b <∞ (3.7) becomes

1
b−a

∫ b

a
(b− x) ψp[ f (x)]

∆x
x−a

−

∫ b

a
ψp

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a

≤ [P(s)](p−r)/(s−r) [P(r)](s−p)/(s−r), (4.14)

where,

P(r) =
1

b−a

∫ b

a
(b− x) ψr[ f (x)]

∆x
x−a

−

∫ b

a
ψr

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a
.

By setting f (x) 7→ ln f (x) and p = 1 in (4.14) we get (4.11).
If in (3.7) s→ r, p→ s, r→ p and s→ p, p→ r, r→ s, then

1
b−a

∫ b

a
(b− x) ψp[ f (x)]

∆x
x−a

−

∫ b

a
ψp

[
1

σ(x)−a

∫ σ(x)

a
f (t) ∆t

]
∆x

x−a

≥ [P(s)](p−r)/(s−r) [P(r)](s−p)/(s−r). (4.15)

By setting f (x) 7→ ln f (x) and p = 1 in (4.15) we get (4.12) �

Remark 4.4. In fact in this paper more general results have been proved. Namely (4.4),
(4.9) and (4.14) are valid for −∞ < s < p < r <∞. The inequalities (4.5), (4.10) and (4.15)
are valid for −∞ < r < s < p <∞ and −∞ < p < r < s <∞.

Acknowledgments

The author thanks the referee for valuable comments and suggestions, which he has used to
improve the final version of this paper.

References
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