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SPACED SEEDS FOR CROSS-SPECIES CDNA-TO-GENOME

SEQUENCE ALIGNMENT∗

LEMING ZHOU† , INGRID MIHAI‡ , AND LILIANA FLOREA§

Abstract. We review recent developments in spaced seed design for cross-species sequence

alignment. We start with a brief overview of original ideas and early techniques, and then focus on

more recent work on finding accurate (sensitive and specific) seeds for cross-species cDNA-to-genome

alignment. These recent developments include methods and models for estimating seed specificity

and determining sensitive and specific seeds, finding seeds that can be applied to a wide range of

comparisons, and applying seed models to other computational biology areas, such as gene finding.
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1. Introduction. New high-throughput and cost-effective technologies have rev-

olutionized our ability to sequence complex organisms, and are expected to lead to a

significant increase in the number of available genomes for species from all branches

of life [1]. The first and most important step in analyzing these genomes is gene

annotation, that is, accurately identifying the locations and exon-intron structures of

genes along the genome, and further determining their function.

There are two primary classes of methods for identifying genes in a given genomic

sequence. The first class, ab initio methods (GenScan [2], Genie [3], GeneMark [4],

FGenesH [5]), use machine-learning techniques to analyze a single genomic sequence

and predict the locations of genes. Such methods are reasonably accurate at finding

coding exons, but are not effective at detecting untranslated regions (UTRs) and

alternatively spliced or overlapping genes [6].

The second class, comparative methods, predict exons based on sequence similarity

of protein or expressed DNA (cDNA, EST, mRNA) with genomic sequences containing

those genes. These methods are the most reliable for inferring the gene structure,

and thus genome annotation projects have routinely used cDNA sequences from the

same species to annotate genes. Although several projects exist that produce full-

length cDNA sequences [7–9], they focus on a handful of high-priority species, such

as human, mouse, rat, cow and zebrafish. For most newly sequenced species, few

native cDNA sequences are available in the databases. Consequently, gene annotation
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projects for these genomes will need to rely instead on cDNA information from other

species. While several tools exist that map cDNA sequences to the genome of the

same species accurately and efficiently (sim4 [10], Spidey [11], BLAT [12], GMAP [13],

MGAlignIt [14], ESTmapper [6]), their performance drops in cross-species comparisons,

as the sequence similarity decreases. Furthermore, tools specialized for cross-species

comparisons (EXALIN [15], GeneSeqer [16], EST GENOME [17]) lack the speed required

for whole-genome annotation and are still very limited in the evolutionary range they

address. Therefore, there is a critical need for alignment tools for mapping gene

sequences to the genome of a related species accurately and efficiently.

The first and foremost limitation in aligning cross-species is the sensitivity of

alignment, in which the choice of seed is the most important factor. A seed is a match

pattern used to detect local alignments. For instance, blast [18,19] searches for exact

word matches of length 11 between the two sequences, which it later extends to local

alignments by allowing for gaps and substitutions. Such match pattern, or seed, is

called continuous, and can be represented as a pattern of 1s (11111111111), where each

1 represents a position required to match. The blast seed and its length variations

have served as match patterns for many generations of alignment programs, until its

limitations have recently been revealed. Indeed, the blast seed loses sensitivity as the

differences between the sequences increase with the evolutionary distance between the

compared species. Reducing the size of the seed increases its ability to detect weaker

similarities, however at a considerable loss in specificity.

Spaced seeds were recently introduced to increase alignment sensitivity with a

relatively small change in specificity. Unlike continuous seeds, spaced seeds allow

for some wildcard positions in the pattern, marked with 0s. For instance, the seed

11011011011011011 intuitively takes into account the weaker matching pattern at the

third (wobble) position in the codon to increase the success rate when mapping ESTs

or genes to target genomic sequences [20]. The length of the seed pattern is called

span, and the number of 1s in the seed is the weight of the seed. The definition

of weight may change for different classes of seeds, as we will see in later sections.

For the same weight, spaced seeds were shown to be more sensitive than continuous

seeds in most practical cases [21]. As many {0,1} seeds can be formed, even while

maintaining the weight constant, a natural question that arises is: Given an alignment

pattern, what is the best, or most sensitive, seed? Ma et al. [22] formally introduced

spaced seeds and proposed a mathematical framework for estimating the sensitivity

of a seed [23], which allowed them to determine optimal seeds for a class of alignment

applications. Refinements and extensions of their model to other classes of alignment

were soon proposed, and are reviewed in the following sections.

While sensitivity has been in the cross-hairs of seed design efforts, specificity has

received considerably less attention. Whereas sensitivity reflects the ability of a seed

to detect biologically meaningful sequence similarities, specificity measures the ability



CROSS-SPECIES CDNA-TO-GENOME SEQUENCE ALIGNMENT 117

of the seed to differentiate between true and spurious matches, and directly affects the

outcome as well as the speed of processing. We recently gave a rigorous formulation

for specificity for the case of cDNA-to-genome alignment and suggested strategies for

selecting accurate seeds that are both sensitive and specific [24].

As the field of seed design is maturing, new questions and challenges emerge from

their application to practical alignment tools and to other computational biology ar-

eas. So far seed theory has focused on designing good seeds for one comparison at

a time, usually using human-mouse as the model of interest. As the number of se-

quenced species increases, however, designing seeds for each individual comparison

quickly becomes prohibitive, given both the computational time involved and the in-

creased complexity when selecting the appropriate program parameters for a type of

comparison. A natural question that arises is: Are there seeds that can be used by

multiple comparisons, and under what conditions? We gave a preliminary characteri-

zation of both such seeds, which we call universal [25], and conditions [26], which we

review here.

The remainder of the paper is organized as follows: Section 2 describes the early

introduction of spaced seeds and more recent refinements and extensions, and the

application of seeds to alignment programs; Section 3 illustrates the general seed de-

sign framework in the context of our work with determining accurate (i.e., sensitive

and specific) spaced seeds for cDNA-to-genome comparison; Section 4 presents new

directions in seed design, including our ongoing work with characterizing and deter-

mining universal spaced seeds, and exploring the potential of using spaced seeds for

gene detection from sequence alignments. Lastly, Section 5 summarizes the results.

2. Background and Previous Work.

2.1. Intuitive Spaced Seeds. “Seeds” are match patterns used to locate re-

gions of similarity between two sequences. The first and most enduring seed pattern

was 11111111111, requiring an exact match of 11 contiguous bases. First introduced in

blast [18,19], it was later implemented, with length variations, in most alignment pro-

grams that succeeded it. Only recently spaced seeds were introduced, which allow for a

number of wildcard positions in the pattern, marked with 0s. Spaced seeds were infor-

mally used in programs such as WABA [20], a cDNA-to-genome alignment program,

where every third position was omitted from the comparison (11011011011011011),

consistently with the weaker match at the wobble codon position.

2.2. Formal Spaced Seeds Framework. Ma and co-authors formally intro-

duced the concept of spaced seeds in [22] and proposed a mathematical framework for

estimating the sensitivity of a seed given an alignment model and determining opti-

mal seeds [23]. Their framework consists of two components: a seed model, originally

a {0, 1} pattern as described above, and an alignment model. In a seed, 1s indicate

match positions and 0s indicate wildcard positions. Alignments are also represented
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ACCTACCGACCACCTCAGCGAAGT
Alignment

Convert to {0,1,x} string

     1101x111x1011         Seed match

Match−only positions

ACGCACCAACCACTTCAGTCCAGT

110x111x11111x1111x00111   Alignment 

Match or transition positions

Fig. 1. Seed detection of an alignment.

as {0, 1} strings generated according to a model, for instance a Bernoulli chain, where

1s represent matches and 0s now indicate mismatches. With this notation, the sen-

sitivity of a seed is defined formally as the probability that the seed will detect an

alignment string of fixed length L generated by the model (Figure 1). An optimal

seed is by definition a seed with the highest sensitivity.

In the Bernoulli alignment model of [23], alignment positions could be indepen-

dently 0 or 1 with probabilities p and 1 − p, respectively, where p is inferred from

the overall level of sequence similarity in the alignment. At the time, such model

was appropriate to describe alignments of large genomic sequences, which can be seen

as random. Subsequent studies evaluated increasingly complex alignment models for

this and other alignment applications.

Soon thereafter, Buhler et al. [21, 27] developed an order 1 alignment Markov

model to investigate coding and non-coding regions. A Markov model of order m

assumes that the 0 or 1 symbol at any position depends on the symbols at the preced-

ing m positions. Later, Brejová et al. [28] proposed two extensions of the Bernoulli

model for alignments within coding regions. In the M(3) model, the probability for a

position to be a match or mismatch depends on its relative location within a codon,

and positions in the alignment are independent. In the M(8) model, multiple codons

are considered, each with its own conservation pattern.

In a parallel development, to further improve the seed sensitivity over {0, 1} seeds,

transition-only wildcards, marked with x or #, were introduced to differentiate be-

tween transitions and transversions, first implemented in blastz [29]. Later, Noe and

Kucherov [30] formalized the concept and showed that spaced seeds with transitions

extend the sensitivity range of {0, 1} seeds, while Zhou and Florea [24] addition-

ally provided a framework for calculating seed specificity and showed that transition

spaced seeds achieve better sensitivity-specificity tradeoffs in practice.
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2.2.1. Methods for Calculating Seed Sensitivity. The following two ques-

tions are at the heart of seed design efforts: i) What is the sensitivity of a seed given

a model of alignment? and ii) What is the best seed for that model?

To answer the first question, Keich et al. [23] gave a dynamic programming algo-

rithm for calculating seed sensitivity recursively, and Choi and Zhang [31] provided

a similar alternative. A more popular method was that proposed in [21], which used

tries and the Aho-Corasick algorithm [32] to construct a minimal Deterministic Finite

Automaton (DFA) recognizing all possible matches of the seed and to calculate their

probability, or equivalently the seed sensitivity, recursively. More recently, Kucherov

et al. [33,34] proposed a generalized framework for estimating the sensitivity of several

types of spaced seeds. Instead of the two components in the traditional framework,

namely a seed model and an alignment model, their framework uses three: the tar-

get alignments, a probability distribution of the alignments, and a seed model. This

formulation allows more efficient automata to be built, which speeds up the seed

sensitivity calculation.

To determine optimal seeds, in early work Keich et al. [23] determined optimal

spaced seeds by exhaustive search, calculating each seed’s sensitivity recursively. Such

a comprehensive approach was feasible given the relatively small seed space (11,440

seeds with weight 11 and span 18). As the space and complexity of the search in-

creased with larger seed spans and more sophisticated alignment models, heuristic

solutions were developed for optimizing seeds, which were shown to produce close ap-

proximations that worked well in practice. Among the most popular, a hill-climbing

heuristic algorithm was proposed in [21, 24] to speed up the search process. The al-

gorithm starts from a random seed and swaps any two distinct symbols with the goal

to optimize the sensitivity locally. If a better seed is found, it becomes the start seed

for variations in the next cycle, until there is no improvement to the seed sensitivity.

The procedure is restarted multiple times, to avoid convergence to a local optimum.

In [35], the authors exploit the structure of observed optimal seeds to derive rules

for pruning the search space, which they later refine in [36]. Lastly, an alternative

to the definition of seed sensitivity that is easier to compute and thus can be used

to design large seeds was introduced in [37]. It uses the overlap complexity of seeds

as a surrogate for sensitivity. This method, however, is only applicable to genomic

sequence alignment represented by Bernoulli models.

2.3. Generalized Spaced Seeds. Several variations of the traditional seed de-

sign model have been proposed, to further increase sensitivity. For instance, carefully

selected multiple seeds can be simultaneously used to improve alignment discovery.

Their set of hits is the union of the hits found by each seed. The formalism of multiple

seeds [38, 39] is a relatively straightforward extension of the single-seed models.

One generalization of spaced seeds that can also be applied to protein alignment
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is that of vector seeds [40]. Vector seeds model an alignment not as {0, 1} strings, but

as sequences of real numbers. Accordingly, each position in the seed pattern is a real

value representing the weight of a match or substitution at that position in the total

match score. A seed match is declared when the total score exceeds an a priori fixed

threshold.

Both multiple spaced seeds and vector seeds can further improve the sensitivity

over single spaced seeds, but they increase the memory and running time of searches,

both of which are critical for practical high-throughput applications.

2.4. Applications of Spaced Seeds to Alignment Programs. Since their

introduction in 2002, mathematically optimized spaced seeds have been rapidly adop-

ted by alignment programs. Optimal spaced seeds obtained in [22, 23] were imple-

mented in the programs PatternHunter [22] and blastz [29]. As a variation in-

tended to further increase seed sensitivity, blastz allows a transition (A↔G, C↔T)

at any one of the 12 match positions. This is the first example, albeit empirical, of

differentiating between transitions and transversions in alignments. Later, Noe and

Kucherov [30] used seed patterns of 0,1 and # (transition) symbols coupled with a

Bernoulli alignment model for non-coding regions and a hidden Markov model for

coding regions to search for optimal spaced seeds of weights 9 to 11, which they

implemented in their program YASS [41]. In different types of applications, Csuros

and Ma [42] developed an algorithm to reduce the memory usage for multiple spaced

seeds, and Flannick and Batzoglou [43] used multiple spaced seeds in an algorithm to

improve local alignment sensitivity. Lastly, multiple spaced seeds with two mismatch

positions were implemented in the tool ZOOM [44] for fast, high-throughput mapping

of short sequencing reads to a target genome.

2.5. Spaced Seeds for cDNA-to-Genome Alignment. Early work in de-

signing theoretically sensitive seeds has focused on seeds for aligning arbitrary genomic

sequences [21–23,27,31,35,36], due primarily to the simplicity of the alignment model.

As genomic sequences can be well approximated by a random model for most practi-

cal problems, a Bernoulli model is suitable in this case. A smaller number of studies

addressed optimal seeds for cDNA-to-genome alignments, usually as a particular case

of the general problem [21,27, 28].

Unlike genomic sequences, in which less than 2% of nucleotides typically rep-

resent coding material, cDNA sequences consist largely of protein coding regions,

and thus cDNA-to-genome alignments are expected to have more embedded sequence

compositional structure than alignments of random DNA. This includes effects of

transition-transversion biases [45], higher order statistical dependencies between po-

sitions [2], and periodicities due to the codon organization of sequences. These biases

translate into dependencies in the match patterns and, when incorporated into the

alignment model, are likely to lead to better seeds.
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In the following section we describe our recent efforts with developing better

models for cDNA-to-genome alignment starting from the observations above, and use

them to illustrate the seed design framework.

3. Designing Sensitive and Specific Spaced Seeds. We illustrate the math-

ematical framework of seed design by focusing on the case of cDNA-to-genome align-

ment. We review the basic {0, 1} match-mismatch framework [22], then present an

extension that is better suited for this particular problem. In this context, using effi-

cient methods for estimating sensitivity and specificity we evaluate a large number of

seeds for a variety of seed weights, to assess their sensitivity-specificity tradeoffs and

ultimately design accurate seeds for practical applications.

3.1. Designing Sensitive Spaced Seeds.

3.1.1. The Basic {0,1} Framework. As we have mentioned earlier, the orig-

inal theoretical framework for assessing seed sensitivity has two components: a seed

model and an alignment model. A seed is a string of 0s and 1s that specifies a match

pattern between the sequences, where 1s represents match positions and 0s represent

wildcards. For instance, the WABA seed 11011011011011011 has the wildcard po-

sitions 3, 6, 9, 12 and 15. Conventionally, seeds must start with a 1 position. For

simplicity, a fixed span has been used in most cases (e.g., k = 22) [21,24,27] assuming

terminating positions to be 0s wherever necessary.

An alignment is represented as a string of 0s (mismatches) and 1s (matches)

generated from a model M, typically a Bernoulli or a Markov model. A seed S =

s1 . . . sk, s1 = 1, is said to detect the alignment A = a1 . . . aL ∈ {0, 1}L if there is a

match for the pattern in the alignment string such that all 1 positions in the seed

pattern map to 1 positions in the alignment, i.e. there exists an index i between 1

and L − k + 1 such that ai+l−1 =1 for all l with sl = 1 (Figure 1). In that case, the

seed is said to occur in the alignment a at position i. Given a seed, its theoretical

sensitivity is defined as the probability that it will detect a random alignment of

length L generated from the model M [21, 23], or equivalently:

Sn(S) = P ({A ∈ {0, 1}L | S detects A}).

Traditionally, the alignment length L has been set to 64, which is the average

length of a gap-free alignment in human-mouse comparisons. For a given seed, its

sensitivity can be computed exactly using dynamic programming [23, 27, 33], and

optimal or near-optimal seeds can be obtained with the exact or heuristic methods

reviewed in the previous section.

3.1.2. The Extended Codon-Sensitive {0, 1, x} Framework. Alignments of

coding sequences have characteristics that differentiate them from genomic sequence
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Fig. 2. Position dependencies for an order 3 inhomogeneous, 3-periodic Markov model.

alignments, such as transition-transversion biases, higher order dependencies between

positions and periodicities due to the codon structure, and therefore require more

complex models. To account for the first of these characteristics, in previous work we

proposed a framework that differentiated between transitions and transversions, by

using an additional alphabet symbol x [24]. In the seed pattern, x marks a position

that allows transitions (A↔G, C↔T) but not transversions, while in the alignment

model it simply represents a transition (Figure 1). Furthermore, to reflect the period-

icity and higher order dependencies in the sequences of coding regions, the alignment

was modeled with a 3-periodic inhomogeneous Markov model consisting of 3 submodel

components, one for each position in the codon (Figure 2). The individual submodels

are Markov models of the same order m (m = 0 − 5). The definitions and methods

can be extended from the {0, 1} case in a straightforward way. The weight of the

new symbol x is 0.5. We denote (n1, n0, nx) the class of seed patterns with n1, n0

and nx symbols of 1, 0 and x, respectively, n1 + n0 + nx = k. Note that for a given

weight W , there may be multiple (n1, n0, nx) combinations with n1 + 0.5 · nx = W .

For instance, for the weight W = 10 and span k = 22 the following combinations are

possible: (10, 12, 0), (9, 11, 2), . . . , (0, 2, 20).

Theoretical Sensitivity Evaluation. To estimate seed sensitivity, we adopted and ex-

tended the method in [21] and the associated mandala software to allow transition

symbols. Briefly, the method builds a trie of all the alignment words that represent

seed matches, then converts the trie into a deterministic finite automaton (DFA) that

recognizes all and only those alignment strings containing a seed match, using the

Aho-Corasick algorithm [32]. The sensitivity of the seed is then computed recursively

from the automaton as the probability of all alignment strings of length L = 64 that

are recognized by the automaton. The detailed implementation for the {0, 1, x} case

can be found in [24].

Empirical Evaluation. We complemented our theoretical studies with empirical eval-

uations, both to identify a suitable alignment model and to validate our predic-

tions. Specifically, empirical tests were performed to test the ability of a seed to
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accurately match coding exons between two species, for instance when searching for

chicken exons against the human genome [24]. Empirical sensitivity was calculated

as the fraction of human exons in the reference set that are detected by the seed:

Sne = TP/(TP + FN) [46]. Here, TP is the number of true positives, defined as

orthologous exon pairs detected by the seed, and FN represents the numbers of false

negatives, or missed pairs.

Comparisons between the empirical and the predicted behavior of seeds revealed

that higher order Markov models (m = 3 − 5) are more accurate descriptors of the

empirical data and lead to better seeds than those produced by earlier lower-order

models. Additionally, changing a 0 into a transition symbol in a {0, 1} seed roughly

doubles the specificity for only a small decrease in sensitivity, and thus offers a better

sensitivity-specificity tradeoff compared to {0, 1} seeds in practice [24, 30]. Based on

these analyses, an order 3 inhomogeneous 3-periodic Markov model of alignment was

chosen for our comprehensive seed evaluation in section 3.3.

3.2. Designing Specific Spaced Seeds. While sensitivity has been at the

forefront of seed design efforts, specificity has received considerably less attention.

Decreasing the seed weight generally increases sensitivity, but at a loss in specificity.

Understanding the tradeoffs between these two properties is essential to designing ac-

curate seeds that can work efficiently in practical alignment applications. We present

the theoretical framework and methods we proposed in [24] for evaluating seed speci-

ficity in the case of {0, 1, x} spaced seeds for cDNA-to-genome alignment. Similar

methods need to be developed for other types of models and seeds.

3.2.1. Evaluating Seed Specificity. We begin by presenting the intuition be-

hind our definition of specificity. When mapping cDNA sequences to a target genome,

consecutive k-mers in the cDNA query are searched against the genome sequence. The

search will find at most one true positive match, namely its ortholog on the genome,

and a variable number of false positives, which add to both processing time and pro-

gram complexity. Thus, intuitively, we define the specificity of a seed as the inverse of

the expected number of matches in the genome for a generic k-mer via the particular

seed, H(S):

(1) Sp(S) =
1

H(S)
=

1

ES [H ]

Here, H(w) is a random variable representing the expected number of (overlap-

ping) matches of a k-mer w in the genome sequence via seed S. Assuming probabilistic

models for both the gene and the genomic sequences, the above term can be written

as:
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(2) ES [H ] =
∑

w∈{A,C,G,T}k

Pc(w)H(w) =
∑

w∈{A,C,G,T}k

Pc(w)E[NS(w)]

where Pc(w) is the probability of w in the coding sequences, and NS(w) is a random

variable denoting the number of matches of w in the genome via seed S. For a

continuous seed, this is the number of occurrences of w in the genome. For a spaced

seed containing wildcard positions, it is the number of occurrences of all words w′

that are compatible with w via seed S. For instance, for the word AAGCT and the

seed S = 1x111, the set of compatible words is {AAGCT, AGGCT }.

In [24] we derived a closed formula and recurrences to efficiently calculate seed

specificity for the case of Bernoulli and Markov models of gene sequences and for a

Bernoulli or order 1 Markov model of the genome.

Theoretical Evaluation. The definition and recurrences mentioned above allowed us to

calculate specificity values for a large number of seeds exactly and efficiently. Species-

specific mRNA sequences were downloaded from the NCBI RefSeq repository [9] and

used to train Bernoulli and Markov models of coding sequences. Similarly, nucleotide

and di-nucleotide frequencies obtained from the human genome version HG17 were

used to train the two genome models.

Empirical Evaluation. As before, empirical testing was performed to calibrate and

validate the theoretical models. Empirical specificity was calculated as the inverse

of the average number of seed matches in the human genome for a generic k-mer in

the query: Spe = 1/((TP + FP )/#k-mers). This definition mirrors the theoretical

formulation described earlier.

Comparisons of empirical and predicted seed behavior allowed us to determine

the most accurate model for use in our comprehensive evaluation. As we found ear-

lier for sensitivity, higher-order Markov models of coding sequences provided a highly

accurate approximation of the real specificity values, while the Markov genome model

best captured the actual amount of specificity change as the weight of the seed de-

creased. Therefore, an order 1 Markov genome model and order 2 Markov coding

sequence models were chosen for further evaluations.

3.3. Comprehensive Seed Evaluation. The models and methods developed

above allowed us to evaluate a large number of seeds in a short amount of time, to

assess their tradeoffs between sensitivity and specificity. We analyzed seeds in seven

weight groups (W = 10 . . .16) and for all feasible (n1, n0, nx) combinations. For each

combination, the hill-climbing heuristic described in section 2 was used to estimate the

maximum and minimum sensitivity and specificity. The results are plotted linearly
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for sensitivity, and on a log-scale for specificity, for the particular case of human-

chicken comparison (Figure 3). Similar plots were obtained for other species (data

not shown).
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Fig. 3. Sensitivity (left, linear-scale) and specificity (right, log-scale) ranges for seeds of weight

W = 10 . . . 16, using an order 3 Markov model alignment representation for sensitivity evaluation,

and using an order 1 genome Markov model and an order 2 Markov model for coding sequences

for specificity. For each weight W , (n1, n0, nx) combinations are shown right-to-left starting with

nx = 0 and subsequently increasing nx. Reproduced from [24] with permission from Mary Ann

Liebert, Inc.

As the plots illustrate, sensitivity varies widely among seeds within each weight

group and each (n1, n0, nx) combination. Although the combinations have different

ranges of variation and maximum sensitivity, the pattern of variation is consistent

among the different weight groups. Furthermore, for the chicken-human comparison

we used as example, the highest sensitivity was achieved for seeds with a small (2-4)

number of transition symbols. This number is comparison-specific and varies with

the transition-transversion ratio [25]. For instance, the human-mouse comparison,

which has a higher transition-transversion ratio (κm = 1.73 > κc = 1.17), shows

an increased affinity for transition symbols (6-8). Furthermore, this number reflects

the gain in sensitivity that can be obtained by incorporating transitions compared to

{0, 1} seeds.

In contrast, specificity is almost constant within each weight group, and shows

a discrete range of steps. As the weight of the seed increases, specificity grows by

a factor of roughly 3.6 with each additional unit. These observations suggest the

following strategy for selecting seeds for practical applications: first determine the

seed weight based on an acceptable sensitivity-specificity tradeoff, then select the

most sensitive seed in that weight group.

4. Other Problems in Seed Design. The framework and methods described

in the previous sections were designed to optimize seeds for one comparison at a

time. With the improvement in sequencing technologies, the number of sequenced

organisms has grown significantly in recent years, with more genomes and other se-

quence data to become available in the near future. Finding optimal seeds for each
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pairwise comparison quickly becomes prohibitive, both because of the computational

costs involved and because of the difficulty that it poses to alignment program de-

velopers and users. For practical reasons, therefore, it becomes desirable to identify

a small number of seeds that would perform well for a wide range of comparisons.

Several studies [31, 35, 36] determined and analyzed best seeds for various sequence

identity levels p under a Bernoulli model of alignment, in a greatly simplified model of

evolutionary distance. This simple p-level representation of evolutionary sequence di-

vergence is likely inadequate for coding sequences, which are under a more diverse set

of evolutionary pressures. In this section we present two recent approaches: i) finding

universal (good) seeds, or seeds that work well across different classes of compar-

isons [25], and ii) clustering comparisons into seed-equivalent groups and determining

best seeds for each group [26].

4.1. Determining Universal Seeds. We sought to observe the behavior of

seeds, and in particular good seeds, across different classes of comparisons, with

the goal to characterize and ultimately determine universal seeds. We focused on

four comparisons (human-mouse, human-dog, human-chicken, and human-zebrafish),

which coarsely sample the range of vertebrate evolutionary distances. For simplicity,

we will refer to each comparison by the name of the second organism (DOG, MUS,

CHK, ZFS). Using the extended framework of the previous section, we evaluated seeds

exhaustively for several weights, and analyzed the distributions of seed sensitivities

between the models.

Statistical regression analyses applied to seed sensitivities between pairs of com-

parisons have shown that there is good correlation among the models, and remarkably

strong correlation between some pairs of models (Figure 4). Indeed, to determine seed

trends we measured the 95% confidence interval when projecting the sensitivity value

of a seed from the reference model to the compared model via the regression func-

tion. This margin of error was very small (< 0.01) when projecting from a more

distant comparison to a closer one, and bi-directionally between the pairs CHK-ZFS

and MUS-DOG, indicating that with high confidence (95%) seed sensitivities can be

accurately projected between these models. In particular, high-scoring seeds in the

reference model are expected to lie at the top of the sensitivity range in the compared

model for these cases.

We further measured how closely the projection of the optimal seed in the refer-

ence model (xmax) estimates the optimal (real) seed in the compared model (ymax),

using the statistical lower bound of the confidence interval for xmax as a conservative

estimate and comparing it with ymax. These ratios are shown as T (x, y) in Table 1.

When the optimal seed in a more distant model is projected onto a closer model its

ratio is consistently greater than 0.98, and thus it closely approximates the optimal

seed in that model.
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Fig. 4. Scatterplots of seed sensitivity values for pairs of comparisons among (DOG, MUS,

CHK, ZFS). The non-linear regression (solid) and the 95% confidence interval (dashed) curves are

shown.

These findings, validated by empirical evaluations, suggest that simply selecting

top scoring seeds in the most distant model, in our case ZFS, with high probability

will lead to good seeds for all other models, and therefore provide a simple strategy

for determining universal good seeds.

There is yet another observation critical for designing seeds for multiple compar-

isons that this analysis revealed: similar comparisons render similar behavior of seeds,

and in particular best seeds. We call such pairs of comparisons seed-equivalent. In our

case, (ZFS, CHK), and (DOG,MUS) are sufficiently close to be seed-equivalent. In the

following section we exploit this finding in determining conditions for seed-equivalence

and employ them to cluster comparisons into groups that each can be served by the

same optimal seed.

4.2. Determining Seeds for Seed-Equivalent Comparisons. We observed

the existence of seed-equivalent models when comparing seed behavior between com-

parisons with statistical regression methods, using exhaustive calculations of seed

sensitivities. One outstanding question is how to determine whether two models are



128 LEMING ZHOU, INGRID MIHAI, AND LILIANA FLOREA

Table 1

Comparison of seed sensitivity distributions between models. ymin,max are the minimum and

maximum sensitivity in the compared model; xmax is the maximum sensitivity in the reference

model; tα/2σy is half the length of the 95% prediction interval (tα/2 = 1.96 when α = 0.05);

T (x, y) = ((a + bxmax + cx2
max + dx3

max) − tα/2σy)/ymax, where a, b, c and d are the coefficients of

the regression curve, and σy is the estimated regression standard error of prediction for a given x

value. Because the number of values is large, σy ≃ σ for all y. Reproduced from [25] with permission

from BioMed Central Ltd.

xmax ymax ymin tα/2σy T (x, y)

W=12, population size = 352716.

CHK-DOG 0.742 0.992 0.936 0.002 0.996

DOG-CHK 0.992 0.742 0.429 0.028 0.947

CHK-MUS 0.742 0.964 0.827 0.005 0.991

MUS-CHK 0.964 0.742 0.429 0.017 0.978

CHK-ZFS 0.742 0.476 0.196 0.006 0.995

ZFS-CHK 0.476 0.742 0.429 0.006 0.984

DOG-MUS 0.992 0.964 0.827 0.004 0.996

MUS-DOG 0.964 0.992 0.936 0.001 0.999

DOG-ZFS 0.992 0.476 0.196 0.033 0.866

ZFS-DOG 0.476 0.992 0.936 0.003 0.995

MUS-ZFS 0.964 0.476 0.196 0.023 0.934

ZFS-MUS 0.476 0.964 0.827 0.006 0.988

sufficiently close to be seed-equivalent without the expensive calculation of seed sensi-

tivities. Once a suitable measure for model similarity is determined, it can be used to

cluster comparisons into seed-equivalent groups and then design seeds for each group.

We ask the following questions: i) How do we measure the closeness of comparisons?

ii) How do we group comparisons? iii) How do we validate the groups?

We investigate the relationship between alignment Markov models using a conven-

tional distance measure between their probability distributions. The Kullback-Leibler

Divergence (KLD) [47] can be applied on the space of alignment words X = {0, 1, x}64

to produce a distance between the two models:

KLD(P, Q) =
∑

w∈X

p(w) log
p(w)

q(w)

KLD(P, Q) represents the relative entropy of P over Q, or the information gain

about X when P is used instead of Q. The KLD measure is non-symmetrical, i.e.

KLD(P, Q) 6= KLD(Q, P ), and therefore can capture unidirectional relationships. In

the case of the four comparisons above (DOG, MUS, CHK and ZFS), the more distant

comparisons contain consistently more information than the closer ones [25]. A metric

distance, which is symmetrical, can then be defined as 1

2
(KLD(P, Q)+KLD(Q, P )).
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Fig. 5. Phylogenetic tree of 12 species.

To validate the metric, we applied it to a larger set of species, including human,

chimp, macaque, mouse, rat, cow, dog, opossum, chicken, frog, fugu, and zebrafish.

The comparisons are not limited to those between human and other species, but rather

extend to all 66 pairwise comparisons of the 12 species, and thus offer a wide diversity

of evolutionary distances and mutation patterns. KLD distances between Markov

models were calculated and used to generate a distance profile for each comparison.

A profile is the vector of KLD distances of one comparison with all comparisons.

Profiles were then clustered using hierarchical clustering with the Pearson correlation

coefficient to create groups of similar comparisons.

Remarkably, the 66 comparisons fall into four clusters [26] closely corresponding

to the different depths of the phylogenetic tree of the species (Figure 5): cluster L1

contains comparisons between evolutionarily very close species (5-12 Million Years

divergence) at or close to the leaf-level in the phylogenetic tree of the species; cluster

L2 represents comparisons at the intermediate (90 - 110 Million Years divergence),

between primates and the rodent, artyodactil or carnivore species; cluster L3 shows

comparisons between relatively diverged species (160-310 Million Years divergence),

such as between chicken or opossum and the rest of the mammals; lastly, cluster L4

represents some of the most distant comparisons among vertebrates (>350 Million

Years divergence), between frog or fishes and the rest of the clades, at the deepest

levels in the phylogenetic tree.

We optimize seeds for each cluster and for each comparison in the clusters, using

the framework described earlier, and validate them by comparing their performance

within their group and in the other groups. Indeed, seeds optimized for one clus-

ter performed best on their own cluster and on the individual comparisons within

that cluster. Based on this large scale clustering and validation analysis, it can be
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concluded that our method of clustering models based on their KLD distance profile

followed by optimizing seeds for each group can be effectively and reliably used to

determine a small number of seeds with wide applicability among a variety of com-

parisons.

These findings have important implications for developing robust and user-friend-

ly alignment tools [48], by providing program developers with a small and easily

tunable set of parameters, and providing a unified and easy to use interface to the

users, who can now seamlessly use the tool without regard to the species compared.

4.3. Applying Seeds to Gene Detection. Gene annotation by mapping for-

eign cDNAs to genomic sequence will fail when no copies of a gene are available.

However, sufficient information is present in the genomic alignments to allow inferring

gene regions. Indeed, gene regions will exhibit higher sequence similarity compared

to non-coding DNA, as natural selection lowers the rates at which mutations are in-

corporated in gene regions. Moreover, they show higher-level dependencies between

positions and periodicities due to the codon organization of genes, all of which dif-

ferentiate them from other DNA sequences. Seeds optimized for cDNA-to-genome

comparisons capture the characteristics of gene regions in sequence alignments in a

natural way, and therefore may be apt to locate genes for which no other information

is available.

We have started to explore the use of seeds to differentiate between gene and

non-gene regions by exploiting the differences in their match patterns among the

three reading frames. Indeed, some seeds appear to match differentially among the

three reading frames when applied to coding regions, having a significantly higher or

lower match probability in one of the frames compared to the others [24], whereas

they show no bias in non-coding regions. To assess empirically the ability of codon-

sensitive seeds to distinguish among the three frames, we applied seeds derived in our

previous studies [25] to the coding region alignments of 17,670 orthologous human

and mouse mRNA sequences obtained from the project HomoloGene [49], counting

the number of seed matches within the alignment strings for each frame (Figure 6).

Since in eukaryotic species coding regions appear as short exons interspersed with

introns, we performed a similar experiment on sets of short coding regions of fixed

length (51 bp, 102 bp, 150 bp and 201 bp) cut from the alignments of full-length

sequences. These preliminary analyses reveal significant frame differences when ap-

plying specific transition spaced seeds to all three frames of human-mouse pairwise

alignments of gene sequences. Although the sensitivity decreases slightly with the

length of the target regions, this simple seed match counting method achieves 92%

sensitivity on the 150 bp data set, corresponding to the average length of coding

exons. Thus, spaced seeds appear to be a promising instrument for detecting genes

in genomic sequence alignments. The theoretical foundations for selecting sensitive
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Fig. 6. Gene detection with seeds: differential frame analysis of alignments of full-length (top)

and exon-size (bottom) coding regions. The numbers of seed matches in all three frames are plotted

for 17,670 alignments of human and mouse gene sequences, sorted increasingly by frame 2. The test

seed matches preferentially in frame 2 (thick line).

seeds with a high discriminative power, and the potential of different classes of seeds

for practical applications, need to be further explored and developed.
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5. Conclusions. We reviewed recent developments in spaced seed design for

cross-species cDNA-to-genome alignment, starting from the original framework and

continuing with extensions to address both traditional and novel problems in seed de-

sign. Compared to genomic sequences, which are roughly randomly distributed, gene

sequences have significantly more sequence compositional structure, such as periodic-

ities due to codon organization, higher-order position dependencies and characteristic

transition-transversion biases. By incorporating these features into a new framework,

which allows transition wildcards within seeds, we were able to find more accurate,

higher-order models that produced more sensitive seeds.

Designing good seeds for accurate alignment programs must balance sensitivity

and specificity. We present a first theoretical framework we developed earlier for

estimating the specificity of a seed, based on its expected number of matches in the

genome sequence, and use it to analyze the sensitivity and specificity of a large number

of seeds in parallel. These analyses showed that while sensitivity varies widely among

seeds with the same weight, specificity is relatively constant. In particular, they clearly

indicate that spaced seeds with transitions designed by these models offer better

sensitivity-specificity tradeoffs compared to traditional {0, 1} seeds. Furthermore, the

interplay between sensitivity and specificity suggests a clear strategy to determine the

best seeds in practice, by first choosing the desired level of specificity and sensitivity

tradeoff by selecting the seed weight, and then selecting the most sensitive seed within

that weight group. This comprehensive and systematic seed evaluation provides the

blueprint for selecting accurate, i.e. both sensitive and specific, seeds for a wide variety

of practical applications.

As the number and variety of sequenced species increases, for practical reasons it

becomes desirable to determine a small number of seeds that are applicable to a wide

range of comparisons. This new consideration brings a shift from the single to the

multi-comparison paradigm in seed design. We propose two solutions, namely deter-

mining universal seeds that work well for classes of comparisons across evolutionary

distances and, at a higher resolution, designing seeds for groups of seed-equivalent

comparisons, clustered based on model similarity. These findings have important im-

plications for developing robust programs that are easy to use, with a relatively small

set of parameters that can be accurately tuned and easily understood by the users.

Lastly, we proposed that spaced seeds may be used as ‘machine-learning’ models in

other areas of computational biology, such as gene finding.

Future work will be needed to extend the methods presented here, in particular

mapping the sensitivity-specificity tradeoffs, to other categories of seeds, to improve

the efficiency of seed design for single and multiple comparisons, to design seeds and

new seed models to support the alignment of sequences produced by new sequencing

technologies, to develop more efficient ways to incorporate seeds into alignment tools,

and to explore the potential of seeds in other application areas.
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