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METHODS FOR ALLOCATING AMBIGUOUS SHORT-READS∗

MARGARET TAUB† , DORON LIPSON‡ , AND TERENCE P. SPEED†§

Abstract. With the rise in prominence of biological research using new short-read DNA se-

quencing technologies comes the need for new techniques for aligning and assigning these reads to

their genomic location of origin. Until now, methods for allocating reads which align with equal or

similar fidelity to multiple genomic locations have not been model-based, and have tended to ignore

potentially informative data. Here, we demonstrate that existing methods for assigning ambiguous

reads can produce biased results. We then present new methods for allocating ambiguous reads to

the genome, developed within a framework of statistical modeling, which show promise in alleviating

these biases, both in simulated and real data.

1. Introduction.

1.1. Background. In recent months, there has been an explosion in the use of
new DNA sequencing technologies which produce relatively short reads (<100 base-
pairs (bp)) [1, 2, 3, 4]. For many biological applications of this technology such as
transcriptome analysis or detection of epigenetic features, these reads need to be
aligned to a reference genome so that their genomic location of origin can be deter-
mined. Alignment fidelity can be affected by many factors associated with the read
itself, including read length, error rate, and error type (e.g. substitution, insertion,
deletion); as well as factors inherent to the genome being aligned against, such as
levels of sequence homology (due to gene families, for example), presence of repetitive
regions and errors in the reference sequence.

This report presents a new method for allocating what have been referred to
in the literature as multireads [5], by which we mean sequenced reads which can be
mapped with equal or close to equal fidelity to multiple locations in the genome. While
some previous methods have been designed to make use of such reads in downstream
analysis (see Section 1.2), we present here some steps toward developing a more unified
statistical framework for allocating these reads. Throughout, we assume a simplified
context where the genome has been divided in some way into what we will call a set
of transcripts, which can refer to any set of non-overlapping genomic regions, such as
exons, genes or transcripts in the absence of alternative splicing. Extension of our
methods to more complex situations should be possible with some modifications. We
also note that by using the term allocate we do not mean to imply that the true origin
of each read is inferred. Instead we allow each ambiguous read to contribute to the
estimated abundance of a set of potential transcripts of origin, as explained below.
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An important place where particular care is needed in allocating ambiguous reads
arises when two or more transcripts have very similar sequence compositions but quite
different abundances in the sample of interest. In this case, the low-abundance tran-
script is likely to be over-estimated by existing allocation methods. Since one potential
advantage of digital technologies like the current short-read sequencing techniques is
to more accurately detect low-expressing genes, such biases should be avoided if pos-
sible. Our main goal here is to develop a method which adequately corrects for this
phenomenon.

1.2. Previous work. The issue of assigning genetic origin to ambiguous short
sequences of DNA is not unique to new short-read sequencing technologies. In fact,
technologies such as serial analysis of gene expression (SAGE) [6], cap analysis of
gene expression (CAGE)[7], massively parallel signature sequencing (MPSS)[8] and
polony multiplex analysis of gene expression (PMAGE)[9] are all similar in flavor
to current short-read sequencing technologies, and in general have an even higher
prevalence of ambiguous reads, due to their shorter sequence length (17-20nt) [4]. A
method of proportional reassignment (described further below) which has since been
applied to short-read sequencing data [4] was developed for working with CAGE data
[10]. Otherwise, ambiguous read allocation methods developed for these previous
technologies do not seem to have been applied to more recent short-read sequencing
studies.

Regarding more recent high-throughput sequencing studies, most initial studies
employed a method of discarding any reads that mapped equally well to multiple
locations, thus counting only reads that had a unique maximally-scoring alignment.
This was in part due to the defaults of the alignment software which were used, such
as Illumina’s ELAND aligner, which automatically discards all reads which have more
than a unique best match [1]. We will refer to this method as the unique assignment
method (see Equation 1). As an alternative, some researchers have used a method
of proportional assignment to map reads with multiple exact hits [10, 4, 5]. First,
they align their reads to the reference genome, using parameters which return an
exact best match, if one exists, or a list of equally good matches, if no unique best
is available. They then map all reads with exactly one best hit to the transcriptome,
giving an initial estimate of transcript abundance. Finally, they allocate reads that
hit multiple places equally well in proportion to the current estimates of transcript
prevalence for those locations. We will refer to this as the proportional assignment
method (see Equation 2). We will compare our methods to both of these.

To our knowledge, there is one additional method of resolving ambiguous reads,
which is employed by the read mapping software MAQ [11]. MAQ randomly selects
one location from the set of best assignments, and assigns the read to that location.
In our tests, this method performs similarly to unique and proportional assignment
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(results not shown).

2. Model.

2.1. Overview. In developing our method, we noted that there were two pieces
of information available to us that previous methods were, for the most part, ignoring.
First, some prior or current estimate of transcript abundance (which is used by the
proportional assignment method), and second, some sort of alignment quality score.
As an illustration, given a read which maps to a low-abundance transcript with a
perfect score, or to a high-abundance transcript with a slightly lower score, current
methods would always assign the read to the low-abundance transcript. We argue
that this may not always be desirable, as we will illustrate below.

2.2. A first pass. The idea of combining transcript abundance along with some
kind of weight corresponding to alignment strength inspired our first iterative read-
assignment method. While this method is not based on any model, its promising
performance encouraged us to further development, as described below.

We assume we have a set of R reads, which we want to map to a set of T

transcripts. We assume that our reads have been aligned to the reference set of
transcripts, and that for each read-transcript pair, we have a score for that alignment,
S(r, t). The score should reflect the quality of the alignment, defined in some suitable
way, depending on the technology that has generated the reads.

Our goal is to estimate p(t), the fraction of reads in our sample that come from
transcript t. In this context, we can make previous methods more explicit. The unique
assignment method would estimate p(t) by taking

p̂u(t) =
1

|Ru|
∑

r∈Ru

1(S(r, t) > S(r, t′),∀t′ 6= t),(1)

where Ru is the set of reads with a unique maximum score and where 1(x) = 1 when
x holds, and 0 otherwise. The proportional counting method would calculate p̂u(t) as
above, and then compute

p̂p(t) =
1
R

∑
r

p̂u(t)1(S(r, t) ≥ S(r, t′),∀t′ 6= t)∑
t′′ p̂u(t′′)1(S(r, t′′) ≥ S(r, t′),∀t′ 6= t′′)

.(2)

Our method will be similar in flavor to the proportional counting method, but will
incorporate the magnitude of the score S(r, t). Rather than just weighting our reads
by the score, we wanted our method to depend on how extreme one score was, relative
to the score a random read generated from a particular transcript would have. To
quantify this, we introduce a cumulative distribution function F (x) = pr(S(r, t) ≤ x),
which gives the probability of observing a score less than or equal to x when read r

originates from transcript t. We iterate by initializing p̂c(t) by allocating reads equally
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among transcripts. We then update p̂c(t) by taking

p̂new
c (t) =

1
R

∑
r

p̂c(t)F (S(r, t))∑
t′ p̂c(t′)F (S(r, t′))

.

We iterate this process until convergence. Since this process is based on a cumulative
distribution function, we will refer to it as the cumulative assignment method. While
it is not a complete probabilistic representation of our estimation context, it is intuitive
and performs well.

2.3. An explicit probabilistic model. To construct our model, we introduce
an unobserved variable a(r, t) which is equal to 1 if read r originated from transcript
t and 0 otherwise. The model parameter is the vector p = (p(t)), 0 ≤ p(t) ≤ 1, t =
1, . . . , T,

∑
t p(t) = 1, and we suppose that the vectors a(r) = (a(r, 1), . . . , a(r, T )), r =

1, . . . , R are independent and identically distributed (i.i.d.) with distributions

pr(a(r, t) = 1, a(r, t′) = 0,∀t′ 6= t) = p(t),

or equivalently, as a multinomial,

pr(a(r)) =
∏

t

p(t)a(r,t).

Our objective is to estimate p, the proportion of reads originating from each
transcript t. Note that this objective does not require unambiguously associating
each read with a specific transcript.

Further, we introduce two density functions, f0(·) and f1(·), where f0(S(r, t))
gives the probability of observing the score S(r, t) when a(r, t) = 0, and f1(·) is
defined similarly for a(r, t) = 1. We suppose that the observed alignment scores are
conditionally mutually independent random variables given the a(r) vectors, with
conditional densities

pr(S(r, t) = x|a(r)) = fa(r,t)(x).

We will work within an expectation-maximization (EM) framework for estimating
p. In this case, our full data are given by

(a,S) = (a(r, t), S(r, t) : r = 1, . . . , R; t = 1, . . . , T )

and given values for p, we have the following joint distribution, and hence likelihood,
when viewed as a function of p,

pr(a,S;p) = pr(a;p)pr(S|a;p).

Treating the a(r, t) as known, this gives a full data log-likelhood function of

l(p) =
∑
r,t

{a(r, t) log(p(t)) + log(fa(r,t)(S(r, t)))},
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which, to complete the M-step, we want to maximize subject to the constraint
∑

t p(t)
= 1. This gives

p∗(t) =
∑

r a(r, t)∑
r,t a(r, t)

.

For the E-step, we want the conditional expected value of the full data log-
likelihood given the observed data, which reduces to finding E(a(r)|S(r, 1), S(r, 2), . . .,
S(r, T )) which we evaluate using Bayes’ Theorem, for t = 1, . . . , T , as

a∗(r, t) = pr(a(r, t) = 1, a(r, t′) = 0,∀t 6= t′|S(r, 1), S(r, 2), . . . , S(r, T ))

=
pr(S(r, 1), S(r, 2), . . . , S(r, T )|a(r, t) = 1, a(r, t′) = 0,∀t′ 6= t)p(t)

pr(S(r, 1), S(r, 2), . . . , S(r, T ))

= p(t)f1(S(r, t))
∏
t′ 6=t

f0(S(r, t′))
/ ∑

t′

(
p(t′)f1(S(r, t′))

∏
t′′ 6=t′

f0(S(r, t′′))
)

= p(t)
f1(S(r, t))
f0(S(r, t))

/∑
t′

p(t′)
f1(S(r, t′))
f0(S(r, t′))

.

This outlines the EM framework which we can use to obtain our estimate of p.
We will refer to this method as the EM assignment method.

2.4. Density estimation. One thing we have not yet addressed is the determi-
nation of f0 and f1, or of our cumulative distribution F . We estimate f0 by taking the
full distribution of scores from all reads in the data set and creating a smoothed den-
sity estimate based on these scores. We can estimate f1 in a similar way, taking the
max score for each read and then creating a smoothed density estimate based on these
max scores. This non-parametric density estimation is used in our EM assignment
method. The cumulative distribution function F used in the cumulative assignment
method is obtained by integrating the non-parametrically estimated density f1 in the
appropriate way.

As an extension and possible improvement, we have implemented a semi-parame-
tric estimation method as well. As can be seen from the derivation above, the function
of interest in our estimation is actually the ratio f1(x)/f0(x). Based on our non-
parametrically estimated density f0, we define f1 parametrically by

f1(x) =
eαxf0(x)
M0(α)

where M0(α) is the moment-generating function of f0, evaluated at α. This func-
tional form arises through a parameterization of the log of the ratio f1(x)/f0(x) as
a linear function of α. At this point we expect a simple exponential likelihood ratio,
analogous to comparing two normals with different means and the same standard de-
viation (SD), to be adequate as it is simple and robust. We may want to extend this
parameterization to include a quadratic term, analogous to comparing two normals
with different means and SDs, in the future.
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We can then rewrite our full data log-likelihood as

l(p) =
∑
r,t

{a(r, t) log(p(t)) + log(1(a(r, t) = 0)f0(S(r, t)) + 1(a(r, t) = 1)f1(S(r, t)))}

=
∑
r,t

{a(r, t) log(p(t)) + log(f0(S(r, t))(1(a(r, t) = 0) + 1(a(r, t) = 1)
f1(S(r, t))
f0(S(r, t))

))}

=
∑
r,t

{a(r, t) log(p(t)) + log(f0(S(r, t))) + 1(a(r, t) = 1)(αS(r, t)− log(M0(α)))}.

Here, we want to maximize with respect to α, which tells us we want to find α∗ which
is the solution to ∑

r,t a∗(r, t)S(r, t)∑
r,t a∗(r, t)

=
M ′

0(α)
M0(α)

.

In this way, we can iteratively estimate the function f1/f0. We will refer to the assign-
ment method employing this density estimation process as the EM-Alpha assignment
method.

3. Results.

3.1. Simulation data set. We simuluated a set of 359,058 reads of length 15-40
bp from 5750 verified open reading frames (ORFs) in S. cerevisiae [12], with an error
model based on performance metrics for an early prototype version of Helicos’ HeliS-
cope technology which, unlike Illumina’s Genome Analyzer platform, has a relatively
high presence of indels (insertion or deletion errors) compared to substitution errors.
ORF lengths varied from 50-15,000 bp and the transcript abundance profile was set
according to a yeast transcription profile previously measured with microarrays [13].
These reads were mapped against the yeast genome using a Smith-Waterman based
aligner [2], which returns not only the alignment location, but also a score for the cor-
respondence between the read and that location, based on a penalty model for each
type of error. All transcripts which matched with a score of 3.5 or greater (out of a
maximum of 5) were recorded, along with the scores, for each read. In our simulated
data set, the number of transcripts mapped to by each read ranges from 1 to 2527,
with 75% mapping to 25 transcripts or fewer. For our analysis, we excluded all reads
that mapped to ≥ 100 transcripts, leaving a set of 306,223 reads. Of these, 75% map
to 6 transcripts or fewer, with a mean of 9.5 hits per read.

For our simulated data set, we are fortunate enough to know what the true counts
are for the genes we are considering, which makes it relatively easy to compare among
different assignment methods. Since the total number of reads successfully assigned
varies between the methods we convert our estimated counts to transcripts-per-million
(tpm). In Figure 1, we show a series of MA plots comparing the true counts to those
predicted by four methods: unique, proportional, cumulative and EM assignment. In
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Fig. 1. Comparison of mapping methods using MA plots of estimated counts against true

counts, on a log10(tpm) scale. Plots show mean log10 tpm on the x-axis and difference in log10 tpm

on the y-axis, comparing each method to the truth. The dashed line indicates a perfect fit. The upper

and lower solid lines indicate smoothed window-estimated 75th and 25th percentiles, respectively.

these and all plots, 0.5 has been added to all counts before conversion to tpm, to
avoid taking a log of 0, but to still allow for the display of predicted values for absent
transcripts. These plots show the mean log10 tpm on the x-axis (A values), and the
difference in log10 tpm on the y-axis (M values), comparing predicted results to the
truth. The upper solid line shows a smoothed version of the 75th percentile of M

values, calculated over windows of A values of size 50 with an overlap of 45. The
lower solid line is determined similarly for the 25th percentile. The dashed line shows
a perfect fit. The first two methods clearly show over-estimation of the low-abundance
genes, while our methods improve on this considerably. However, very little difference
is evident comparing cumulative and EM assignment. Figure 2 shows box plots of
the difference between predicted and true log10 tpm values. While the proportional
assignment method has a similar spread to the cumulative and EM assignment results,
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Fig. 2. Comparison of mapping methods using box plots of differences between estimated and

true log10 tpm values.

the cumulative and EM boxes are more centered around zero, demonstrating less
bias. Also included on this plot is a box for the EM-Alpha method, fit using semi-
parametric estimation for the ratio f1/f0. We can see that for this data set, there is
no improvement in fit with this further estimation step.

3.2. Yeast data set. In addition to our simulated data set, we have a set of reads
generated from an mRNA sample from S. cerevisiae, using a prototype of Helicos’
HeliScope single-molecule sequencer. Read lengths vary from 20-70 bp. In this case,
the reference set is the complete set of 6,719 verified, uncharacterized and dubious
ORFs from the SGD repository [12]. These reads have been aligned to the yeast
genome as above.

Since in this case we do not know the true abundance of the different genes in the
sample, we will make our method comparison by using the fact that longer reads can
in general be mapped with greater specificity than shorter reads. We will take two
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Fig. 3. Comparison of mapping methods using MA plots of estimated counts from L20 data

(using reads of length 20 or more) against estimated counts from L25 data (using reads of length 25

or more), on a log10(tpm) scale. Plots show mean log10 tpm on the x-axis and difference in log10

tpm on the y-axis, comparing results from the two data sets. The dashed line indicates a perfect

fit. The upper and lower solid lines indicate smoothed window-estimated 75th and 25th percentiles,

respectively.

different subsets of our data set: one with reads of length 20 or greater (L20 data),
and one with reads of length 25 or greater (L25 data), and compare the estimated gene
abundances from these two methods. Preferably, the gene abundances would be the
same for the two data subsets, however, since we expect there to be more ambiguous
reads from the set which allows for shorter reads, we know that the assignment method
may affect the quality of replication.

For the data subset with reads of length 20 or higher, we have a total of 1,291,777
reads, with 75% mapping to 8 genes or fewer, and a mean of 10 hits per read. For
the data subset with reads of length 25 or higher, we have a total of 1,039,137 reads,
with 75% mapping to 2 genes or fewer, and a mean of 3.6 hits per read.

Figures 3 and 4 show the results of this comparison. We can see that again,
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the simple assignment and proportional assignment methods tend to overcount low
abundance genes, while the cumulative and EM methods correct this problem.
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Fig. 4. Comparison of mapping methods using box plots of differences between log10 tpm values

estimated from L20 data (reads of length 20 or more) and those estimated from L25 data (reads of

length 25 or more).

In this case, it seems that the EM method with semi-parametric density esti-
mation, EM-Alpha, may be performing better, as shown in the last box of Figure
4. A more specific comparison of the two EM implementations is shown in Figure
5. It is interesting to note that for this data set, as seen in Figures 4 and 5, the
semi-parametric method looks about as good as the non-parametric method, with a
slightly smaller interquartile range, but with some bias.

4. Discussion. First, it is clear from our analysis that there is room for improve-
ment over existing methods of mapping ambiguous reads, particularly in the context
we are considering. Both the unique and the proportional assignment methods over-
count low-abundance transcripts, while our cumulative and EM assignment methods
correct for this. Even though the majority of our reads had a unique maximum score
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Fig. 5. Comparison of EM and EM-Alpha mapping methods using MA plots of estimated counts

from L20 data against estimated counts from L25 data, on a log10(tpm) scale. Plots show mean

log10 tpm on the x-axis and difference in log10 tpm on the y-axis, comparing results from the two

data sets. The dashed line indicates a perfect fit. The upper and lower solid lines indicate smoothed

window-estimated 75th and 25th percentiles, respectively.

(89% in the simulated data, 93% in the L20 data set, and 94% in the L25 data set),
we found that using only these reads did not give good estimates of transcript abun-
dance, particularly for the less frequent transcripts. It seems reasonable to suppose
that this effect could easily carry over to other contexts, with different score distribu-
tions within a read. An area for future work will be an application of these methods
to other types of short-read data, including data sets with higher rates of substitution
errors, where there is potentially a quite different distribution in scores between reads
and transcripts.

In terms of development of our methodology, it is interesting to note that for both
data sets, our initial iterative method based on the cumulative distribution function
performs as well as our model-based method with non-parametric density estimation,
and better than our model-based method with semi-parametric density estimation,
at least in the simulated data example. While this may at first seem surprising, upon
further examination, it becomes clear that there is a strong similarity between the
cumulative distribution F and the ratio f1/f0, based on non-parametric estimation.
These distributions are shown in Figure 6 for the simulated data. Also included is
the semi-parametrically estimated ratio f1/f0. Figure 7 shows the same sets of plots
for the two additional data sets. In this case, it is less clear why we are getting the
results we have seen.

Since the semi-parametric density estimation requires approximating a moment-
generating function, our current implementation may be hindered by numerical insta-
bilities. There is clearly room for future work in improving this estimation step, with
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Fig. 6. Comparison of F , the ratio f1/f0 estimated non-parametrically, and the ratio f1/f0

estimated semi-parametrically, for the simulated data set.
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Fig. 7. Comparison of F , the ratio f1/f0 estimated non-parametrically, and the ratio f1/f0

estimated semi-parametrically, for the non-simulated data sets. L20 data includes all reads of length

20 or more, and L25 data includes all reads of length 25 or more.

the hope that further improvements of our overall method may be possible once this
estimation is improved.

Regardless, there are clear advantages to incorporating alignment scores into an
allocation method, as shown by our strong attenuation of the biases present in the
existing methods used for allocation. While these results are to some extent dependent
on characteristics of the particular context, for example, sequencing methodology and
read length, we remain confident that our method can be applied beneficially in other
contexts as well.
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