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COMBINATORIAL ALGORITHMS FOR PROTEIN FOLDING IN

LATTICE MODELS: A SURVEY OF MATHEMATICAL RESULTS∗
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“ ... a very nice step forward in the computerology of proteins.”
Ken Dill 1995[1]

Abstract. We present a comprehensive survey of combinatorial algorithms and theorems about

lattice protein folding models obtained in the almost 15 years since the publication in 1995 of the

first protein folding approximation algorithm with mathematically guaranteed error bounds [60].

The results presented here are mainly about the HP-protein folding model introduced by Ken Dill

in 1985 [37]. The main topics of this survey include: approximation algorithms for linear-chain and

side-chain lattice models, as well as off-lattice models, NP-completeness theorems about a variety of

protein folding models, contact map structure of self-avoiding walks and HP-folds, combinatorics and

algorithmics for side-chain models, bi-sphere packing and the Kepler conjecture, and the protein side-

chain self-assembly conjecture. As an appealing bridge between the hybrid of continuous mathematics

and discrete mathematics, a cornerstone of the mathematical difficulty of the protein folding problem,

we show how work on 2D self-avoiding walks contact-map decomposition [56] can build upon the

exact RNA contacts counting formula by Mike Waterman and collaborators [96] leading to renewed

hope for analytical closed-form approximations for statistical mechanics of protein folding in lattice

models. We also include in this paper a few new results, research directions within reach of rigorous

results, and a set of open problems that merit future exploration.

1. Introduction.

“The subject of chaos is characterized by an abundance of quantita-
tive data, an unending supply of beautiful pictures, and a shortage
of rigorous theorems. Rigorous theorems are the best way to give a
subject intellectual depth and precision. Until you can prove rigorous
theorems, you do not fully understand the meaning of your concepts.”
Freeman Dyson 2009[43]

“The most vitally characteristic fact about mathematics is, in my
opinion, its quite peculiar relationship to the natural sciences ... In
modern empirical sciences it has become more and more a major
criterion of success whether they have become accessible to the math-
ematical method or to the near-mathematical methods of physics. In-
deed, throughout the natural sciences an unbroken chain of successive
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pseudomorphoses, all of them pressing toward mathematics, and al-
most identified with the idea of scientific progress, has become more
and more evident. Biology becomes increasingly pervaded by chem-
istry and physics, chemistry by experimental and theoretical physics,
and physics by very mathematical forms of theoretical physics.
There is a quite peculiar duplicity in the nature of mathematics. One
has to realize this duplicity, to accept it, and to assimilate it into
one’s thinking on the subject. This double face is the face of mathe-
matics, and I do not believe that any simplified, unitarian view of the
thing is possible without sacrificing the essence.” John von Neumann
1947 [103]

We present here mathematically rigorous results about computational problems
formulated in lattice models and a few results on off-lattice models. “Mathematical
results” refers to the existence of mathematical proofs and this is the criterion for
including such results in this survey. The theorems presented here concern algorithms
for finding the lowest-energy conformation of lattice proteins as well as various other
related combinatorial problems.

“[P]rotein folding is a fascinating cross-disciplinary field that attracts scientists
with different backgrounds and scientific cultures. They bring to the protein folding
field the models and the way of thinking that are accepted of their respective background
fields. Such diversity of scientific cultures is a great virtue of the protein folding field,
in which physics, chemistry, biology, and mathematics meet. It is important for our
cross-disciplinary field to discuss with balance both strong points and limitations of
different approaches” E. Shakhnovich 1996 [98].

The bias of this survey is towards computer science and combinatorics contribu-
tions and the follow up literature after the first approximation algorithm for protein
folding with guaranteed error bounds published in 1995 [60]. The lattice model dis-
cussed in detail here, together with a set of generalizations, is the HP-model of Ken
Dill. This biophysical model is among the most studied model in the protein-folding
literature [39, 41] and plays a unique role in research on combinatorial, computa-
tional complexity analysis, and algorithmic foundations of protein folding in lattice
and off-lattice models. The main types of rigorous results included here are (1) ap-
proximation algorithms for finding the minimum-energy folds with mathematically
guaranteed error bounds, (2) computational complexity analysis by establishing proofs
of NP-completeness for the problem of finding the minimum-energy folds in various
models, and (3) estimates of the number of “native” contacts in the optimal fold of a
given protein sequence. There are a number of great survey articles that cover topics
both similar [90, 39, 63, 42, 29] and complementary to [94, 87, 42, 41] to this one.

The rest of the paper is organized as follows. Section 2 presents protein folding
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models. Sections 3 and 4 contain comprehensive surveys of the literature on approxi-
mation algorithms, and respectively, NP-completeness theorems about protein folding
models. Sections 5 and 6 present two promising research directions and existing math-
ematical theory that could inspire new developments towards rigorous algorithms. In
Section 5 we present results on contact map decompositions of self-avoiding walks,
connection with analytical formulas for counting them and approximations of parti-
tion functions, and contact map overlap algorithms. Section 6 is devoted to side-chain
models, connections with the celebrated solution to the Kepler conjecture, and the
bi-sphere packing problem. In Section 7 we discuss a set of problems that we believe
have solutions within reach. We also include a few new results, reflections on combi-
natorial strategies and approaches to the problems discussed, and a number of open
problems whose solutions will advance our understanding of the field.

1.1. The Computational Protein Folding Problem.

“The protein folding problem is three different problems: the folding
code – the thermodynamic question of how a native structure results
from the interatomic forces acting on an amino acid sequence; protein
structure prediction – the computational problem of how to predict the
native structure of a protein from its amino acid sequence; and the
folding speed (Levinthal’s paradox) – the kinetic question of how a
protein can fold so fast ... Current knowledge of the folding codes is
sufficient to guide the successful design of new proteins and new ma-
terials. Current computer algorithms are now predicting the native
structures of small simple proteins remarkable accurately, contribut-
ing to drug discovery and proteomics. Even once intractable Levinthal
puzzle now seems to have a very simple answer ...” Ken Dill 2007 [40]

The protein folding problem is in fact a collection of fundamental problems focused
on the questions, “What is the folding code?” and “What is the folding mechanism?”
[41] and “ . . . the second, more visible to the public, side of the ‘holy grail’ of protein
folding – prediction of protein conformation ” [98]. The “folding code” concerns how
the “tertiary structure and folding pathway of a protein are encoded in its amino
acid sequence...[it] is not predominantly localized in short windows of the amino acid
sequence . . . [it] resigns mainly in global patterns of interactions, which are nonlocal,
and arise from the arrangements of polar and non-polar monomers in the sequence”
[39].

In this survey, we highlight research directions that attempt to relate the physical
process of protein folding and the informal computational paradoxes relevant to fold-
ing models to the rigorous analysis of associated mathematical problems and insight
about folding algorithms. Here are a few such themes.

Biophysics and algorithmics of folding. Mathematical proofs could in some mea-
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sure provide the validity of a biophysical modus operandi or conjecture. For example,
the “balancing points” existing in every protein sequence, on which approximation
algorithms with guaranteed error bound are based, as presented in Section 3.1, corre-
spond in spirit to the Zipper and Assembly hypothesis [41]. Similarly, it is common
thinking that lattices are viewed interchangeably as ways of discretizing the 3D space.
The “master approximation algorithms theorem” in Section 3.1 proves a mathematical
result with a similar “universal” flavor. It is also interesting to note that several proofs
of NP-completeness, as presented in Section 4, have as a first step the “multistring”-
folding version of the single-string folding problem. The multistring models have clear
similarities with protein misfolding and aggregation, bringing into view the continuum
between folding and misfolding as far as folding combinatorics goes.

“The failure of protein-folding processes, both within cells (in vivo)
and within test tubes or industrial vats (in vitro), causes serious dif-
ficulties both for biomedical research and for biotechnology industry.
Protein chains that fail to fold properly aggregate into an insoluble
and inactive state... There is increased recognition that some human
diseases are associated with aberrations or defects in protein chain
folding. These include Alzheimer’s and Huntington’s and cystic fi-
brosis.” Jonathan King 2002 [78]

Unavailability of foundational mathematical results. At the heart of the mathe-
matical difficulty of computational protein folding is the hybrid between the geometry,
rooted in continuous mathematics, and the combinatorics of folds, an essentially dis-
crete mathematics theme. In addition, the discrete mathematics component involves
the notoriously difficult concept of self-avoiding walk, a.k.a. excluded volume, which
escapes even the classifying power of NP-completeness (#P-completeness). Optimiza-
tion problems with such multi-criteria optimization of continuous-discrete type have
basically no known foundational mathematical theory.

Fast approximation algorithms and the hydrophobic collapse. Section 3.1 presents
a number of approximation algorithms for various lattice and off-lattice models. It
is interesting that almost all such algorithms are very fast (linear time in the size
of the protein sequence) and produce near-optimal folds. Even more, the master
approximation algorithm 3.1 uses a formal concept of universality. This “universality”
across models resembles the hydrophobic collapse phenomenon, postulated as a major
driver for folding in globular proteins. In this sense, these models capture that aspect
of folding well and there is a mathematical theorem capturing it.

The Kepler Conjecture and the “densest off-lattice is on-lattice” phenomenon.
The history and the recent celebrated solution of the almost 400-year-old Kepler
Conjecture highlight the notorious mathematical difficulty of packing problems with
relevance for protein folding, as we discuss in Section 6. The conjecture formulated
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by Johannes Kepler in 1611 [77] states that the highest packing density of identical
spheres is obtained by arranging them as nodes in a face-centered-cubic (FCC) lattice.
Gauss showed in 1831 that, of all lattice arrangements, the FCC lattice is indeed the
one that provides a packing of the entire 3D space with the highest density. Only
at the end of the last century, in 1997, was the solution to the general problem
including off-lattice arrangements obtained by Thomas Hales [59], showing that the
densest off-lattice arrangement is again the FCC lattice. We discuss in Section 6
a conjecture analogous to the Kepler conjecture involving bi-spheres, the bi-sphere
packing problem, and connect it with what we propose as the Protein Side-Chain
Self-Assembly conjecture. The on-lattice-off-lattice proofs exemplify the enormous
difficulty of such mathematical arguments highly relevant to folding combinatorics as
well. It is this type of difficulty that is involved in extending the type of mathematical
results on approximation algorithms presented in this survey for the HP-model to
other leading biophysical lattice and off-lattice models.

2. Protein Folding: Models.

“Understanding the mechanism of protein folding is often called the
“second half” of genetics. Computational approaches have been in-
strumental in the efforts. Simplified models have been applied to un-
derstand the physical principles governing the folding processes and
will continue to play important roles in the endeavor.” Peter Kollman
2001[42]

“We must emphasize a statement which I am sure you have heard
before, but which must be repeated again and again. It is that the
sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct
which, with the addition of certain verbal interpretations, describes
the observed phenomena. Furthermore, it must satisfy certain es-
thetic criteria, that is, in relation to how much it describes, it must
be rather simple. Since one cannot tell exactly how ‘simple’ simple is
... Simplicity is largely a matter of historical background, of previous
conditioning, of antecedents, of customary procedures, and it is very
much a function of what is explained by it.” John von Neumann 1955
[104]

2.1. Assumptions and Caveats. “[W]e take as our premise that proteins are
chain molecules that have specific monomer sequences and are driven to fold mainly
by nonlocal interactions subject to steric constraints. There is currently no accurate
analytical theory that can account for chain connectivity, excluded volume in the com-
pact states, and specific sequences of monomer units. Simple exact models have been
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developed to explore such properties.” [39]

Protein folding models provide a mathematical formulation of the protein folding
process, abstracting away components of atomic detail as well as making choices on
what the model will include. Modeling is a choice. One could simplify, as is usually
done, by considering only some forces to include in the model, but one can also
introduce generality, such as considering all the HP-sequences as protein sequences.
It is this simplify-and-generalize power of modeling that, as far as the computerology
of proteins is concerned, is the source of some monotonicity fallacies we discuss next.

The “More-is-Harder” Monotonicity Fallacy Argument. By 1995, when the first
approximation algorithms were published [60], the computer-science notion of “time”
apparently did not enter essentially, as far as we know, into results on computational
methods in protein folding, except that it was recognized as an “exponential problem”
[94]. The use of the concept of polynomial time algorithm as an aim for tractable
computational methods was just emerging in the protein folding research [46, 58].

In 1992 and 1993 the first papers containing proofs of NP-completeness for protein
folding models were published. They were established for ad-hoc models introduced
basically for the purpose of the NP-completeness proof.

It is natural to think that if we cannot solve a problem in a simple model than
the problem could only be harder in a more complicated model. Although this is
intuitively true in informal arguments, it is a source of misguided arguments. We
comment next about such a monotonicity fallacy both related to algorithms and to
NP-completeness.

As far as algorithms for folding are concerned, the literature before 1995 contained
mainly two types of computational methods: exhaustive enumeration for protein mod-
els, which applied only to relatively short protein sequences, and stochastic methods
(simulations or sampling methods). For these types of methods a monotonicity prop-
erty is certainly true: More-is-Harder. That is, if a “simple” model is difficult to solve
in terms of computational resources, the same problems for a more “complex” model,
e.g., involving more atomic detail, would require more computational resources. This
is clearly true for exhaustive enumeration algorithms, and it is only informally true
for stochastic methods. The following is a fallacy: “computational difficulty with
methods in simple models has as a logical consequence difficulty in complex models.”
From the computerology point of view, in a more complex model, the problem under
study may become more tractable due to the extra constrains imposed. For example,
in the case of approximation algorithms, the best approximation ratios to date for the
side-chain HP-model are superior to the linear-chain HP-models (Section 3.1).

The same type of monotonicity property was asserted incorrectly in proofs of NP-
completeness. If a class of instances of a computational problem is NP-complete, a
larger class containing those, that is, a generalization, has the NP-completeness mono-
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tonically preserved. However, the fallacy comes in place when both generalizations
and simplifications are considered. One such fallacious argument is as follows: Step
1: one introduces a protein folding model and shows that protein folding is NP-hard;
Step 2: “Nature” solves protein folding very fast; Step 3: therefore, “Nature” solves
NP-hard problems fast (in polynomial time).

2.2. Lattice Models.

“It seems remarkable that so simple a model based on time aver-
aged forces can account for the stability and folding of a molecule as
complicated as a protein. Looking at known protein conformations
closely, one is struck by the precise geometry of the interatomic con-
tacts that stabilise the molecule: all possible interior hydrogen bonds
are well formed, and many of the nonpolar side chains interlock to
form a close packed interior. . . . [T]he forces responsible for this pre-
cise geometry ... cause the chain to fold into the approximate shape
rapidly and without having to pass through many local minima ...
Although calculating the energy of the all atom molecule would be
time consuming, one would have the great advantage of starting close
to the right conformation ... The general concept of using a simple
model . . . when the detailed forces are too complicated has many po-
tential applications . . . Such a hierarchical approach might eventually
lead to an understanding and simulation of very complicated biolog-
ical assembly processes. ” Michael Levitt and Arieh Warshel 1975
[82]

“[F]olding is an intrinsically statistical phenomenon and no conclu-
sion can be derived from a single folding or unfolding trajectory. . . .

Lattice and other simplified analytical models are the statistical me-
chanician’s contribution to the protein folding . . . their intimate con-
nection with statistical mechanics . . . is very important as it often
allows us to compare simulation with statistical-mechanical analyti-
cal theories.” Eugene Shakhnovich 1996 [98]

We follow the classification of lattice models from Duan and Kollman [42]. The
pioneering work of Levitt and Warshel in the 1970s creating the first detailed energy-
minimization lattice model for studying the folding of BPTI marked “the beginning
of the physically based models in the study of protein folding . . . the fact that most
current structure prediction methods use a similar representation to that of Levitt and
Warshel is a strong testament of the power of such an approach” [82]. Lattice models
are of two types. The first type is “designed to understand the basic physics governing
the protein folding process,” while the second type aims at “realistic folding of real
proteins and are therefore parameterized using real proteins as templates by statistical
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sampling of the available structures and are often referred to as statistical potentials.”
In the first basic physics category, the major models that provided deep insights into
the physical principles of folding are Go (simplicity) [54], Wolynes (funnel-like energy
landscape) [110], Dill (hydrophobic interactions, hydrophobic-hydrophilic pattern)
[39, 38], Shakhnovich (statistical mechanics) [95], Karplus (diffusion-collision) [111].
In the second realistic folding category, the leading models are due to Skolnick [99],
Miyazawa and Jernigan [84], Crippen [36], Eisenberg [22], Sippl [66], Scheraga [83].

The 2D square lattice and the 3D cubic lattice are the most thoroughly studied
lattices and consequently have extensive literature on exact computational methods,
approximation algorithms, and complexity results.

In three dimensions, a lattice of major importance is the face-centered-cubic
(FCC) lattice. It has been shown that the neighborhood of amino acids in proteins
closely resembles an FCC lattice, providing evidence for the importance of the FCC
lattice in modeling protein folds [18, 19]. Furthermore, the kissing number of a sphere
in 3D space is known to be 12, the same as the degree of each vertex in the FCC
structure [20, 70]. Therefore, the number of degrees of freedom for placing adjacent
spheres in three dimensions is achieved by the vertices of the FCC lattice. This is
intimately tied to Kepler’s conjecture, recently proved by Thomas Hales, which states
that the face-centered-cubic lattice is the densest packing of identical spheres in three
dimensions [33, 100]. The face-centered-cubic lattice therefore provides the densest
possible hydrophobic core for any lattice-based protein folding model. We discuss in
Section 6 the connection between the much celebrated solution of the Kepler Con-
jecture and methods developed there that have relevance to protein folding packing
problems.

2.2.1. The HP-Model. In 1985, Ken Dill proposed the hydrophobic-hydrophi-
lic (HP) model, which has been subjected to a huge amount of literature due to its
fundamental role in protein folding modeling [17, 37, 76, 81]. The model captures the
fact that native protein folds tend to form very compact cores driven by dominant
hydrophobic interactions [39]. Each amino acid is classified either as hydrophobic (H)
or hydrophilic (P) and two hydrophobic amino acids are said to be in contact if they
are adjacent in the fold but nonadjacent in the primary sequence. Since the goal is
the formation of highly compact hydrophobic cores, the optimization function is to
maximize the number of contacts between hydrophobic atoms (H-H contacts). To
phrase the problem as an energy-minimization problem, the energy function is the
negative of the number of hydrophobic contacts of the fold. Two examples of protein
folds in the linear-chain and side-chain lattice HP-models are presented in Figures 1
and 4.

Models represent the protein sequence as a linear chain, perhaps with explicit
side-chains branching from the linear backbone. In lattice models, a fold of a protein
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sequence is defined by placing the amino acids on lattice nodes and the protein chain
as a self-avoiding path on the lattice; in off-lattice models, the placement of the protein
is in 3D space, with the only restriction being the self-avoidance of the backbone and
of the branching side-chains [39].

3. Protein Folding: Approximation Algorithms.

“The central question addressed in this review is this: Is there some
clever algorithm, yet to be invented, that can find the global mini-
mum of a protein’s potential-energy function reliably and reasonably
quickly? Or is there something intrinsic to the problem that pre-
vents such a solution from existing? ... Is there an approximation
algorithm for global potential-energy minimization? ... To our knowl-
edge, the possible existence of an approximation algorithm for protein
structure prediction has not been addressed ... Such an approximation
algorithm might be of significant practical use in protein-structure
prediction, because exactness is not a central issue.” Martin Karplus
1994 [90]

“It is the mark of an instructed mind to rest satisfied with the degree
of precision which the nature of the subjects permits and not seek
an exactness where only an approximation of the truth is possible.”
Aristotle 319 BC [8]

The two types of combinatorial methods with rigorous mathematical results are
approximation algorithms and combinatorial optimization algorithms.

The two classes of methods differ in their time complexity, whether they are exact
or approximations, and whether they apply with the claimed performance to the entire
class of protein sequences or a restricted subclass class of protein sequences.

An approximation algorithm for protein folding in an HP-model is a polynomial-
time algorithm that for every protein sequence outputs a fold of that protein whose
number of contacts is provably near optimal. A combinatorial optimization algorithm
for protein folding in an HP-model is an exponential algorithm that for some protein
sequences outputs a fold of that protein whose number of contacts is provable optimal.
More critically, although approximation algorithms may be very fast and apply to all
sequences, they could have weak approximation ratios and therefore may not be close
to optimal (e.g., 50% of optimal means a fold with at least half of the number of
optimal contacts). The best approximation algorithms to date have approximation
ratio 86% of optimal [64]. On the other hand, combinatorial optimization algorithms,
despite being exponential, find exact optimal solutions; however, only for small to
moderate size proteins (about 50 amino acids), and even for a given size not all
problems can be solved exactly and it is not clear in general which ones can be
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solved. Such methods were able to find optimal solutions for proteins of size 100 [14].
Heuristics are a third category of combinatorial methods. This is an area with a large
amount of literature, including a variety of methods both deterministic and stochastic.
These methods are not presented here. We present a comprehensive literature survey
of approximation algorithms, while we only cite a few of the most successful results
in the combinatorial optimization literature.

3.1. Approximation Algorithms: Fast Folding Provably Close to Op-

timal. In this section, we discuss approximation algorithms for HP-models. The
results apply to lattice models, for linear-chain and side-chain HP-models, as well as
generalizations to an off-lattice model, the Tangent Spheres HP-model.

When an optimization problem is showed to be computationally intractable, i.e.,
NP-complete, the next avenue to consider is the existence of algorithms that could
compute solutions close to optimal. These are called Approximation Algorithms.
They obtain provably near-optimal solutions of problems for which exact optimiza-
tion is proved NP-complete. To quantify “closeness to optimal” one uses the following
terminology. An α-approximation algorithm for a problem is a polynomial-time al-
gorithm that outputs a solution of ratio at most α from the optimal solution. For
a minimization problem, the output is at most α times the value of the optimal so-
lution and for a maximization problem, the output is at least 1

α times the value of
the optimal solution. The value α is called the approximation ratio or approximation
guarantee for the problem.

For protein folding in HP-models, the optimization problem is defined as follows.
Given an HP-model, and a protein sequence over the binary alphabet of hydrophobic-
hydrophilic amino acids, find the protein fold in the model that has the maximum
number of contacts. This optimization problem is indeed NP-complete in many HP-
models as shown in Section 4. However, a collection of approximation algorithms
exist for a variety of HP-models.

We present next the ideas behind the first such algorithms and the gallery of
approximation algorithms to date for HP-models and generalizations.

3.1.1. Hart-Istrail Algorithms. Let us consider the maximization problem
with objective function C, maximizing the number of contacts of a fold.

The first step in the design of an approximation algorithm for this maximization
problem is to find an upper bound on the optimal value of the objective function
that can be computed in polynomial time. This upper bound for our problem would
provide, for a given protein sequence, an estimate of the optimal number of contacts
of the sequence in its “native” fold. For example, in the 2D square lattice, since each
H can make at most two contacts, such an upper bound is two times the minimum
number of H’s that are even or odd. Finding good upper bounds, i.e., upper bounds
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Fig. 1. Optimal fold of a protein of

length 36 (gray is hydrophobic and black

is hydrophilic)

Fig. 2. A fold constructed by the Hart-Istrail

algorithm

Fig. 3. A fold constructed by the Newman algorithm

that are as close to the optimal solution as possible, is crucial in developing algorithms
with good approximation ratios.

We describe the main ideas of the first rigorous approximation algorithms in the
literature with provable approximation guarantees for the protein-folding problem
in the HP model on 2D and 3D cubic lattices, established by Hart and Istrail [60].
Consider a protein sequence S of hydrophobic (H) and hydrophilic (P) amino acids
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(or residues) and label the amino acids in the sequence in order by 1, 2, . . . n. A
hydrophobic residue is said to be an odd hydrophobic if it is labeled by an odd
number and an even hydrophobic otherwise. Let O(S) denote the number of odd
hydrophobics in S and let E(S) denote the number of even hydrophobics in S. Let

C2D(S) = 2 min{O(S), E(S)}

The Hart-Istrail algorithms for protein folding in the 2D cubic lattice HP model
on a 2D cubic lattice use the following estimate of the optimal number of contacts:
for every fold F (S) for the sequence S we have:

#Contacts(F (S)) ≤ C2D(S)

The upper bound C2D(S) depends crucially on properties of the underlying two-
dimensional square lattice, in particular that an H − H contact in a fold can be
formed only if the amino acids are in positions of different parity in the sequence.

The Hart-Istrail approximation algorithm proceeds as follows. The intuition is
based on a balancing point (or a turning point) that exists in every protein sequence.
Given a position p of an amino acid of the sequence S, let LS(p) denote the amino
acids in S to the left of p and RS(p) denote the amino acids in S to the right of p.
Find a position p such that at least half of the even hydrophobics fall on one side of p

and at least half of the odd hydrophobics fall on the other side of p. Such a position
exists for the following reason. Choose p such that LS(p) and RS(p) each contain
exactly half of the even ones; then either LS(p) or RS(p) contain at least half of the
odd ones.

The approximation algorithm finds a fold that matches all the even hydrophobics
on one side of p with all the odd hydrophobics on the other side of p by forming loops
of all of the intermediary amino acids. By the choice of p and the construction of
the fold, the number of contacts in the resulting fold is at least 1

2 min{E(S),O(S)}.
Therefore the approximation ratio achieved by the algorithm is

1
2 min{E(S),O(S)}
2 min{E(S),O(S)}

=
1
4
.

Figure 2 shows the fold obtained by repeating the algorithm over all possible
balancing points p in this algorithm and choosing the best such p.

Newman has given examples of sequences for which C2D(S) is within a factor of 2
of the optimal number of contacts [88]. Therefore any approximation algorithm (which
by definition works on all protein sequences) whose guaranteed close-to-optimal bound
is based on the

#Contacts(F (S)) ≤ C2D(S)
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inequality cannot achieve approximation ratio strictly greater than 1
2 .

For the 3D cubic lattice HP-model, Hart and Istrail gave a 3
8 -approximation for

the protein-folding problem. For the 3D cubic lattice, it is easy to see that we can
define

C3D(S) = 4(min{O(S), E(S)}) + 2

and for every fold F (S) for the sequence S we have:

#Contacts(F (S)) ≤ C3D(S)

Let k = O(S)
2 and consider the position p such that the left and right sides LS(p)

and RS(p) contain at least k odd and even hydrophobics, respectively. The next step
is to divide LS(p) into segments with

√
k odd hydrophobics and divide RS(p) into

segments with
√

k even hydrophobics. The Hart-Istrail 2D folding algorithm is then
repeatedly applied

√
k times in adjacent (x, y) planes. The idea is that each of the odd

Hs in LS(p) has three contacts: one in the (x, y) plane, one with the plane above, and
one with the plane below. In particular, three contacts are made for O(S)

2 −o(
√
O(S))

odd Hs. This results in an algorithm with approximation guarantee of 3
8 of optimal.

3.1.2. Newman Algorithm. In [88], Newman developed an improved approx-
imation algorithm with approximation ratio 1

3 for the 2D square lattice. While the
upper bound used for analysis of the approximation algorithms is the same C2D(S),
the Newman algorithm uses additional bends in the sequence that improve the number
of contacts between the two sides of the position p. Figure 3 shows the fold obtained
by repeating the algorithm over all possible turning points p in this algorithm.

3.1.3. Linear-Chain Lattice, Side-Chain Lattice and Off-Lattice Mod-

els. Linear-Chain Models. The Hart-Istrail and Newman algorithms are approxima-
tion algorithms for linear-chain protein-folding models. A comprehensive gallery of
approximation algorithms for linear-chain lattice, side-chain lattice, and off-lattice is
presented in Section 3.2.

The existence of approximation algorithms for HP-models across lattices is a uni-
versal phenomenon that is formalized in the following theorem. In [62], Hart and
Istrail design a master approximation algorithm, a general method for protein folding
on the HP model that applies to a large class of lattice models; see Figure 5, for
the “universal” type of sublattice structure responsible for the construction. These
algorithms apply to most well-studied lattices in the literature, including the two-
dimensional square lattice, the three-dimensional cubic lattice, the diamond lattice,
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the Bravais lattices, the FCC lattice, and other crystallographic lattices. The approx-
imation algorithms in their paper correspond to two different algorithms that must be
applied separately to the cases of bipartite and nonbipartite lattices. Both algorithms
follow the structure of the approximation algorithms in Section 3.1.1 by first selecting
a point to balance the number of hydrophobics in each side, and then forming a back-
bone or core with guidance from the formation of hydrophobic edge contacts. These
approximation algorithms can also be generalized to give approximation guarantees
for folding in off-lattice protein models [64].

Theorem 3.1. There is a linear time master approximation algorithm universal
to all HP-models across lattices.

Side-Chain Models. To increase the accuracy of protein modeling methods, it is
desirable that extended models take into account the structure of the protein as a
backbone formed by a set of successive peptide bonds, together with attached side
chains [23]. Ngo, Marks, and Karplus ask for the computational complexity of protein
folding in models that include side chains [90].

Fig. 4. A fold of a protein in the 2D square side-chain HP-model making one contact

The side-chain lattice models analyzed represent the folding of proteins as “bran-
ched combs.” In the side-chain model, the backbone of the protein is represented by a
linear sequence of backbone nodes (as in the HP-model, except that these nodes are
not labeled with amino acids), and connected to each backbone node is a side chain
(an edge with one end a backbone node and the other end representing the amino
acid) representing an amino acid (labeled either hydrophobic or hydrophilic) (Figures
4 and 16). A conformation of the protein is an embedding in a “self-avoiding manner”
of the backbone path into the lattice with side-chain edges mapped to adjacent lattice
edges such that no lattice point is occupied by more than one backbone node or side-
chain node. As before, the energy of a conformation is the number of hydrophobic-
hydrophilic contacts between amino acids.

The algorithms in Hart and Istrail [64] were the first to provide approximation
guarantees for the problem of folding on the side-chain model. Their results apply
to 2D square, 3D cubic lattices, and FCC lattices. For cubic lattices, their algorithm
proceeds by decomposing the sequence into a sequence of blocks that satisfy certain
constraints on the parity and structure of hydrophobic amino acids. The structure in
these blocks is used to prove upper bounds on the number of possible contacts in any
conformation. The algorithms in [64] follow the approach of approximation algorithms
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Fig. 5. The “universal” sublattice structure responsible for the construction of the master

approximation algorithm.

in the HP model without side chains, first choosing a balancing or turning point of the
sequence that balances the number of hydrophobics on either side of the turning point,
and then matching up the hydrophobics from each partition to form a hydrophobic
core. The pattern of the fold in the algorithm depends on the hydrophobic-hydrophilic
pattern of the sequence. The resulting approximation algorithms have approximation
ratio 1/12 in the 2D square lattice and 2/5 in the 3D cubic lattice.

In the side-chain model on the FCC lattice, the sequence is partitioned into eight
subsequences with approximately equal numbers of hydrophobics in each part. Each of
these parts is then placed in a single column of the FCC lattice forming the hydropho-
bic core. The hydrophilics are looped in the fold to form disjoint sets of columns, using
different layers of the FCC lattice for each loop. We refer the reader to [64] for illus-
trations of the hydrophobic core construction and looping structure. This algorithm
differs from all the previous approximation algorithms described in that it uses the
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concept of balance point in a recursive fashion to separate the sequence into parts,
each making a fraction of the number of optimal contacts. Both the partitioning
and looping can be done in linear time, giving rise to a linear-time approximation
algorithm with approximation ratio 31/36 (> 86%). This ratio remains to date the
best ratio for an approximation algorithm in any 3D HP-models. In addition to this
algorithmic development, it is shown how prior algorithms for the cubic lattice in 2D
(with and without side chains) can be used to develop algorithms for the side-chain
model in the 3D cubic lattice.

Off-Lattice Models. An important question to address in studying lattice models
is whether or not the algorithms for these models can be generalized to algorithms
for off-lattice models. In 1997, Hart and Istrail introduced an off-lattice model called
the Tangent Spheres side-chain HP-model (HP-TSSC) [64]. In this model, adjacent
backbone and side-chain molecules are represented by identical spheres in 3D space
that are tangent. Side chains are labeled hydrophobic or hydrophilic and the energy
of a conformation is the number of hydrophobic-hydrophobic tangent spheres.

Fig. 6. A fold for a protein in the 2D Tangent Spheres HP-model

Hart and Istrail demonstrate that algorithms with provable guarantees for protein
folding in lattice models lead to algorithms with provable guarantees for the folding
problem in off-lattice models, illustrating the transformation of approximation guar-
antees from lattice models to off-lattice models [64]. In particular, the approximation
algorithm for the side-chain model in the FCC lattice, as described in Section 3.2.2,
can be cast in the off-lattice framework and provides an off-lattice performance guar-
antee that is close to optimal (86% of optimal). The proof of upper bounds for the
total number of possible contacts in the tangent spheres model is closely related to
the number of neighbors in the FCC lattice, as follows from the well-known kissing
number in 3D space [59].

Since the number of neighbors in the FCC lattice and the maximum number of
possible neighbors in space is the same, this suggests that algorithms on the FCC lat-
tice have good off-lattice performance. This is an example of using the mathematical
principles of packings in 3D space to constrain the model in order to make the result-
ing problems more tractable. Similarly, a general method is given in [64] to cast the
algorithms established by lattice models to off-lattice frameworks to achieve rigorous
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approximation guarantees. For example, the approximation algorithms of Agarwala
et al. in [5] can be cast in the off-lattice framework to achieve approximation ratio of
54.5%. The following figures illustrate folds in the 2D hexagonal (triangular) lattice,
3D linear-chain cubic lattice, and 3D side-chain FCC lattice.

Fig. 7. A fold in the 2D hexagonal (triangular) lattice for a protein of length 25

Fig. 8. A fold of a protein of length 85 in the 3D Face-Centered-Cubic lattice

Fig. 9. A fold in the side-chain HP-model on the Face-Centered-Cubic lattice

3.2. The Gallery of Approximation Algorithms For Lattice and Off-

Lattice Models. We now present the theorems concerning the approximation algo-
rithms. They all resemble the first such approximation algorithm in that almost all
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are linear-time algorithms and use a combination of global and local folding rules, al-
though they differ in the underlying combinatorics used to achieve the close-to-optimal
folding.

3.2.1. Approximation Algorithms for Linear-Chains Models.

1. Triangular Lattice:
Theorem 3.2 (Agarwala-Batzoglou-Dancik-Decatur-Farach-Hannenhalli-
Skiena 1997). There is a linear-time approximation algorithm that folds an
arbitrary HP-protein sequence in the 2D triangular HP-model within 6

11 (0.55)
of optimal.
Theorem 3.3 (Agarwala-Batzoglou-Dancik-Decatur-Farach-Hannenhalli-
Skiena 1997). There is a linear-time approximation algorithm that folds an
arbitrary HP-protein sequence in the 3D triangular HP-model within 44

75 (0.59)
of optimal.
Theorem 3.4 (Batzoglou-Decatur 1996). There is a linear-time approxima-
tion algorithm that folds an arbitrary HP-protein sequence in the 2D triangu-
lar HP-model within 1

2 (0.5) of optimal.
Theorem 3.5 (Batzoglou-Decatur 1996). There is a linear-time approxima-
tion algorithm that folds an arbitrary HP-protein sequence in the 3D triangu-
lar HP-model within 3

5 (0.6) of optimal.
2. 2D Square Lattice:

Theorem 3.6 (Hart-Istrail 1995). There is a linear-time approximation
algorithm that folds an arbitrary HP-protein sequence in the 2D square HP-
model within 1

4 (0.25) of optimal.
Theorem 3.7 (Hart-Istrail 1995).
For every protein sequence S in the linear chain HP-model, consider the fol-
lowing:
(a) OPT2D(S) = the maximal number of contacts of any fold of S on the

2D square lattice; OPT3D(S) = the maximal number of contacts of any
fold of S on the 3D cubic lattice;

(b)

C2D(S) = 2 min{O(S), E(S)}

C3D(S) = 4(min{O(S), E(S)}) + 2

Then
(a) OPT2D(s) ≤ C2D(S)
(b) OPT3D(s) ≤ C3D(S)

Therefore, every 2D algorithm that constructs folds achieving a fraction of α

of the C2D(S) contacts is an approximation algorithm with ratio α; it is then
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guaranteed to achieve at least α of the optimal number of contacts. Similarly
for the 3D case.
Theorem 3.8 (Hart-Istrail 1995). There is a linear-time approximation
algorithm that folds an arbitrary HP-protein sequence in the 3D cubic HP-
model within 3

8 (0.38) of optimal.
Theorem 3.9 (Newman 2002). There is a linear-time approximation algo-
rithm that folds an arbitrary HP-protein sequence in the 2D square HP-model
within 1

3 (0.33) of optimal.
Theorem 3.10 (Newman 2002). There exist HP-sequences S whose optimal
fold in the 2D HP-model satisfies:

OPT2D(S) ≤ (1 + o(1))
C2D(S)

2

Therefore, any algorithm that uses the bounding argument of Theorem 3.7 to
obtain a mathematically guaranteed approximation ratio cannot approximate
better than 1

2 of optimal.
Theorem 3.11 (Newman-Ruhl 2004). There is a linear-time approximation
algorithm that folds an arbitrary HP-protein sequence in the 3D square HP-
model within 0.37501 of optimal (improving on 3

8 = 0.3750).
Theorem 3.12 (Mauri-Pavesi-Piccolboni 1999). There is a cubic-time ap-
proximation algorithm that folds an arbitrary HP-protein sequence in the 2D
square lattice HP-model within 1

4 (0.25) of optimal.
3. 2D Square and 3D Cubic Lattice with Diagonals (so-called Extended Lattices)

Theorem 3.13 (Bokenhauer-Bongartz 2007). There is a linear-time approx-
imation algorithm that folds an arbitrary HP-protein sequence in the extended
2D cubic lattice HP-model within 15

26 (0.5769) of optimal. There is a linear-
time approximation algorithm that folds an arbitrary HP-protein sequence in
the extended 3D cubic lattice HP-model within 5

8 (0.6250) of optimal.

3.2.2. Approximation Algorithms for Side-Chains Models.

Theorem 3.14 (Hart-Istrail 1997). There is a linear-time approximation
algorithm that folds an arbitrary HP-protein sequence in the extended 3D
FCC lattice HP-model within 31

36 (0.86) of optimal.
Theorem 3.15 (Heun 2003). There is a linear-time approximation algorithm
that folds an arbitrary HP-protein sequence in the extended cubic lattice side
chain HP-model within 59

70 (0.84) of optimal.
4. Face Centered Cubic Lattice (FCC)
5. Hexagonal Lattice

Theorem 3.16 (Jiang-Zhu 2005). There is a linear-time approximation
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algorithm that folds an arbitrary protein sequence in the 2D hexagonal lattice
HP-model within 1

6 (0.17) of optimal.

3.2.3. Approximation Algorithm for an Off-Lattice Model.

Theorem 3.17 (Hart-Istrail 1997). There is a linear-time approximation
algorithm that folds an arbitrary HP-protein sequence in the Tangent Spheres
side-chain HP-model within 31

36 (0.86) of optimal.
NAME YEAR LATTICE TYPE MODEL TYPE APPROX.

RATIO

Jiang-Zhu 2005 2D Hexagonal Lattice Side-Chains 1
6 (0.17)

Hart-Istrail 1995 2D Square Lattice Linear Chains 1
4 (0.25)

Mauri-Pavesi et al 1999 2D Square Lattice Linear Chains 1
4 (0.25)

Newman 2002 2D Square Lattice Linear Chains 1
3 (0.33)

Newman-Ruhl 2004 3D Cubic Lattice Linear Chains 3
8 (0.3750)

Hart-Istrail 1995 3D Cubic Lattice Linear Chains 3
8 (0.38)

Batzoglou-Decatur 1996 2D Triangular Lattice Linear Chains 1
2 (0.5)

Agarwala-Batzoglou et al 1997 2D Triangular Lattice Linear Chains 6
11 (0.55)

Agarwala-Batzoglou et al 1997 3D Triangular Lattice Linear Chains 44
75 (0.59)

Batzoglou-Decatur 1996 3D Triangular Lattice Linear Chains 3
5 (0.60)

Bokenhauer-Bongartz 2007 3D Cubic w/ Diagonals Linear Chains 5
8 (0.62)

Heun 2003 2D Square w/ Diagonals Linear Chains 59
70 (0.84)

Hart-Istrail 1997 FCC Lattice Side-Chains 31
36 (0.86)

Hart-Istrail 1997 Off-Lattice 31
36 (0.86)

3.3. Combinatorial Optimization Methods. There are a number of powerful
combinatorial optimization methods in this area (see [79] for a survey). The most
successful method is based on constraint programming and is due to Backofen and his
collaborators [11, 12, 13, 17, 15]. Backofen and Will present a constraint-based method
for finding optimal folds in the three-dimensional cubic and face-centered cubic lattices
[14, 16]. Backofen has also been able to find upper bounds on the number of contacts
on the FCC lattice in the HP-model [12]. A number of other linear programming
based methods have been developed as well [26, 107, 28]. An interesting result about
an exact exponential algorithm for protein folding is the following. Fu and Wang give
a divide-and-conquer approach based on geometric separators to design a 2O(n1− 1

d
log n)

exact algorithm on a d-dimensional grid [51].

4. Protein Folding: Computational Complexity.

“The exactness of mathematics is well illustrated by proofs of impos-
sibility. When asserting that doubling the cube ... is impossible, the
statement does not merely refer to a temporary limitation of human
ability to perform this feat. It goes far beyond this, for it proclaims
that never, no matter what, will anybody ever be able to [double the
cube]. No other science, or for that matter no other discipline of
human endeavor, can even contemplate anything of such finality.”
Mark Kac and Stan Ulam 1968
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“For a quarter of a century now NP-completeness has been computer
science’s favorite paradigm, fad, punching bag, buzzword, alibi, and
intellectual export... pervasive and contagious.”
Christos Papadimitriou 1995

An important question to address is the inherent complexity of computing the
lowest-energy fold of a protein sequence in a given model. In this section, we sur-
vey computational complexity results for protein-folding lattice models. We present
a series of theorems establishing that in a variety of models, both well studied bio-
chemical models and ad-hoc models introduced for the purpose of the mathematical
proof, finding the minimum-energy fold for a protein sequence is computationally in-
tractable, i.e., NP-complete. These types of mathematical results were well received
in the computational protein-folding community, as on the one hand they provided
vindication for the apparent intrinsic difficulties and slow progress in developing accu-
rate protein-folding algorithms, and on the other hand, they identified rigorous islands
of well understood computational bottlenecks.

An NP-hardness theorem for a computational problem classifies its computational
complexity as being as difficult to solve as certain problems in a much celebrated
and well studied class of problems, icons of computational difficulty, referred to as
computationally intractable; this class of problems includes the Traveling Salesman
Problem, the Boolean Satisfiability of Propositional Logic, and the Set Cover Problem
in graph theory [52]. The famous question whether NP-hard problems can be solved
in polynomial time, the so-called P vs. NP Problem, is one of the seven magnificent
Clay Mathematics Institute Millennium Million-Dollar Prize problems: the Birch and
Swinnerton-Dyer Conjecture, the Hodge Conjecture, the Navier-Stokes Equations, the
P vs. NP Problem, the Poincaré Conjecture, the Riemann Hypothesis, and Yang-Mills
Theory [3].

4.1. NP-completeness: from 10300 to 2 Amino Acid Types. The NP-
hard theorems presented in this section focus on a set of computational problems
in the protein-folding context. Most of them have to do with the packing of hy-
drophobic cores, but other computational aspects of protein-structure prediction are
considered as well. The first NP-hard result, from 1992, is by Ngo and Marks [89],
followed by Fraenkel [49, 50] and Unger and Moult [102]. The models used in these
papers were introduced ad hoc for the purpose of showing that protein-folding-like
computational tasks were similar in difficulty to well-studied NP-complete problems.
In fact, the NP-completeness results that followed converged in model features to-
ward parameters matching real proteins in biophysical models. The series culminated
with the NP-completeness results for Dill’s HP-model in 1998: Crescenzi, Goldman,
Piccolboni, Papadimitriou and Yannakakis showed the 2D square-lattice model is
NP-complete [35], while Berger and Leighton showed the 3D cubic lattice model is
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NP-complete [21]. This series of proofs used reductions from a variety of well-known
NP-complete problems – SATISFIABILITY, PARTITION, OPTIMAL LINEAR AR-
RANGEMENT, 3D MATCHING, NOT-ALL-EQUAL 3SAT, P3SAT, MAX-CUT,
MAX-3SAT, HAMILTONIAN PATH, BIN PACKING [52] – showing in the realm of
mathematical proofs tremendous breadth and depth in how computational difficulty
enters into the protein-folding modeling. The following gallery of theorems is pre-
sented without formal definition of the model involved or associated computational
problem found to be NP-hard. The reader will find in the cited literature the details
of the model, problem, and proof.

4.2. NP-completeness: Protein Folding in Ad-Hoc Models. The first
proofs of NP-completeness were obtained for models of protein folding designed es-
pecially for the proof. In 1992 Ngo and Marks published the first NP-completeness
results for 3D models for “commonly encountered energy-minimization tasks,” model-
ing the geometry of backbone conformation of structure prediction for idealized carbon
chains with tetrahedral bond geometry. Although compactness of the chains is not
the focus, the problems entail modeling interesting aspects of the folding process. A
shortcoming of the results is that the encoding of the problem instance is exponential
in the size of the protein sequence. The reduction used is from the PARTITION
problem [89].

Theorem 4.1 (Ngo-Marks 1992). The following three problems are NP-hard: DI-
AMOND LATTICE PATH (DLP), ENDPOINT CONSTRAINT POLYMER STRU-
CTURE PREDICTION (ECPSP), POLYMER STRUCTURE PREDICTION
(PSPS).

In 1993 and 1994, Fraenkel published NP-hard results for both 2D and 3D models
capturing aspects of protein structure prediction. The protein model is not a chain
but a graph and adjacency of amino acids in the chain and the self-avoiding walk re-
quirement of the backbone are enforced by the optimization of the objective function.
It is interesting to note modeling aspects related to potential functions involving all
atom Coulomb-like energy minimization, Euclidian distance, and sum over all pairwise
interactions of amino acids in the protein. The reductions is from 3D MATCHING
[52] and ISING Model [49, 50].

Theorem 4.2 (Fraenkel 1993, 1994). The 2D and 3D MINIMUM FREE EN-
ERGY CONFORMATION OF PROTEIN (MEP) are NP-hard.

In 1993, Unger and Moult established the NP-hardness for an all atom pairwise
energy function depending on the types of amino acids in each pair and on the distance
between the amino acids, on the 3D cubic lattice with diagonals on faces such that
each lattice node has 26 neighbors. The self-avoiding walk restriction of the backbone
was not part of the model but was enforced by penalties. The reduction used was
from OPTIMAL LINEAR ARRANGEMENT [102].
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Theorem 4.3 (Unger-Moult 1993). The DPF PROTEIN FOLDING problem is
NP-hard.

Paterson and Przytycka constructed in 1996 a model with an unbounded number
of amino acids (their number grows with the protein sequence length) that for the
first time resembled the HP-model in that contacts were only between identical types
of amino acids. They demonstrated NP-hardness of several problems including a
“multi-string folding problem,” a combinatorial jewel called “crossover folding.” Their
reductions were from SATISFIABILITY, NOT-ALL-EQUAL 3SAT, P3SAT, showing
how protein folding in their model can be viewed as “computing” circuits on Boolean
inputs. [92]

Theorem 4.4 (Paterson-Przytycka 1996). The following problems are NP-hard:
2D square and 3D cubic STRING-FOLD, and 2D square MULTISTRING-FOLD.

NP-completeness results are rarely robust. Adding 1 to the objective function
can transform the problem from tractable to intractable and vice versa. With our
incomplete knowledge about protein-folding energy function structure, it is interest-
ing to investigate robustness of such NP-completeness results when one varies the
parameters of the model. Hart and Istrail in 1997 gave computational intractability
results for the protein-folding problem on lattices that are robust and can be applied
to a variety of energy functions [61].

Theorem 4.5 (Hart-Istrail 1997). There exist models for protein folding in which
the NP-completeness of finding the lowest-energy conformation is invariant (1) when
changing model lattice types among Bravais lattices, (2) when the energy function
includes 3D distances between amino acids in the fold, and (3) when the model is
either linear-chain or side-chain.

In 1997 Nayak, Sinclair, and Zwick presented the first NP-hardness results for
string folding in an HP-like model with a finite number of amino acid types. “Finite”
is in fact 10300, but this was the first result in which NP-completeness was proved for
a finite alphabet of amino-acid types. The paper contains a variety of very interesting
results involving spatial coding theory, a variant of the classical error-coding theory
redesigned to model the geometry of folding strings. They also consider multi-string
folding problems. They obtain hardness of approximation (even to approximate close
to optimal is NP-complete) results for the string-folding problems. The reductions
used were from MAX-CUT, MAX-3SAT [86].

Theorem 4.6 (Nayak-Sinclair-Zwick 1999). The MAX-1 FOLD Problem is NP-
hard.

The first NP-completeness focused on side-chain packing with a rotamer library
was published by Akutsu in 1999. Although for an artificial model, the method of
proof deals for the first time with side-chain packing and perturbation modeling issues.
The proof uses a reduction from 3SAT [6].
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Theorem 4.7 (Akutsu 1999). The PROTEIN SIDE-CHAIN PACKING WITH
A ROTAMER LIBRARY is NP-hard.

Atkins and Hart published in 1999 the first NP-completeness proof for an HP-like
model with (humanly) finite size, namely 12 amino acid types. The contacts are only
between identical types, and the lattice used is the 3D cubic lattice. The paper also
contains a rigorous proof of the known basic (part of the folklore) lemma: The set
of lowest-energy folds of the sequence HN3

in the 3D HP-model consists of all the
N×N×N -cubes. The proof contains a number of interesting constructions including
the ability to program subcubes of independent energy in Lego-like cube-folding space.
The reduction is from HAMILTONIAN PATH [10].

Theorem 4.8 (Atkins-Hart 1999). The (A,M)-PROTEIN FOLDING ((A,M)-
PF) problem is NP-hard.

4.3. NP-completeness: Protein Folding in the HP-Model. The series of
results described in the previous section culminated in 1998 with the definitive results
about the NP-hardness of the HP-model both on the 2D square lattice and on the
3D cubic lattice. Both proofs are quite involved and provided a “phase transition”
at the frontier between theory and practice: the finality of the mathematical proof of
computational intractability of the HP-model, one of the most studied protein-folding
models, introduced by Ken Dill in 1985 [37].

Constructing optimal folds for the 2D square HP-model was shown NP-complete
by Crescenzi, Goldman, Piccolboni, Papadimitriou and Yannakakis in 1998. They
consider both multi-string and single-string folding problems. The reduction from
the HAMILTONIAN CYCLE that they construct uses the Trevisan codes that are
powerful mappings of a graph on the hypercube so that the adjacency vs. non-
adjacency of nodes in the graph is related to their Hamming distance on the hypercube
[35].

Theorem 4.9 (Crescenzi-Goldman-Piccolboni-Papadimitriou-Yannakakis 1998).
The 2D STRING FOLDING PROBLEM in the HP-model is NP-hard.

Berger and Leighton showed in 1998 that the protein-folding problem in the 3D
cubic HP-model is NP-hard. Their proof involves a reduction from BIN PACKING,
which is a strongly NP-complete problem. They also provide a rigorous proof of the
basic lemma: “The set of lowest-energy folds of the sequence HN3

in the 3D HP-
model are the N × N × N -cubes.” Their proof uses the classical result in geometry
that the number of grid points p in a configuration with A,B,C points aligned along
the X, Y, Z axes, respectively, is at most

√
ABC.

Theorem 4.10 (Berger-Leighton 1998). The following two problems are NP-
complete:

• The PERFECT HP STRING FOLD problem, of finding, for an HP sequence
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containing n3 Hs, a fold in the 3D cubic lattice for which the H’s are perfectly
packed into an n× n× n cube, is NP-complete.

• The HP STRING-FOLD problem, of folding an HP-protein sequence in the
3D cubic HP-model, is NP-hard.

5. Self-Avoiding Walks, Statistical Mechanics and Contact Map Over-

lap. We present a set of rigorous results for fold alignment of self-avoiding walks in 2D
and 3D space (not restricted to lattices). Such alignments focus on contacts of pairs
of amino acids properly defined and on the set of all such contacts, called the contact
map. The similarity measure used for fold alignment is the Contact Map Overlap. It
turns out that the ability to provide rigorous algorithms for fold alignment led to a
decomposition theorem for self-avoiding walks in contact substructures, which hap-
pen to correspond on lattices to protein secondary structure building blocks. These in
turn, have connections with the combinatorics theory developed by Mike Waterman
and collaborators, which provide leads towards rigorous statistical mechanics results
for HP-models.

We focus attention here first on contact maps of protein folds and on the contact-
map overlap measure of fold similarity. This measure has been the basis of practical
and rigorous algorithms for structure comparison and analysis [56, 80, 25, 24]. The
contact map of a protein fold is a graph that captures the pattern of contacts in the
fold. There are various concepts of contacts. In the contact map of a protein fold for
the HP model, there is a vertex for each amino acid and an edge between a pair of
amino acids i and j when they form a contact in the fold. Protein folds are represented
as self-avoiding curves with the amino acids represented as points on the curves. A
contact in a given fold is typically defined to be a pair of amino acids with distance
smaller than a given threshold.

5.1. 1 SAW = 2 STACKs + 1 QUEUE. We first show that the contact
map of a self-avoiding walk can be decomposed in two “stacks” and one “queue.” It
turns out that stacks (reminiscent of α helices) correspond to chains in partial order
structures and are slight generalizations, viewed as graphs, of the RNA secondary
structures. From a dual point of view, queues (reminiscent of β sheets) correspond to
anti-chains in partial order structures.

In the two-dimensional HP model, on lattice or off-lattice, the structure of the
contact map of any protein fold can be characterized as follows.

Theorem 5.1 (Goldman-Istrail-Papdimitriou). [56, 57] For any HP-sequence
S, the set of contacts or the contact map of any two-dimensional fold of S (in fact of
any self-avoiding walk with contacts between a set of points marked along the walk)
can be decomposed into two stacks and one queue.

In contrast to the situation for the two-dimensional HP model, the contact map
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overlap problem in the three-dimensional HP model is not known to have a constant-
factor approximation algorithm. In particular, it is possible to show that the same
approach of decomposing the contact maps into stacks and queues cannot result in a
constant-factor approximation guarantee.

Theorem 5.2. There is a fold in the three-dimensional HP model such that
any decomposition of the contact map into stacks and queues requires a collection of
Ω(
√

n) stacks and queues.

It is interesting to note that in studies done in [4], protein structure contact maps
from PDB were found to be decomposable into a combined number of stacks and
queues of size about 15.

Decomposing PDB protein structures into stacks and queues. Algorithms
for the decomposition of the contact maps of PDB protein structures into Stacks
and Queues are of interest. We conjecture a combined number much lower than the
worst-case Ω(

√
n) theoretical result.

r r r r r r r
Fig. 10. Stack

r r r r r r r r r r
Fig. 11. Schmitt-Waterman Contact Tree

r r r r r r r r r
Fig. 12. Queue

5.2. Schmitt-Waterman Contact Trees. Waterman’s work [96, 108] pro-
vided explicit analytical formulas for counting the total number of RNA structures of
a given length, which could provide insights into computing rigorous approximations
of the partition function of protein folding in HP models via the above decomposition.

If one considers the problem of finding an analytical closed form for the partition
function of the HP-model in 2D, the above decomposition can be coupled with the
following result of Schmidtt and Waterman [96] to lead to progress towards approx-
imate counting of the contact substructures of folds. Related combinatorial theory
was developed in [109, 108].

Theorem 5.3 (Schmitt-Watermann). [96] There is a one-to-one bijection be-
tween RNA secondary structures and Schmitt-Waterman contact trees that can be
completely enumerated in analytical closed form.
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Note that the Schmitt-Waterman contact trees are particular versions of stacks
when the degree of each vertex is equal to 1. The problem of decomposing contact
maps into building blocks has a parallel literature with similarity with the above
results e.g., in statistical thermodynamics of double-stranded polymer molecules [30,
32], in protein core assembly [45] and in a knot theory approach to protein symmetries
[31]. Note that the duality of the concepts of stack and queue in the partial order
context mentioned could lead to dual enumerations techniques that could provide
overall approximate counting results for partition functions of HP-models.

5.3. Fold Alignment by Contact Map Overlap. Protein-fold alignment is
an important problem with applications to classifying known folds, predicting new
folds, and judging the quality of prediction algorithms [44, 85, 68, 91]. In order to
judge the quality of protein-folding algorithm, it is necessary to define a measure of
fold similarity. Several such measures have been studied, including the root-mean-
square-deviation (RMSD) measure [106, 17], the distance-map-similarity measure [69],
and the contact-map-overlap measure [65, 55]. The contact-map-overlap problem is
the problem of finding an order-preserving map of amino acids from one protein to
the second protein that maximizes the number of common contacts. More formally,
for protein sequences S = {s1, s2, . . . sn} and T = {t1, t2, . . . tm}, the problem is to
find an injective map f : {1, 2, ..., n} → {1, 2, ...,m} maximizing the sum

∑
i,j

eS(i, j)eT (f(i), f(j)).

In this sum, eS(i, j) = 1 if (si, sj) is a contact in sequence S and 0 otherwise;
similarly for eT (k, l).

Although computing this measure exactly is NP-complete [56], it has been com-
puted with great accuracy for PDB protein sequences of length about 100 using the
integer linear programming techniques of Lagrangian relaxation and branch and cut
[24, 25]. Some heuristics for computing this measure have also been shown to be
effective, including local search and genetic algorithms. An important feature of this
measure is its robustness with respect to the choice of threshold in defining amino
acid contacts.

Since the contact-map comparison problem can be solved in polynomial time
for stacks and queues through dynamic programming, this results in the following
approximation algorithm.

Theorem 5.4 (Goldman-Istrail-Papdimitriou). [56] There is an O(n6) time
approximation algorithm within 1

3 of optimal for the protein contact map problem in
the two-dimensional HP model.
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More recently, the following new results show a tradeoff between time complexity
of the algorithms and the approximation ratio.

Theorem 5.5 (Agarwal-Mustafa-Wang 2007). [4] There is an O(n3 log n) ap-
proximation algorithm for the maximum contact map overlap for two self-avoiding
walks in 2D within 1

6 of optimal.

The same set of results include a theorem that shows the computational complex-
ity of the problem in 3D.

Theorem 5.6 (Agarwal-Mustafa-Wang 2007). [4] The problem of finding the
maximum contact map overlap of two 3D self-avoiding walks in NP-hard.

6. The Protein Side-Chain Self-Assembly Conjecture. In this section we
propose a conjecture and give some mathematical evidence of its validity. We also
show connections with the Kepler Sphere Packing Conjecture via a related problem for
side-chain HP-models called the bi-spheres packing problem. The Protein Side-Chain
Self-Assembly Conjecture asserts that as far as the optimal folding is concerned, the
backbone is not essential. That is, the set of hydrophobic side-chains of a protein, if
disconnected from the backbone, would “self-assemble” in a packing similar to their
native packing achieved when they are connected to the backbone. We make this
conjecture mathematically precise for lattice and off-lattice side-chain HP-models.

In the off-lattice Tangent Spheres side-chain HP-model [64], all amino acids are
represented by identical spheres, and we use the following color coding scheme: back-
bone spheres are light gray, hydrophobic spheres are gray and hydrophilic spheres
are black, see Figure 16. (The light gray spheres are drawn smaller to help see the
hydrophobic core which has a biplane structure.) Hydrophobic contacts are made
when two gray spheres are tangent. One can consider a side-chain as a bi-sphere,
that is a light gray sphere connected by an edge (alternatively the two identical sized
spheres could just be tangent) to a gray sphere – the hydrophobic bi-sphere, or a light
gray sphere connected to a black sphere – the hydrophilic bi-sphere. A protein has
its set of hydrophobic bi-spheres and its set of hydrophilic bi-spheres. Given a set of
n hydrophobic bi-spheres a contact is made when two gray spheres (of two different
bi-spheres) are tangent. Consider now the optimal arrangement of the set of n hy-
drophobic bi-spheres, which we will call the “self-assembly” configuration; that is, the
arrangement that maximizes the number of contacts. We denote the optimal number
of contacts by BSA(n). Similar considerations can me made for lattice side-chain
HP-models. We call the side-chains now “bipoles” to distinguish the lattice terminol-
ogy from the off-lattice one. A bipole is just an edge with the two end-point nodes
labeled light gray-gray or light gray-black.

Theorem 6.1 (SELF-ASSEMBLY BOUND INEQUALITY).

For a protein sequence S with n hydrophobic side-chains in an off-lattice (lattice)
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side-chain HP-model, let OPT (S) be the number of contacts in an optimal fold of S.
For an off-lattice (lattice) HP-model, let BSA(n) be the number of contacts in the
optimal hydrophobic bi-sphere (bipole) self-assembly of n bi-spheres (bipoles).

Then the following inequality holds:

BSA(n) ≥ OPT (S)

Therefore, if a fold F of a protein sequence S, with n hydrophobic side-chains,
has BSA(n) contacts, then F is an optimal fold for S.

The Protein Side-Chain Self-Assembly Conjecture.

• For every protein sequence from PDB, the number of contacts of the optimal
fold in the side-chain HP-model on the FCC lattice equals the number of
contacts in the optimal self-assembly structure of the set of hydrophobic bipoles
of the protein. Moreover, the hydrophobic core of its optimal fold is identical
to one of the hydrophobic bipoles self-assembly structure.

• For every protein sequence from PDB, the number of contacts of the optimal
fold in the (3D) Tangent Spheres side-chain HP-model equals the number of
contacts in the optimal self-assembly structure of the set of hydrophobic bi-
spheres of the protein. Moreover, the hydrophobic core of its optimal fold is
identical (up to small perturbations preserving the tangent spheres structure)
to one of the hydrophobic bi-spheres self-assembly structure.

6.1. The Kepler Conjecture and Bi-Sphere Packing. The problem of sphe-
re packing in 3D space can be stated as follows. Given an infinite set of spheres with
identical radii, find an arrangement for the entire 3D space that has the highest density
(minimizes the amount of unused empty space among them). For this type of sphere
packing with highest density for the entire infinite 3D space, Kepler conjectured in
1611 [77] that the densest arrangement is achieved when the spheres are placed as
vertices in a Face-Centered-Cubic (FCC) lattice; Gauss proved in 1840 [53] that indeed
among lattices the FCC lattice provides the densest packing. The off-lattice problem,
i.e., with no restriction to a regular lattice arrangement, remained open almost till
the end of the last century. In 1997, Thomas Hales [59] provided the proof of the
Kepler Conjecture that is considered today by experts to be “99% certain.” His proof,
parts of which involved computer-checked subproblems, shows that FCC is indeed the
densest packing even if non-lattice arrangements are considered as well. The same
“best off-lattice is still on lattice” situation was found for the densest packing in 2D
space as well for the circle-packing problem, where one wants the highest density of
circles with identical radii. Lagrange proved in 1773 that the hexagonal packing is the
best among the all lattices, and in 1953 Fejer-Toth showed that the densest off-lattice
solution is still the hexagonal lattice packing. For finite space regions in 3D, however,
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FCC is no longer always the densest packing. The same is true for 2D, where for some
finite regions, non-hexagonal packing can be denser. For the major reference text on
sphere packing see Conway and Sloabe [34].

Densest Packing vs. Maximum Number of Contacts. Two measures are of in-
terest regarding packing of spheres, and we consider next the problem of bi-sphere
packing. The first measure is packing density as defined above in the Kepler Con-
jecture: minimizing the unused space in the packing. The second is maximizing the
number of contacts, where a contact for a pair of spheres is defined here as in the
kissing-number problem, i.e., the two spheres are tangent to each other. A natural
question is whether or not the optimal packing arrangements for these two measures
are equivalent. The answer is “no” for finite regions of 2D and 3D space and “yes”
for infinite 2D and 3D space.

6.1.1. The Bi-Sphere Packing Problem. The problem we consider now is
that of packing in space pairs of tangent spheres bound together and colored; one
sphere of each pair is colored gray and the other light gray. We call such an object
a bi-sphere in off-lattice space and bipole or “side-chain edge” in the lattice model
where one vertex of the bipole is the backbone vertex where it is hooked, and the
other vertex is the amino-acid type; gray corresponds to the hydrophobic amino acid,
light gray represents the backbone, and black represents the hydrophilic amino acid
type. A bi-sphere contact is formed when two hydrophobic bi-spheres are arranged
so that their gray spheres touch. We are interested here in bi-sphere configurations
of a set of hydrophobic bi-spheres that achieve the maximum number of bi-sphere
contacts. We call such a optimal configuration a self-assembly. The self-assembly
problem was studied in [72], where the biplane problem was introduced.

The analogue to the Kepler problem for bi-spheres is the Bi-sphere Packing Prob-
lem, formulated as follows. Given a set of hydrophobic bi-spheres, find the 3D space
arrangement, or self-assembly, achieving the maximum number of bi-sphere contacts
(gray-gray sphere contacts). The FCC Biplane Packing Configuration proposed by
Istrail et al. 2000 [72] is the following: the optimal self-assembly of the hydrophobic
bi-spheres is placed on four consecutive hexagonal planes (numbered 1, 2, 3, and 4)
of the FCC lattice; the gray spheres are arranged on planes 2 and 3, on two (almost)
equal-shaped regions facing each other; the light gray-sphere mates of the gray spheres
in plane 2 gray are placed on plane 1, while the light gray-sphere mates of the gray
spheres in plane 3 are placed on plane 4. See Figure 16 where the corresponding hy-
drophobic bipoles of a protein are arranged in the conjectured biplane configuration.
The 3D Cubic Lattice Biplane Configuration for a set of n bipoles on the 3D cubic
lattice is obtained by placing the gray spheres in two rectangles of sides with length
equal or differing by one onto two consecutive parallel planes, with the gray spheres
mapped to adjacent planes of the 3D cubic lattice and the light gray mate spheres on
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the adjacent unoccupied planes. The following are conjectures on the optimality of
the biplane configurations.

3D FCC Lattice Biplane Packing Conjecture The optimal bi-sphere packing
off-lattice or bipole packing in the FCC lattice is achieved by the FCC biplane config-
uration.

3D Cubic Lattice Biplane Packing Conjecture The optimal bipole packing in
the 3D cubic lattice is achieved by the 3D cubic biplane configuration.

For a lattice L, the HP-self-assembly L model is defined as follows. Given a set of
n bipoles (gray-light gray edges), we are interested in the self-assembly configuration
of the set of bipoles. Each bipole is embedded as a disjoint edge of the lattice L

and the self-assembly is an arrangement that has the maximum number of gray-gray
contacts (two gray vertices from two bipoles connected by a lattice edge). Istrail et
al. show lower bounds for the bipole self-assembly problem, giving rise to the first
result that biplane configurations are within a small percent of the optimal energy
configuration [72].

Figure 13(a) shows an example of a packing of 13 bipoles resulting in 11 contacts.
However, a packing of 13 bipoles with 20 contacts is shown in Figure 13(b)(the figure
denotes the (gray) side-chain amino acids by filled circles and backbone molecules
(light gray) by unfilled circles).

(a) Arrangement of 13 bipoles (b) Optimal packing of 13 bipoles

Fig. 13. Bipole packing configurations on the 2D square lattice

6.2. Optimal Bipole Packing on 2D Square Lattice. In the following theo-
rem, we show that the pattern in Figure 13(b) can be generalized to obtain the exact
optimal configuration for bipole packing, the self-assembly of the n bipoles, in the
two-dimensional square lattice.

Theorem 6.2 (Optimal Bipole Packing on the 2D Square Lattice). For a set
of n bipoles, the maximum number of hydrophobic contacts in a packing in the two-
dimensional square lattice is

⌊
3n−4

2

⌋
. This bound is tight and is achieved for the
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configuration of hydrophobic molecules arranged in two lines, as shown in Figure
13(b).

Proof. For any packing P of the n bipoles, consider drawing a vertical and hori-
zontal line (parallel to the x and y-axes) through each backbone molecule. Then each
backbone molecule p divides the lattice into four quadrants Q1(p), Q2(p), Q3(p), and
Q4(p) as shown in Figure 14.

Fig. 14. Quadrants Q1(p), Q2(p), Q3(p), and Q4(p)

Note that we include the boundary horizontal and vertical lines in their respective
quadrants. For each point p, let qi(p) denote the number of backbone molecules other
than p in Qi(p). Note that a backbone molecule q may belong to two quadrants of p

if it lies on a boundary line between the two quadrants. We first show that for each
1 ≤ i ≤ 4, there exists a point pi with the property that Qi(pi) does not contain any
backbone or side-chain molecules other than those of pi, i.e. qi(pi) = 0.

For a fixed i, 1 ≤ i ≤ 4, suppose there is no point pi with qi(pi) = 0. Consider
a point p with the smallest value qi(p) (by assumption qi(p) > 0). Then there exist
points in Qi(p) and any such point p′ satisfies qi(p) > qi(p′). This contradicts the
choice of p, and therefore Qi(p) must be the empty set.

Fig. 15. Quadrants Q1(p), Q2(p), Q3(p), and Q4(p)
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It may be possible for pi = pj for 1 ≤ i < j ≤ 4 (such as in Figure 15), but there
must be at least two distinct values among p1, p2, p3, p4. Each backbone vertex p has
three adjacent positions for potential contacts, the fourth position occupied by the
side-chain molecule. If not all three positions are occupied by backbone molecules,
there is a lost contact. Each empty quadrant Qi(p) leads to one lost contact with
p. Therefore, there is a total of four lost contacts for any configuration, one for each
of p1, p2, p3 and p4. The maximum number of contacts for any backbone molecule is
3, and taking into consideration the four lost contacts and double counting of each
contact, the maximum number of contacts in a packing of n bipoles is therefore

Maximum number of hydrophobic contacts ≤
⌊

3n− 4
2

⌋
.

Note that the arrangement of bipoles into two lines as shown in Figure 13(b)
achieves exactly four lost contacts for n even and five lost contacts for n odd. This
matches the upper bound above, proving the theorem.

Optimal Bipole Packing and Optimal Bi-Sphere Packing Problems.

• As far as we know, the above proof of the optimality of bipole packing (self-
assembly) on the 2D square lattice is the only one such proof available. It
would be very interesting to obtain similar proofs for 2D hexagonal lattice,
3D cubic lattice and the FCC lattice. Similarly, for off-lattice, it would be
important to find the self-assembly structures and prove their optimality for
bi-sphere packing in 2D and 3D space.

• It is a low hanging fruit for combinatorial optimization methods to provide
optimal solutions for bipole packing and bi-sphere packing for small sizes
(25) of bipoles and bi-spheres. That would already be informative towards
a number of conjectures in this paper. Computing optimal self-assembly
configurations for minimum to large sizes (50-150) for the above set of lattices
and for 2D and 3D space would definitely make an important contribution to
this research area.

The bipole framework also gives rise to the following related problems, each ad-
dressing a different objective in the problem of packing bipoles.

Bipole Configuration Labeling Problem Given a fixed bipole packing of unla-
beled bipoles, find an assignment for the bipole labels such that

(1) each bipole has one endpoint labeled H (representing the hydrophobic side
chain) and one endpoint labeled B (representing the backbone molecule)

(2) the number of contacts between endpoints labeled H is maximized over all
possible assignments

Bipole Configuration Local Moves Problem Given two bipole packings (with
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Fig. 16. A PDB protein represented in the HP-side chain model, folded near optimally (98%)

on the FCC lattice. Gray is hydrophobic, Black is hydrophilic, Light Gray is backbone.

labeled hydrophobics and backbone vertices), define a set of local moves transforming
one bipole packing to the other. Under the set of local moves defined, find the
minimum number of such moves taking one bipole packing to the other.

7. Concluding Remarks.

7.1. Discussion. Approximation Algorithms. It is remarkable that all the ap-
proximation algorithms presented in this survey have a very similar form to the first
such approximation algorithm [60]; all algorithms use similar balancing points that
have the power to create a significant number of contacts non-locally, where signif-
icant is defined as a fraction of the number of optimal contacts. This similarity in
algorithmic design transcends issues such as lattice parity constraints in forming con-
tacts in some of the most studied lattices. This balancing-point strategy resembles
the Zipper and Assembly paradigm [41]. The near optimal time of almost all the
algorithms (linear in the number of amino acids of the protein) of constructing folds
close to the optimal resembles the hydrophobic collapse and molten globule stages of
folding.

All the approximation algorithms presented apply for the entire class of HP-
sequences; that is, they fold each and every binary sequence of H’s and P’s achieving
in linear time the claimed guarantee. There is a fundamental limitation in such results,
namely, only theorems that are true for the entire set of binary sequences could be
proved. One natural line of research is to limit the class of sequences to a subclass
that is defined to include large subsets of PDB protein sequences. For a restricted
set of proteins sequences, better performance algorithms could be obtained. In fact,
one such result is due to Huen [67] who obtains, for a subclass of protein sequences
subject to some “natural” protein-like pattern restriction, an approximation ratio of
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88.1%, improving over the best general approximation ratio of 86%.

Computational Complexity. The first proofs of NP-completeness from 1992 and
1993, although for protein folding in ad hoc models, led to some speculations that the
problem might be “confronting science’s logical limits” [27] or that biology “solves”
NP-complete problems [48, 102]. As this surveys shows, NP-completeness is universal
for the HP-models and their generalizations, and other models as well. In one case,
the 2D HP-model on hexagonal lattices, the authors of an approximation algorithm
for the model conjectured that finding the optimal fold is NP-hard, which would imply
the model is more realistic for modeling folding [75].

2D Hexagonal Lattice HP-Folding Problem. A very interesting open problem
is whether on the 2D hexagonal lattice HP-folding is NP-complete. It would be in-
triguing if a polynomial-time algorithm were to exist for this model.

Statistical Mechanics. The results of Theorem 5.1 and as those of Agarwal et
al. in Theorem 5.5 provide an analytical point of connection between self-avoiding
contact maps and RNA contact maps. The results of Waterman [108], Waterman
and Smith [109] and Schmitt and Waterman [96] provide about “half” (stacks) of the
analytical characterization needed; if the second part (queues) – a natural dual in
the partial order set structure of “contact inclusion” – could be analytically obtained
together, it could lead to a rigorous approximation algorithm for computing the parti-
tion function of self-avoiding walks in 2D. The stacks (in their degree-one restriction)
correspond to Schmitt-Waterman contact trees of RNA structures (and to α-helices
on lattices) counted exactly in [109], while queues correspond to β-sheets on lattices.

Counting Contact Maps of Stacks and Queues Problems. There is the du-
ality between stacks as chains in the partial order of “contact inclusion,” while the
queues correspond to anti-chains in the same partial order. This duality, via Dilworth
Theorem, could lead to generalizations of the Schmitt-Waterman counting formulas
for queues that would then provide approximation for counting results for partition
functions via the decomposition theorem of [56, 57]. Are there generalizations of the
Schmitt-Waterman counting formulas to stacks (in full generality) and to queues?

7.2. Five Problems With Solutions Within Reach. The following problems
represent research directions related to the results which we believe are within reach
of obtaining provable results extending those in this survey.

1. PROBLEM 1: Sequence discrimination: Not all sequences should

be treated equally. The present survey indicates that the best approxima-
tion algorithms ratios presented are quite hard to improve due to the relative
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weakness of the upper bound estimates of the number of native contacts,
or the general results that can be obtained when one considers HP-models
where all the binary H-P sequences are valid protein sequences. Obviously,
this presents a challenge of considering definitions of patterns of natural pro-
teins that would include large subsets of the PDB protein sequences. One
such approach that shows promise is [67]. Work on sequence patterns related
to folding pathways requirements inspired by studies of protein misfolding
and aggregation showed for example that “frequencies of amino-acid strings
in globular proteins sequences indicate suppression of blocks of consecutive
hydrophobic residues” [73, 97, 47, 93, 2].

2. PROBLEM 2: Equal rights for lattices: All lattices should be

treated equally. The master approximation algorithm 3.1 [62] shows that
achieving an approximation algorithm within a constant of optimal is a uni-
versal property of crystallographic lattices. The proof involves showing that
there is a general sublattice structure, responsible of the phenomenon, present
in every 3D lattice analogous to the concept of “completeness” used in the
“NP-complete” concept in computer science. It would be very interesting
to obtain a similar result for the NP-completness of folding in HP-models
across lattices. Such a result exists for example for the Ising model showing
NP-completeness for each and every 3D lattice (in fact any non planar and
translational invariant lattice) [71]. In particular, robust NP-completeness
results incorporating general forms of energy functions would be especially
effective in understanding the islands of tractability in the sea of computa-
tional intractability.

3. PROBLEM 3: Fairness of potential-energy function versus pro-

tein structure voting rights: Individual amino acids interaction

preference-values in protein structures versus the energy function

social choice. The thermodynamic hypothesis of Anfinsen [7] could be in-
terpreted via voting theory [9] as a postulate on the existence of a “social
choice,” namely the postulated potential-energy function, having a univer-
sal form that analytically aggregates the set of all “interacting units.” Such
units are described by the information contained in protein structure data
bases, such as the Protein Data Bank (PDB), about amino acid interactions,
pairwise or more complex, for all such pairs or multi-way basic units of inter-
action.

“[T]he true elegance of this consequence of natural selection was
dramatized by the ribonuclease work since the refolding of this mole-
cule after full denaturation by reductive cleavage of its four disul-
fide bonds ... required that only 1 of 105 possible pairings of eight
sulfhyryl groups to form four disulfide linkages take place. ... to es-
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tablish ... the “thermodynamic hypothesis.” This hypothesis states
that the three-dimensional structure of a native protein in its nor-
mal physiological milieu (solvent, pH, ionic strength, presence of
other components such as metal ions or prosthetic groups, temper-
ature, and other) is the one in which the Gibbs free energy of the
whole system is lowest; that is, that the native conformation is de-
termined by its totality of interatomic interactions and hence by the
amino acid sequence, in a given environment.” Christian Anfinsen
1973 [7]

Such interacting units represent the “individual values” of protein structures,
and the postulated social choice potential-energy function should be such that
it is consistent with the extraction of interaction units from protein structures
in a “fair” way. Protein structures are the “individual voters” and the pos-
tulated potential-energy function is the social choice (although, actually, an
all pairwise sum – if we assume pairwise potentials – of the individual pair-
wise interactions) extracted fairly from individual preferences. The major
unresolved problem of finding statistical potentials for realistic folding appli-
cations, such as simulations and predictions, is at the heart of difficulty of the
protein folding problem [74, 101]. The analogy with the Arrow Paradox or the
Arrow Impossibility Theorem [9] could provide avenues for proving analogous
mathematical impossibility theorems about potential-energy function infer-
ence scenarios. Such attempts are close to being impossibility proofs, without
the extra difficulty to formalize assumptions used in the proof, e.g., the impos-
sibility of pairwise potentials for protein folding models, e.g., [107]. The anal-
ogy with the voting theory framework could inspire also, more importantly,
positive results, i.e., powerful algorithms for potential-energy inference. The
work of von Neumann-Morgernstern [105] provided a concept of choice or
preference of a statistical nature (this in contrast here with the deterministic
concept of interaction) through a set of rules of “Axioms of Preference” that
completely axiomatized the expected utility theory in economics. There are
clear parallels between utility functions and potential-energy functions that
could inspire a much needed phase transition towards novel rigorous methods
of inference of such realistic folding potentials.

4. PROBLEM 4: A combinatorial theory for balance (turning) points

in protein sequences. The approximation algorithms [60, 88] are both
based on solutions of a set of combinatorial problems for finding balance
points such that folds can be created that will assure a significant fraction of
the number of native contacts. Follow up algorithms use similar ideas to it-
eratively apply these decompositions to improve the packing and obtain folds
closer to the estimated optimum. There is clearly room for developing a gen-
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eral combinatorial theory especially in concert with the similar biophysical
counterpart, the Zipper and Assembly hypothesis for which there is also con-
siderable empirical evidence on natural proteins. Again, patterns of natural
protein sequences could lead to a more detailed combinatorics of balancing
points as a way to build compact hydrophobic cores.

5. PROBLEM 5: Freedom to self-assembly act. The Protein Side-Chain
Self-Assembly Conjecture, if true, could lead to the first HP-protein folding
model for which a polynomial time approximation algorithm could be de-
signed with better than 98% of optimal approximation ratio, see Figure 16
for an example. The model would be a side-chain HP-model on the FCC
lattice for which a very close to optimal fold could be constructed in polyno-
mial time, we guess O(n3), where n is the size of the protein sequence. The
same approximation ratio performance would also be for off-lattice, i.e., for
the Tangent Sphere Off-lattice HP-model [64]. The class of protein sequences
would be restricted to the class of sequences that will include a large set of
protein sequences from the PDB. We presented in section 6 an overview of
the ideas that indicate some validity and mathematical theorems that could
lead to the desired “almost-optimal” algorithm.

8. The ProFolding Project. The following website contains benchmarks and
algorithms for the HP-model.

http://www.brown.edu/Research/Istrail_Lab/ProFolding.html
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