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NONLINEAR CONTROL WITH LIMITED INFORMATION∗

DANIEL LIBERZON†

Abstract. This paper discusses several recent results by the author and collaborators, which are

united by the common goal of making nonlinear control theory more robust to imperfect information.

These results are also united by common technical tools, centering around input-to-state stability

(ISS), small-gain theorems, Lyapunov functions, and hybrid systems. The goal of this paper is

to present an overview of these results which highlights their unifying features and which is more

accessible to a general audience than the original technical articles.

1. Introduction. When feedback control theory is taught in undergraduate

engineering courses, one draws feedback loops featuring a plant and a controller,

assuming perfect instantaneous signal transmission between the two. However, a

real feedback loop may contain, for example, a camera that collects measurements,

a computer that stores these measurements and calculates a control signal, and a

wired or wireless communication medium through which the control signal is sent to

the actuators. In such a system, in addition to the plant and controller dynamics,

information-processing devices—i.e., devices that collect, encode, transmit, and de-

code information—play an important role. Moreover, a feedback loop of the above

kind may be just a part of a larger interconnected system; in this work, however, we

concentrate on a single loop because fundamental problems remain unresolved even

for that case.

Besides being an issue of obvious theoretical interest, information flow in a feed-

back loop is an important consideration in many application-related scenarios:

Coarse sensing The information provided by the sensors may be very limited, in

order to keep the sensors cheap or due to the presence of hard-to-reach areas

or physical limitations of the sensors;

Limited communication capacity Even though in modern applications a lot of

communication bandwidth is usually available, there are also multiple re-

sources competing for this bandwidth (examples include networked control

systems where many control loops share a network cable or wireless medium,

or microsystems with many sensors and actuators on a small chip);

Cautious information transmission Even if one can transmit a lot of informa-

tion, one may not want to do it because of security considerations or when

embedded sensors have a short battery life;

Event-driven actuators A seemingly different scenario, but one that is similar and

in some sense dual to the first one in this list, is when one utilizes limited
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actuation (think, for example, of a manual transmission on a car).

The field of control with limited information—of which Roger Brockett is one of

the pioneers—has been a very active area of research over the past couple of decades.

Some representative references include [1, 2, 3, 4, 5, 6, 7, 8, 9]. This list is by no

means complete, and does not reflect the explosion of activity that took place in the

last few years. In previous work, deterministic as well as stochastic models have been

considered both for system dynamics and for communication channels. Systematic

efforts have been directed at merging tools from information theory with those of

systems and control theory. On the other hand, with the exception of a handful of

recent works (see [10], [11], and the work by the author to be further discussed below),

the results have been limited to linear plants and controllers.

The goals of our recent work have been to treat nonlinear dynamics and to build

a unified framework for handling several issues arising in control with limited infor-

mation, namely:

• Quantization;

• Time delays;

• Disturbances.

Our approach towards achieving this goal can be summarized by the following steps:

1. Model the above effects (quantization, delays, disturbances) via determinis-

tic additive error signals, which we presently denote by e to facilitate the

discussion;

2. Design a nominal control law ignoring these errors, i.e., a control law acting

on perfect information, which we for simplicity assume to be a static state

feedback u = k(x);

3. (“certainty equivalence”) Apply the above control law to the imperfect/corru-

pted signals, resulting in u = k(x + e), and combine it with an estimation

procedure aimed at reducing e to 0 with time.

As natural as it sounds, this approach is too naive and does not work in general

as described, especially when the plant is nonlinear. It is well-known—and easy to

show by examples—that even if the error e converges to 0 and the controller stabilizes

the plant when e ≡ 0, in the presence of a nonzero error the state can grow very

large, and even blow up in finite time, before the error has a chance to converge. This

means that in addition to being stabilizing in the nominal situation where the error

is zero, the controller must possess a suitable form of robustness with respect to this

error.

Thus at the heart of our approach will be the task of characterizing such robust-

ness of the controller to errors. This characterization will revolve around the concept

of input-to-state stability (ISS), introduced by Eduardo Sontag about 20 years ago [12]

and by now well-established in nonlinear systems and control theory (see [13] for a

recent exposition). Supporting tools for ISS which we will use include Lyapunov
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functions and small-gain theorems. Since our plant and controller dynamics evolve

in continuous time but information typically arrives and gets updated at discrete

instants of time, we will see that the theory of hybrid systems [14] is also relevant.

The presentation style of this paper is somewhat informal; precise technical as-

sumptions, proofs, and other details can be found in the articles cited.

2. Quantizer. By a quantizer we mean a map from a Euclidean space R
k to a

finite subset of R
k. The variable being quantized, z ∈ R

k, can represent any signal in

a feedback loop: a state, a measured output, or a control input. The quantizer maps

this continuous signal into a piecewise constant one taking finitely many values.

We speak of quantizers in very general terms here. The quantizer mapping can in-

clude an implementation of an encoder, a communication channel, and a decoder, but

such a lower-level description will not be used here. Geometrically, a quantizer can be

represented as a covering of R
k by a finite number of regions, with a selected quanti-

zation point in each region. However, the exact shape or other geometric properties

of these regions will not be important to us.

We will refer to the quantity e := q(z) − z as the quantization error. Since the

domain of q is unbounded while its set of values is finite, the quantization error cannot

be globally bounded. Rather, it can only be bounded on a bounded subset of R
k.

Accordingly, we assume that there exist real numbers M > ∆ > 0 such that

(1) |z| ≤ M ⇒ |q(z) − z| ≤ ∆.

We will refer to M and ∆ as the quantization range and the quantization error bound,

respectively, and assume that these values are known to us. Outside the ball of radius

M around the origin the quantizer saturates, i.e., the quantization error bound is not

valid and we cannot “trust” the quantized measurements. Thus we need to be able

to tell from a quantized measurement that z is outside this ball. To this end, it is

convenient to assume that

|z| > M ⇒ |q(z)| > M − ∆.

The above two properties represent all we need to know about the quantizer map.

3. Quantization and ISS. In this section we will introduce input-to-state sta-

bility and its role in the context of the quantized feedback stabilization problem.

Suppose that we are given a general nonlinear system

(2) ẋ = f(x, u), x ∈ R
n, u ∈ R

m

and a feedback law u = k(x) that renders the closed-loop system globally asymp-

totically stable (GAS). Now suppose that the state x is quantized and the actual

controller applied to the system is

u = k(q(x)) = k(x + e)
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where e = q(x) − x is the quantization error. The resulting closed-loop system will

in general no longer be GAS. First, quantizer saturation will prevent convergence

from initial conditions with large magnitude (larger than M , the quantization range).

Second, asymptotic convergence requires arbitrarily high precision close to the origin,

while the quantizer with finitely many values can only provide accuracy up to ∆, the

quantization error bound. Thus, what we may expect in place of GAS is convergence

from a larger set (whose size is determined by M) to a smaller set (whose size is

determined by ∆). Our task now is to obtain a result establishing such a property.

To this end, assume that there exists a positive definite and radially unbounded

C1 function V : R
n → R that satisfies the following:

(3) |x| ≥ ρ(|e|) ⇒
∂V

∂x
f(x, k(x + e)) ≤ −α(|x|)

where ρ and α are some functions of class1 K∞ (actually, it is enough for α to be just

positive definite).

We will discuss this assumption in more detail, but for the moment let us proceed.

The property (3) allows us to conclude almost immediately that every solution that

starts in the largest sub-level set of V contained in the M -ball around 0 converges

to the smallest sub-level set of V containing the ρ(∆) ball around 0. Indeed, in the

annulus between these two level sets V must decrease, because the quantization error

e does not exceed ∆ by virtue of (1) applied with z = x.

To write down specific expressions for the above level sets, it is useful to know

that since V is positive definite and radially unbounded, there exist functions α1, α2

of class K∞ for which

(4) α1(|x|) ≤ V (x) ≤ α2(|x|).

The precise result is then as follows.

Theorem 1 ([15]).

Assume that we have

(5) α1(M) > α2 ◦ ρ(∆).

Then the sets

R1 := {x : V (x) ≤ α1(M)}

and

R2 := {x : V (x) ≤ α2 ◦ ρ(∆)}

1A function α : [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly increasing, and

α(0) = 0. If α is also unbounded, then it is said to be of class K∞. A function β : [0,∞)× [0,∞) →

[0,∞) is said to be of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(r, t) is decreasing to

zero as t → ∞ for each fixed r ≥ 0.
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are invariant regions for the quantized closed-loop system. Moreover, all solutions

that start in the set R1 enter the smaller set R2 in finite time.

The role of the condition (5) is simply to ensure that R2 is indeed contained in

R1 and thus the statement is not vacuous. Convergence from R1 to R2 is what we

have in place of GAS because of quantization.

Now, one may argue that we simply posed an unmotivated (and possibly very

strong and hard to check) assumption in order to get the result we want. It turns out,

however, that the existence of a Lyapunov function V satisfying (3) is an equivalent

characterization of input-to-state stability (ISS) of the closed-loop system with respect

to e. Defined in the time domain, the ISS property states that

(6) |x(t)| ≤ β(|x(0)|, t) + γ(‖e‖[0,t]) ∀ t ≥ 0

where β is a function of class KL, γ is a function of class K∞, and ‖e‖[0,t] :=

sup0≤s≤t |e(s)|. As a consequence, if e stays bounded or converges to 0 then so

does x. We are not claiming that this assumption is easy to check or is not strong,

but at least there are established tools at one’s disposal for studying it (more on this

below). In our setting, the ISS concept provides a natural way to formulate the type

of robustness required from the controller.

Example 1. For a stabilizable linear plant

ẋ = Ax + Bu

we can find a stabilizing state feedback gain K and a quadratic Lyapunov function

V (x) = xT Px solving the Lyapunov equation

(A + BK)T P + P (A + BK) = −I.

Then the closed-loop system

ẋ = (A + BK)x + BKe

is automatically ISS with respect to e because A + BK is Hurwitz. An elementary

calculation shows that for ρ we can use the function

ρ(∆) := 2‖PBK‖∆.

The ultimate bound on the solutions obtained from Theorem 1 directly depends

on the quantization error bound ∆. Thus a closely related question is how to design

a quantizer that minimizes ∆ over a given region (i.e., for a given value of M) and

for a given number of quantization values. This problem is treated in [16].

As we said, quantization can affect the control input instead of (or together with)

the plant state. The treatment of input quantization in the ISS framework is quite

similar; we will illustrate this when we study the case of time delays.
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4. Dynamic quantization. So far we have treated the quantizer as static, i.e.,

given a priori and impossible to change in real time. However, there are many situ-

ations where the quantizer is a part of the design (although subject to certain limi-

tations) and can be modified as the system evolves. One useful example to keep in

mind is a digital camera with zooming capability: we can zoom in and out while of

course keeping the number of pixels fixed.

We can formalize the above idea by introducing quantized measurements of the

form

qµ(z) := µq
( z

µ

)

where µ > 0. The quantization range for this quantizer is Mµ and the quantization

error bound is ∆µ. We can think of µ as the “zoom” variable: increasing µ corresponds

to zooming out and essentially obtaining a new quantizer with larger quantization

range and quantization error bound, whereas decreasing µ corresponds to zooming

in and obtaining a quantizer with a smaller quantization range but also a smaller

quantization error bound. In the camera example, µ corresponds to the inverse of the

focal length.

It is often more realistic in practice, and easier for analysis purposes, to vary the

zoom variable µ in a piecewise constant fashion rather than continuously. Then the

closed-loop system can be viewed as a hybrid system, with µ being its discrete state.

With the help of dynamic quantization, we can improve the result of Theorem 1

and even possibly recover GAS. First, if the quantizer is initially saturating, we zoom

out fast enough to overcome instability of the open-loop system and eventually capture

the state within the quantizer range. Then, once convergence to the attracting set

has occurred, we zoom in on this set in such a way that for the new value of µ this set

will be inside the larger invariant set R1, and the result can be applied again. (Note

that in the presence of µ, both M in the definition of R1 and ∆ in the definition of

R2 should be multiplied by µ.) Iterating in this way, we can achieve GAS if certain

conditions hold on the nonlinear functions involved, although in practice there are

limitations on how small or how large the zoom variable can be.

To determine when a zoom-in should take place, we can use either the quantized

measurements or an upper bound on the convergence time. For detailed descriptions

of such dynamic quantization schemes, see [4, 15]. It was later pointed out to the au-

thor by Dragan Nešić that an alternative approach to designing the zooming strategy,

and to analyzing the resulting system, can be based on an ISS nonlinear small-gain

theorem. Essentially, what one does is make sure that the x-dynamics are ISS with

respect to µ, that the (discrete) µ-dynamics are ISS with respect to x in a suitable

discrete sense, and that the composition of the two ISS gain functions (i.e., the func-

tions playing the role of γ in (6)) is smaller than the identity function. This approach

is quite fruitful as it lends itself to generalizations and points to interesting general
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questions related to small-gain analysis of hybrid systems; see [17, 18] for further

information on this topic.

5. Adding time delays. We now consider the feedback stabilization problem

in the presence of both quantization and time delays. There are many results in the

literature on time-delay systems giving conditions under which asymptotic stability

is preserved under sufficiently small delays. Our objectives here are different: since

quantization alone destroys asymptotic stability, we are instead looking for a result

similar to Theorem 1, but hopefully for delays not necessarily very small. Such a

result is made possible by the work of Andy Teel [19], whose approach is based on

the ISS nonlinear small-gain theorem.

In order to illustrate a variety of cases, here we consider a scenario where the

control input (rather than the plant state as before) is quantized, and the feedback

law acts on delayed measurements of the state. (Other possible architectures can be

analyzed in very similar ways.) Mathematically, the closed-loop system is represented

as

ẋ(t) = f(x(t), q(k(x(t − τ))))

or, equivalently, as

ẋ = f(x, k(x) + θ + e)

where

θ(t) := k(x(t − τ)) − k(x(t))

and

e(t) := q(k(x(t − τ))) − k(x(t − τ)).

Here e is again the quantization error, while θ is a new error term reflecting the

presence of the time delay τ . We can rewrite θ as

(7) θ(t) = −

∫ t

t−τ

k′(x(s))f(x(s), k(x(s − τ)) + e(s))ds

(assuming that the feedback law is differentiable). Noting the range of the time

arguments inside this integral, and applying the integral mean value theorem, we can

show the existence of some functions γ1, γ2 of class K∞ for which

(8) |θ(t)| ≤ max
{

τγ1(‖x‖[t−2τ,t]), τγ2(‖e‖[t−2τ,t])
}

.

We now assume as in Section 3 that the feedback law guarantees the ISS property,

except that, due to the system architecture considered here, the additive input enters
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in the control signal rather than in the argument of the control law. In other words,

we are now asking for ISS with respect to actuator errors and not measurement errors.

The assumption we make is the existence of a C1 function V satisfying

|x| ≥ ρ(|v|) ⇒
∂V

∂x
f(x, k(x) + v) ≤ −α(|x|)

as well as (4), where ρ, α, α1, α2 are of class K∞. We know that, for v = θ + e, this

corresponds to an estimate of the form

|x(t)| ≤ β(|x(0)|, t) + γθ

(

‖θ‖[0,t]

)

+ γe

(

‖e‖[0,t]

)

where β is of class KL and γθ, γe are of class K∞. With the help of (8) and some

calculations, this can be brought to

|x(t)| ≤ β(|x(0)|, t) + α−1
1 ◦ α2 ◦ ρ(2τγ1(‖x‖[t−2τ,t])) + γ̃e

(

‖e‖[t−2τ,t]

)

where γ̃e(r) := α−1
1 ◦ α2 ◦ ρ(2 max{τγ2(r), r}).

This is where the small-gain argument comes in: if the function α−1
1 ◦α2◦ρ(2τγ1(·))

is smaller than identity, then the second term on the right-hand side can be eliminated

and we recover ISS with respect to e only. After that, we can proceed in the same

way as in Section 3. It is important to observe two things. First, the above function

depends explicitly on the delay, thus the small-gain condition imposes an upper bound

on the delay. Second, a nonlinear function may in general have infinite slope both

near 0 and at infinity; thus it can be fit below the identity function only on an interval

of the form [ε, Λ] ⊂ (0,∞). This implies that we will obtain convergence from a set

whose size is determined by Λ (which is to be chosen based on the quantization range

M) to a smaller set whose size is determined by ε (which is to be selected based on

the quantization error bound ∆).

Take κ to be some class K∞ function with the property that

(9) κ(r) ≥ max
|x|≤r

|k(x)| ∀ r ≥ 0.

The precise result is this.

Theorem 2 ([20]). Assume that2

‖x‖[−τ,τ ] ≤ E0

for some known E0 > 0. Assume that for some Λ > ε > 0 we have

max
{

α−1
1 ◦ α2(E0), ε, γ̃e(∆µ)

}

< Λ < κ−1(Mµ)

2In the original statement of this result in [20], the right endpoint of the interval in this inequality

was the initial time t0 (here taken to be 0) while it should be t0 + τ . If we only have this assumption

the way it was written in [20], then we have to use the knowledge of system dynamics to generate a

bound on the interval [t0, t0 + τ ]. The reason is that the formula (7) is valid only when the system

already satisfies the differential equation on the whole interval of integration, hence it is only valid

starting from t = t0 + τ . We thank Emilia Fridman for pointing out this issue.
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and

(10) α−1
1 ◦ α2 ◦ ρ(2τγ1(r)) < r ∀ r ∈ (ε, Λ].

Then the solution of the closed-loop system satisfies the bound

(11) ‖x‖[−τ,∞) ≤ max
{

α−1
1 ◦ α2(E0), ε, γ̃e(∆µ)

}

and the ultimate bound

(12) ‖x‖[−τ+T,∞) ≤ max
{

ε, γ̃e(∆µ)
}

for some T > 0.

As in Section 4, a dynamic quantization scheme can be used to enlarge the region

of attraction and improve convergence; see [20] for details. The above result demon-

strates that within the ISS framework, quantization and time delays can be naturally

treated in a unified manner.

6. External disturbances. In order to have a control scheme that can handle

realistic situations of the type we mentioned in the introduction, it is also important

to be able to attenuate external disturbances entering the plant dynamics. In the

recent paper [21] we considered linear plants with quantized state feedback which are

affected by a disturbance. We assumed that the quantization was dynamic, as in

Section 4. Unlike the earlier works treating quantization and disturbances [22, 7, 23],

the disturbance was taken to be completely unknown. In other words, neither the

values of the disturbance nor any a priori knowledge of its bounds are available to the

control designer.

To see the difficulties involved in applying the approach described in Sections 3

and 4 in the presence of a disturbance, suppose that for a given value of µ the state has

entered the attracting set R2 and so we are supposed to zoom in to facilitate further

convergence. However, at this point a high value of the disturbance might “hit” the

system and force the state to exit the quantization range, invalidating subsequent

analysis. To counteract this effect, we need to return to the zooming-out stage and

wait until the state is “re-captured”. Then we can restart the zooming-in stage, but

of course there is no guarantee that the same phenomenon will not occur again.

From the preceding discussion we infer two things. First, we must switch repeat-

edly between zooming in and zooming out, hence the dynamic quantization strategy

will necessarily be more complicated than the one sketched in Section 4. We will

not give details of the scheme here, but they can be found in [21]. Second, unless

the disturbance converges to 0 we cannot hope to achieve asymptotic stability. This

latter point is rather obvious, but what is less obvious is which property we should

take as a characterization of desirable disturbance attenuation.
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A very natural candidate for formulating the desired property is again furnished

by the ISS concept. In particular, ISS with respect to the disturbance would guarantee

that the state of the system is bounded if the disturbance is bounded, and converges

to 0 if the disturbance converges to 0. The main result of [21] is that we can indeed

achieve such a property. While we cannot go into any analysis details here, we mention

that the ISS small-gain theorem—which, as we explained, plays a central role in

establishing Theorem 2 and also supports the dynamic quantization design in the

disturbance-free case—is relevant in this case as well (actually, the special case of a

cascade connection is used).

One interesting technical remark is that the ISS gain functions that we obtain

grow faster than any linear function both near 0 and at infinity. It turns out that

this is not an artifact of our control design, but rather a consequence of a result

by Nuno Martins who showed, using techniques from information theory, that it is

impossible to achieve ISS with linear gain for any linear system with finite data rate

feedback [24]. Thus, in the presence of state quantization it is indeed necessary to

formulate the disturbance attenuation problem in terms of nonlinear ISS gains, in

other words, quantization makes the problem inherently nonlinear despite the fact

that the given open-loop system is linear. This further supports the use of ISS, which

now describes the control objective rather than a control design assumption as in the

previous sections. A related result is that the same scheme as in [21] also achieves

nonlinear-gain l2 stabilization [25].

It is possible to extend these results to nonlinear plants, under the assumption that

the controller renders the closed-loop system ISS with respect to both the quantization

error and the disturbance (in the linear case this is true for every stabilizing feedback).

This extension is conceptually straightforward in view of what we already discussed,

although the control algorithm becomes less constructive.

7. Minimal data rate. One of the central questions in the recent research on

control with limited information has been: how much (or how little) information is

enough to stabilize the plant? See, e.g., [5, 26, 7, 22] for somewhat different but

closely related answers to this question. The amount of information is usually defined

by data rate or, more precisely, by a suitable notion of channel capacity.

The results that we have presented so far do not directly address this question,

because they do not focus on the minimal data rate. Since we assumed the quantized

measurements to be continuously available, the data rate required to implement the

above control strategies is actually infinite. This, however, can be easily corrected by

introducing time sampling (this was done in [21] where a sampled-data implementation

was developed and compared with a continuous-time one). Still, the above results do

not look for the smallest possible number of quantization values that will do the job,

and instead simply assume that this number is large enough.
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If the number of values that the quantizer takes is small, one needs to be more

active in extracting information from the system. The idea of dynamically scaling the

quantizer, which we described in Section 4, represents one example of how this can

be done. In addition to scaling, one can also move the quantizer around in the state

space, by making it follow the state estimates which are generated on-line. With

this modification, the number of necessary quantization values can be made much

smaller. Combining this idea with the present approach based on ISS, we obtain

results for nonlinear systems, whereas the earlier references only dealt with linear

systems. However, unlike in the linear case, the required condition on the number of

quantization regions—see (16) below—is possibly conservative and is not guaranteed

to be both necessary and sufficient for stabilization (although we do recover known

tight bounds by properly specializing our results to the linear case).

We now briefly describe the basic set-up; see [27] for more details. Consider

again the general nonlinear control system (2), where f is locally Lipschitz. We

assume again that a nominal feedback law u = k(x) is given which provides ISS with

respect to measurement errors in the sense of (6). We assume that measurements

are to be received by the controller at discrete times 0, τ , 2τ , . . . , where τ > 0 is a

fixed sampling period. At each of these sampling times, the measurement received

by the controller must be a number in the set {0, 1, . . . , N}, where N is a fixed

positive integer. Thus the data available to the controller consists of a stream of

integers q0(x(0)), q1(x(τ)), q2(x(2τ)), . . . where the qk’s are appropriate (dynamically

updated) state quantizer functions with N values. It is convenient to assume that the

number N
1

n is an odd integer, otherwise we can work with a smaller N for which this

is true.

Assume that the initial condition satisfies ‖x(0)‖∞ ≤ E0 for some known E0 > 0,

where ‖x‖∞ := max{|xi| : 1 ≤ i ≤ n} is the infinity norm on R
n. Let L be the

Lipschitz constant for the function f on the region

(13) {(x, u) : ‖x‖∞ ≤ D, ‖u‖∞ ≤ κ(D)}

where

(14) D := β(E0, 0) + γ
(

N
1

n E0

)

+ N
1

n E0

and κ is a function satisfying (9). Define

(15) Λ := eLτ ≥ 1.

With this notation in place, the result is as follows.

Theorem 3 ([27]). If

(16) Λ < N
1

n
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then there exists a quantized feedback control strategy that makes x(t) converge to 0.

In view of the definition of Λ via the formula (15), the inequality (16) charac-

terizes the trade-off between the amount of information provided by the quantizer at

each sampling time and the required sampling frequency. This relationship depends

explicitly on the Lipschitz constant L, which can be interpreted as a measure of ex-

pansiveness of the open-loop system. In the case of linear systems, in place of L one

has the norm of the system’s A-matrix.

The above result assumes the knowledge of an upper bound on the initial state.

Without such a bound, it is still possible to stabilize the system by applying a zooming-

out strategy and generating an upper bound on the state first; see [27]. However, it

should be noted that the condition on the data rate depends on the initial state. In

this sense, the stabilization result is “semi-global.”3

8. Discussion and further research directions.

8.1. The ISS assumption. The results expressed by Theorems 1, 2 and 3

relied on the assumption that the nominal feedback law provides ISS with respect to

the quantization error. In the case of state quantization, this error appears as the

measurement error, while in the case of input quantization it appears as the actuator

error. In both situations the ISS requirement is restrictive in general. (For linear

systems and linear stabilizing feedback laws, such robustness with respect to additive

errors is of course automatic.) Regarding ISS with respect to actuator errors, it was

shown in [12] that for globally asymptotically stabilizable systems affine in controls,

such a feedback always exists. The assumption of ISS with respect to measurement

errors is more difficult to satisfy, as was demonstrated by way of counterexamples

in [28] and [29]. This problem has received a lot of attention in the literature, and

positive results for some classes of systems have been obtained [30, 31, 32, 29, 33, 34,

35]. Further progress on this problem is obviously important for making our results

applicable to larger classes of systems.

The ISS requirement appears to be essentially necessary for obtaining results of

the kind we presented. ISS is of course stronger than GAS under zero inputs (0-GAS).

However, 0-GAS does imply some weaker forms of ISS. For example, it implies the ISS

bound (6) for initial conditions in a given compact region and under sufficiently small

inputs. This was the basis for replacing the ISS assumption by just 0-GAS in [36] and

in [20]. In particular, in [36] the initial state is assumed to belong to a known region

and the data rate is increased to make the quantization error small enough before the

state leaves this region. (The stabilization result in that paper is semi-global in the

same sense as Theorem 3.) In [20], an alternative result is presented in which ISS

is not required but the small-gain condition restricts the quantization error bound

3In the original statement of this result in [27], we incorrectly referred to the resulting property

of the closed-loop system as GAS. We thank Yoav Sharon for pointing out this inaccuracy.
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to be sufficiently small. It is important to realize that one is not really relaxing ISS

but rather (explicitly or implicitly) using the fact that for sufficiently small errors

on a suitable region ISS follows automatically from 0-GAS. In other words, the ISS

property still plays a crucial role.

One aspect that the ISS assumption does not take into account is that the error

input with respect to which we want to have ISS is not an arbitrary signal, but is

defined by the behavior of the overall closed-loop system. For instance, in the setting

of Section 7 it is possible to make this error decay to 0 exponentially fast. For this

reason, as noted in [37], it is actually sufficient to have the weaker integral ISS property

plus a technical condition on the corresponding gain. The paper [27] also proposes

a different approach, in which ISS of the closed-loop system is replaced by an ISS

assumption on the impulsive system describing the evolution of the estimated state.

The resulting assumption is more constructive to check, and has motivated further

research on ISS of impulsive systems reported in [38].

8.2. Output quantization and ISS observers. The problem of quantized

output feedback was considered, e.g., in [15, 26] but only for linear systems. In the

recent paper [39] we described an ISS framework in which this problem can be treated

for nonlinear systems (recovering earlier linear results as a special case). Consider the

plant

ẋ = f(x, u)

y = h(x)
(17)

where y is the measured output. As the nominal controller we now take a dynamic

(observer-based) output feedback law of the form

ż = g(z, u, y)

u = k(z)
(18)

Assuming that only quantized measurements q(y) of the plant output y are available

to the controller, we consider the “certainty equivalence” quantized output feedback

law based on (18), namely,

ż = g(z, u, q(y))

u = k(z)
(19)

Writing e = q(y)−y for the output quantization error, we can represent the closed-loop

system that results from interconnecting (17) and (19) as

ẋ = f(x, k(z))

ż = g(z, k(z), h(x) + e)
(20)
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It is this system that we need to be ISS with respect to e. If this ISS property

is satisfied, then the analysis can proceed almost in the same way as in Section 3,

except we would now be working in the (x, z)-space; see [39] for details.

One way to achieve ISS of (20) is to ask for the following two properties:

1. The system

ẋ = f(x, k(z)) = f
(

x, k(x + (z − x))
)

satisfies

(21) |x(t)| ≤ β1(|x(0)|, t) + γ1

(

‖z − x‖[0,t]

)

for some β1 of class KL and γ1 of class K∞;

2. The system (20) satisfies

(22) |z(t) − x(t)| ≤ β2(|z(0) − x(0)|, t) + γ2

(

‖e‖[0,t]

)

for some β2 of class KL and γ2 of class K∞.

Property 1 states that the static state feedback u = k(x) should render the x-

subsystem ISS with respect to measurement errors, i.e., the system ẋ = f(x, k(x+d))

should be ISS with respect to d. In our case d is the observer error, i.e., the difference

between the observer state and the plant state, but for the purposes of control design

it can be viewed as a general measurement disturbance. This is the same assumption

that we encountered in the state quantization case.

Property 2 means that the z-subsystem, acting as an observer for the x-subsystem,

yields an observer error satisfying an ISS contraction property with respect to additive

errors at the output. Even though it is easy to state and appears to be very natural,

this property seems difficult to satisfy except for very special classes of systems, and

has not been systematically studied in the observer design literature. A notable

exception4 is the paper [40], which leads to some promising research avenues.

8.3. Disturbances and minimal data rate. An obvious gap in the above

developments is that the attenuation of completely unknown external disturbances

was not achieved under a minimal data rate: the results of Section 6 do not strive

for a minimal data rate, while the results of Section 7 are for the disturbance-free

case. Closing this gap requires a nontrivial combination and extension of the ideas

mentioned in those two sections. This direction is being pursued in the ongoing work;

see [41]. The ISS small-gain theorem (and its special case for cascade connections)

again plays a central role in the analysis.

4We thank Jung-Su Kim for calling our attention to this paper.
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8.4. Modeling uncertainty. When one thinks of control with limited informa-

tion, another important aspect to consider is lack of information about the dynamical

model of the plant itself. While the adaptive control literature provides a large body

of results on control of uncertain plants, it does not consider quantization and mod-

eling uncertainty together. The recent paper [42] studies the problem of stabilizing

uncertain linear systems with quantization. The plant uncertainty is dealt with by

the supervisory adaptive control framework, which employs switching among a finite

family of candidate controllers. This enables counterparts of the results presented in

Sections 3 and 4 for uncertain systems.

8.5. Control with limited information and without estimation. A some-

what general question prompted by the above results, and by similar developments in

the literature, is whether or not it is really necessary to incorporate a state estimation

procedure into the control design. Is it perhaps possible to solve interesting control

problems by acting directly on the available (possibly very coarse) state measure-

ments, without attempting to reconstruct (even asymptotically) the precise values of

the state? The recent paper [43] shows that at least in some cases the answer is “yes.”

That paper considers a multi-agent system in which each agent moves like a Dubins

car and has an extremely limited sensor which reports only the presence of another

agent within some sector of its windshield. Using a very simple quantized control law

with three values, each agent tracks another agent assigned to it by maintaining that

agent within this windshield sector. Lyapunov analysis is used to show that by acting

autonomously in this way, the agents will achieve rendezvous if the initial assignment

graph is connected. In contrast to the results surveyed here, the approach of [43] does

not involve any estimation procedure aimed at reconstructing coordinate information

(of course the control objective is also different there).
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