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INFINITE-DIMENSIONAL FEEDBACK SYSTEMS: THE CIRCLE

CRITERION AND INPUT-TO-STATE STABILITY∗
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Abstract. An input-to-state stability theory, which subsumes results of circle criterion type, is

developed in the context of a class of infinite-dimensional systems. The generic system is of Lur’e

type: a feedback interconnection of a well-posed infinite-dimensional linear system and a nonlinearity.

The class of nonlinearities is subject to a (generalized) sector condition and contains, as particular

subclasses, both static nonlinearities and hysteresis operators of Preisach type.
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1. Introduction. R.W. Brockett made major contributions to systems & con-

trol theory across a broad range of topics, including frequency-domain stability criteria

for nonlinear feedback systems (see, for example, [6, 7]) and early contributions to the

theory of infinite-dimensional linear systems (see [4, 5]). In this paper, we combine

these two themes with the more recent concept of input-to-state stability (see [34] for

a succinct survey of the latter area). In particular, the focus is on absolute stability

and input-to-state stability of the feedback interconnection of an infinite-dimensional

linear system Σ and a nonlinearity Φ : dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U), where

dom(Φ) denotes the domain of Φ and U and Y (Hilbert spaces) denote the input and

output spaces of Σ, respectively (see Figure 1, wherein v is an essentially bounded

input signal). The system Σ is assumed to belong to the rather general class of

well-posed systems (see, for example, [32, 35, 38]) and the nonlinearity is assumed to

satisfy a (generalized) sector condition.

In the literature on the circle criterion for infinite-dimensional systems (see, for

example, [12], [13]-[17], [24], [27], [37] and the references therein), the emphasis is

usually on L2- or L∞-stability and global asymptotic or global exponential stability

(or some variants thereof) of feedback systems of the type shown in Figure 1, with a

static sector-bounded nonlinearity Φ in the feedback path. The new contribution of

this paper as compared to the previous literature is twofold.
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(i) In addition to static nonlinearities, we include a class of dynamic nonlinearities

which may exhibit bias, but still satisfy a generalized pointwise sector condition. As

specific subclasses, the class of nonlinearities encompasses both static nonlinearities

with “negative resistance” (typified, in a semiconductor context, by tunnel diodes,

see e.g. [21]) and a wide range of hysteretic effects described by so-called Preisach

operators (typified by mechanical systems with “hystereric spring” effects, see, e.g. [1],

or by control systems with hysteretic actuation as arise in micro-positioning problems

with piezo-electric actuators, see, e.g. [15]).

(ii) The main results of the paper formulate conditions which guarantee input-to-

state-stability with “bias” (and “standard” input-to-state-stability if the nonlinearity

is unbiased), thereby making contact with the important and rapidly developing input-

to-state-stability theory in (finite-dimensional) nonlinear control.

v Σ

Φ

+

−

Fig. 1. Feedback interconnection of linear system Σ and nonlinearity Φ

As in the classical theory of absolute stability and circle criteria, the methodology

involves a “symbiosis” of (generalized) sector data relating to the nonlinearity Φ

and properties of the transfer function of the linear system Σ to conclude stability

properties of the feedback interconnection.

We mention that the viewpoint of this paper is similar in spirit to that of [2]:

however, the class of feedback systems considered here is very different to that in [2]

as is the methodology adopted. Furthermore, whilst absolute stability problems for

hysteretic feedback systems have been considered before, see [3, 19, 20], the results

in those papers are restricted to finite-dimensional systems. We emphasize that the

general infinite-dimensional setting considered in the present paper requires a fun-

damentally different analysis: the techniques used in [3, 19, 20] do not extend in a

straightforward way to the infinite-dimensional case.

The paper is structured as follows. In Section 2, we assemble some prelimi-

nary technical lemmas. In Section 3, we describe the underlying class of well-posed

infinite-dimensional linear systems Σ and highlight some of their fundamental prop-

erties. Sections 4 and 5 contain the novel contributions of the paper. First, in Section

4, we introduce a sector condition on the class of nonlinearities Φ: for purposes of

illustration, we indicate, in Example 4.3, how classical sector-bounded static nonlin-

earities are embedded in our abstract setting. Theorem 4.5 contains the main result

on input-to-state stability: its proof is followed by lemmas, corollaries and remarks

pertaining to particular sub-cases and existing results in the literature. A generalized

sector condition on Φ is introduced in Section 5 and Theorem 4.5 is generalized (in
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Corollary 5.2) in a context of input-to-state stability with “bias”. In Section 6, we de-

scribe a large class hysteresis operators Φ and show how these are incorporated within

our general framework. Finally, in Section 7, we apply our results in two examples

of systems modelled by partial differential equations. We complete this introduction

with some remarks on notation and terminology.

Notation and terminology. For α ∈ R, set Cα := {s ∈ C : Re s > α}. If S is a

non-empty subset of C, then a set R ⊂ S is said to be discrete in S, if, for every s ∈ S,

there exists a neighbourhood N of s such that N ∩ R is finite. For Hilbert spaces U

and Y , let B(U, Y ) denote the space of all linear bounded operators mapping U to Y .

We write B(U) for B(U, U). For T ∈ B(U), we define

Re T :=
1

2
(T + T ∗) ∈ B(U).

The space of all holomorphic and bounded functions Cα → B(U, Y ) is denoted by

H∞
α (B(U, Y )). We write H∞(B(U, Y )) for H∞

0 (B(U, Y )). Moreover, in the scalar

case (that is U = Y = C), we simply write H∞
α , or, if α = 0, H∞ for H∞

α (B(U, Y ))

and H∞(B(U, Y )), respectively. For α ∈ R, we define the exponentially weighted Lp-

space Lp
α(R+, X) := {f ∈ Lp

loc(R+, U) : f(·) exp(−α ·) ∈ Lp(R+, U)}. The Laplace

transform is denoted by L.

2. Some preliminary technical lemmas. In the following, let U and Y be

separable (complex) Hilbert spaces.

Lemma 2.1. Let Ω ⊂ Cα be open and such that Cα \ Ω is discrete in Cα,

where α < 0. Assume that H : Ω → B(U, Y ) is holomorphic, F ∈ B(Y, U) and

H(I + FH)−1 ∈ H∞(B(U, Y )). Then, for θ > 0,

(1) ‖H(I + FH)−1‖H∞ ≤
1
√

θ

if and only if

(2) H∗(iω)
(
θI − F ∗F

)
H(iω) ≤ I + 2 Re

(
FH(iω)

)
, a.e. ω ∈ R.

Proof. For every ω ∈ R for which H(iω) and (I + FH(iω))−1 are defined, we

argue as follows. The inequality

(3) ‖H(iω)(I + FH(iω))−1‖ ≤
1
√

θ

is satisfied if and only if

(
I + H∗(iω)F ∗

)−1
H∗(iω)H(iω)

(
I + FH(iω)

)−1
≤

1

θ
I,

which in turn holds if and only if

θH∗(iω)H(iω) ≤
(
I + H∗(iω)F ∗

)(
I + FH(iω)

)
.
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The last inequality is equivalent to

(4) H∗(iω) (θI − F ∗F )H(iω) ≤ I + 2 Re
(
FH(iω)

)
.

Hence, for a.e. ω, the inequalities (3) and (4) are equivalent. Since H(I + FH)−1 ∈

H∞(B(U, Y )), we have that

‖H(I + FH)−1‖H∞ = ess sup{‖H(iω)(I + FH(iω))−1‖ : ω ∈ R} ,

and the claim follows. 2

Remark 2.2. An argument similar to that used in the proof of Lemma 2.1

shows that, under the assumptions of Lemma 2.1, the frequency-domain condition

H(iω)
(
θI − FF ∗

)
H∗(iω) ≤ I + 2 Re

(
H(iω)F

)
, a.e. ω ∈ R.

is also necessary and sufficient for (1) to hold. 3

Lemma 2.3. Let H ∈ H∞(B(U, Y )), F ∈ B(Y, U) and θ > 0. If (2) is satisfied

and there exists ρ < 1 such that

(5) H∗(iω)
(
θI − F ∗F

)
H(iω) ≥ −ρI, a.e. ω ∈ R,

then H(I + FH)−1 ∈ H∞(B(U, Y )) and (1) holds.

Proof. Define R ∈ H∞(B(U)) by R(s) := I + FH(s). Setting ε := (1 − ρ)/2 > 0

and invoking (2) and (5) gives

ReR(iω) ≥ εI, a.e. ω ∈ R.

Note that ε > 0 (by hypothesis on ρ). Let w ∈ U with ‖w‖ = 1 and define f ∈ H∞

by f(s) := 〈R(s)w, w〉. It follows that

Ref(iω) ≥ ε, a.e. ω ∈ R.

Setting g := exp(−f) ∈ H∞, we obtain

exp(−Ref(s)) = |g(s)| ≤ ess sup{|g(iω)| : ω ∈ R}, ∀ s ∈ C0.

Consequently,

exp(−Ref(s)) ≤ ess sup{exp(−Ref(iω)) : ω ∈ R} ≤ exp(−ε), ∀ s ∈ C0.

Therefore, Ref(s) ≥ ε for all s ∈ C0 and thus

Re 〈R(s)w, w〉 ≥ ε, ∀ s ∈ C0.

The above argument is valid for every w ∈ U with ‖w‖ = 1, showing that

ReR(s) ≥ εI, ∀ s ∈ C0.
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As a straightforward consequence, we obtain

‖R(s)w‖ ≥ ε‖w‖, ‖R∗(s)w‖ ≥ ε‖w‖ ; ∀w ∈ U, ∀ s ∈ C0,

implying that R(s) is invertible for all s ∈ C0 (see [31, Proposition 3.2.6]) and,

furthermore,

‖(I + FH(s))−1‖ = ‖R−1(s)‖ ≤
1

ε
, ∀ s ∈ C0.

Hence, H(I + FH)−1 ∈ H∞(B(U, Y )). Finally, the argument used in the proof of

Lemma 2.1 applies mutatis mutandis to conclude that (1) holds. 2

Lemma 2.4. Let Ω ⊂ C0 be open and such that C0 \Ω is discrete in C0. Assume

that H : Ω → B(U, Y ) is holomorphic, F ∈ B(Y, U) and θ > 0.

(1) If I + FH(s) is invertible for all s ∈ Ω, then (1) holds if and only if

(6) H∗(s)
(
θI − F ∗F

)
H(s) ≤ I + 2 Re

(
FH(s)

)
, ∀ s ∈ Ω.

(2) If FH(s) is compact for every s ∈ Ω, then I + FH(s) is invertible for all

s ∈ Ω and (1) holds if and only if (6) is satisfied.

Proof. The proof of statement (1) is very similar to that of Lemma 2.1 and

is therefore omitted. Statement (2) follows from statement (1), provided we can

show that (6), together with the compactness of FH(s) for every s ∈ Ω, implies the

invertibility of I + FH(s) for every s ∈ Ω. To this end, let s ∈ Ω and note that by

compactness of FH(s), invertibility of I + FH(s) is equivalent to −1 not being an

eigenvalue of FH(s). To prove the latter, let w ∈ U and assume that FH(s)w = −w

or, equivalently, that (I + FH(s))w = 0. Now (6) is equivalent to

θH∗(s)H(s) ≤
(
I + H∗(s)F ∗

)(
I + FH(s)

)
∀ s ∈ Ω,

and hence, H(s)w = 0. We conclude that w = 0, showing that −1 is not an eigenvalue

of FH(s). 2

3. Well-posed linear systems with nonlinear feedback. In this section we

provide some background on well-posed infinite-dimensional linear systems. There are

a number of equivalent definitions of well-posed systems, see [32, 35, 36, 38, 39, 40].

We will be brief in the following and refer the reader to the above references for more

details. Throughout, we shall be considering a well-posed system Σ with state-space

X , input space U and output space Y , generating operators (A, B, C), input-output

operator G and transfer function G. Here X , U and Y are separable (complex)

Hilbert spaces, A is the generator of a strongly continuous semigroup T = (Tt)t≥0

on X , B ∈ B(U, X−1) and C ∈ B(X1, Y ). The spaces X1 and X−1, respectively, are

interpolation and extrapolation spaces associated with X : X1 = dom(A) (the domain

of A), endowed with the graph norm of A, whilst X−1 denotes the completion of X
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with respect to the norm ‖x‖−1 = ‖(ξI − A)−1x‖, where ξ ∈ ̺(A), the resolvent

set of A (different choices of ξ lead to equivalent norms) and ‖ · ‖ denotes the norm

on X . Clearly, X1 ⊂ X ⊂ X−1 and the canonical injections are bounded and dense.

Moreover, the operator B is an admissible control operator for T, i.e., for each t ∈ R+,

there exists αt ≥ 0 such that
∥∥∥∥
∫ t

0

Tt−τBu(τ)dτ

∥∥∥∥ ≤ αt‖u‖L2([0,t],U), ∀u ∈ L2([0, t], U) ;

the operator C is an admissible observation operator for T, i.e., for each t ∈ R+, there

exists βt ≥ 0 such that

(∫ t

0

‖CTτz‖2dτ

)1/2

≤ βt‖z‖, ∀ z ∈ X1.

The control operator B is said to be bounded if it is so as a map from the input space

U to the state space X , otherwise is said to be unbounded; the observation operator

C is said to be bounded if it can be extended continuously to X , otherwise, C is said

to be unbounded.

The so-called Λ-extension CΛ of C is defined by

CΛz = lim
s→∞, s∈R

Cs(sI − A)−1z,

with dom(CΛ) (the domain of CΛ) consisting of all z ∈ X for which the above limit

exists. For every z ∈ X , Ttz ∈ dom(CΛ) for a.e. t ∈ R+ and, if ω > ω(T), then

CΛTz ∈ L2
ω(R+, Y ), where

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

denotes the exponential growth constant of T.

The transfer function G satisfies

(7)
1

s − s0
(G(s) − G(s0)) = −C(sI − A)−1(s0I − A)−1B, ∀ s, s0 ∈ Cω(T), s 6= s0,

and G ∈ H∞
ω (B(U, Y )) for every ω > ω(T). Moreover, the input-output operator

G : L2
loc(R+, U) → L2

loc(R+, Y ) is continuous and shift-invariant; for every ω > ω(T),

G ∈ B(L2
ω(R+, U), L2

ω(R+, Y )) and

(L(Gu))(s) = G(s)(L(u))(s), ∀ s ∈ Cω, ∀u ∈ L2
ω(R+, U).

Whilst, a priori, G is only defined on the half plane Cω(T), we say that G is holomor-

phic (meromorphic) on Cα (where α < ω(T)) if there exists a holomorphic (mero-

morphic) function Cα → B(U, Y ) extending G. This function (if it exists) will also

be denoted by G.

In the following, let s0 ∈ Cω(T) be fixed, but arbitrary. For x0 ∈ X and u ∈

L2
loc(R+, U), let x and y denote the state and output functions of Σ, respectively,
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corresponding to the initial condition x(0) = x0 ∈ X and the input function u. Then

x(t) = Ttx
0 +

∫ t

0 Tt−τBu(τ)dτ for all t ∈ R+, x(t) − (s0I − A)−1Bu(t) ∈ dom(CΛ)

for a.e. t ∈ R+ and

(8)

{
ẋ(t) = Ax(t) + Bu(t), x(0) = x0, a.e. t ∈ R+,

y(t) = CΛ

(
x(t) − (s0I − A)−1Bu(t)

)
+ G(s0)u(t), a.e. t ≥ 0.

Of course, the differential equation in (8) has to be interpreted in X−1. Note that the

second equation in (8) yields the following formula for the input-output operator G

(9)
(Gu)(t) = CΛ

[ ∫ t

0

Tt−τBu(τ)dτ − (s0I − A)−1Bu(t)
]

+ G(s0)u(t),

∀u ∈ L2
loc(R+, U), a.e. t ∈ R+.

In the following, we identify Σ and (8) and refer to (8) as a well-posed system.

We say that (8) is exponentially stable if ω(T) < 0 and we say that (8) is input-

output stable if G ∈ H∞(B(U, Y )) or, equivalently, if G ∈ B(L2(R+, U), L2(R+, Y )).

Furthermore, (8) is said to be optimizable, if for every x0, there exists u ∈ L2(R+, U)

such that the function t 7→ Ttx
0 +

∫ t

0
Tt−τBu(τ)dτ is in L2(R+, X). Writing X∗

−1 :=

(X∗)−1, we have that X∗
−1 = (X1)

∗ and C∗ ∈ B(Y, X∗
−1) is an admissible control

operator for the adjoint semigroup T∗ = (T∗
t )t≥0. We say that (8) is estimatable if for

every x0, there exists u∗ ∈ L2(R+, Y ) such the function t 7→ T∗
t x

0+
∫ t

0
T∗

t−τC∗u∗(τ)dτ

is in L2(R+, X).

The above formulas for the output, the input-output operator and the transfer

function reduce to a more recognizable form for the subclass of regular systems. Recall

that the well-posed system (8) is called regular if the following strong limit

lim
s→∞, s∈R

G(s)w = Dw, ∀w ∈ U

exists. In this case, x(t) ∈ dom(CΛ) for a.e. t ∈ R+, the output equation in (8) and

the formula (9) for the input-output operator simplify to

y(t) = CΛx(t) + Du(t), a.e. t ≥ 0.

and

(Gu)(t) = CΛ

∫ t

0

Tt−τBu(τ)dτ + Du(t), ∀u ∈ L2
loc(R+, U), a.e. t ∈ R+

respectively; moreover, (sI − A)−1BU ⊂ dom(CΛ) for all s ∈ ̺(A) and we have that

G(s) = CΛ(sI − A)−1B + D, ∀ s ∈ Cω(T).

The operator D ∈ B(U, Y ) is called the feedthrough operator of (8). It can be shown

that, if B is a bounded control operator or if C is a bounded observation operator,

then (8) is regular.
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In the following, we will consider the closed-loop system obtained by applying the

nonlinear feedback

(10) u = v − Φ(y)

to the well-posed linear system (8), where v ∈ L∞(R+, U) and the nonlinear operator

Φ : dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U) is causal. To define the concept of a (local)

solution of the feedback system given by (8) and (10), we first need to show that Φ

can be “localized” in the sense that it can be “extended” to spaces of functions with

a finite time horizon. To this end, let 0 < σ ≤ ∞ be arbitrary and set

domσ(Φ) := {w ∈ L2
loc([0, σ), Y ) : ∀ τ ∈ (0, σ)∃wτ ∈ dom(Φ) s.t. w = wτ on [0, τ ]} .

Trivially, dom∞(Φ) = dom(Φ). For w ∈ domσ(Φ) with σ < ∞, we define Φ(w) by

(Φ(w))(t) = (Φ(wτ ))(t), 0 ≤ t ≤ τ < σ ,

where wτ ∈ dom(Φ) such that w = wτ on [0, τ ]. By causality of Φ, this definition does

not depend on the choice of τ and thus Φ(w) is a well-defined element in L2
loc([0, σ), U).

A solution on [0, σ) (where 0 < σ ≤ ∞) of the feedback system given by (8) and

(10) is a pair (x, y) ∈ C([0, σ), X) × domσ(Φ) such that, with u given by (10),

(11) x(t) = Ttx
0 +

∫ t

0

Tt−τBu(τ)dτ, ∀ t ∈ [0, σ)

and

(12) y(t) = CΛ

(
x(t) − (s0I − A)−1Bu(t)

)
+ G(s0)u(t), a.e. t ∈ [0, σ).

If σ = ∞, then we say that (x, y) is a global solution. Let S denote the set of all

(x0, v) ∈ X × L∞(R+, U) for which the feedback system given by (8) and (10) has

at least one global solution. If (x0, v) ∈ S, then the notation (x(· ; x0, v), y(· ; x0, v))

is used to denote any global solution corresponding to the initial condition x0 and

the closed-loop input v. Furthermore, a routine argument based on Zorn’s lemma

shows that every solution (x, y) can be extended to a maximal solution, that is, to a

maximally defined solution which cannot be extended any further. The interval on

which a maximal solution is defined is called the maximal interval of existence of the

solution. We say that the feedback system given by (8) and (10) has the blow-up

property if, for every maximal solution (x, y) defined on a finite maximal interval of

existence [0, σ), the L2-norm of y blows up, that is, ‖y‖L2(0,τ) → ∞ as τ ↑ σ.

Remark 3.1. (a) Assume that the feedback system given by (8) and (10)

has the blow-up property and that (x, y) is a maximal solution defined on [0, σ). If

‖y‖L2(0,σ) < ∞, then σ = ∞, that, is (x, y) is a global solution.

(b) In this paper, we are mainly concerned with stability properties of the feed-

back system given by (8) and (10): whilst of fundamental importance, the question of
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existence of solutions is not the main concern here; this question requires addressing

on a less general basis, taking into account relevant features of the particular system

or subclass of systems under consideration. Nevertheless, some general comments on

the existence question are warranted. To establish existence of solutions, it is im-

portant to observe that, by formula (9) for the input-output operator G of (8), the

output y has to satisfy the equation

(13) y = CΛTx0 + G(v − Φ(y)).

Once the existence of a solution y ∈ domσ(Φ) of (13) has been established, the state

component x can be obtained from (11) with u given by (10). Existence of solutions

to (13) depends very much on the regularity properties of Φ and the “amount of

feedthrough” contained in the feedback system. Results on the existence of solutions

to equations of the form (13) can be found, for example, in [10, 18, 27, 28, 29, 41].

Finally, we mention one special situation in which existence (and uniqueness) of so-

lutions (for every (x0, v) ∈ X ×L∞(R+, U)) and the validity of the blow-up property

are guaranteed: this is the case if C is bounded (implying in particular that (8) is

regular with feedtrough D), dom(Φ) = L2
loc(R+, Y ), Φ satisfies a Lipschitz condition

(in L2) with Lipschitz constant λ and ‖D‖λ < 1. 3

4. The sector condition and input-to-state stability. First, we introduce

a sector condition on the class of nonlinearities (in due course, this condition will be

weakened to a generalized sector condition).

Definition 4.1. A nonlinearity Φ : dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U)

satisfies a sector condition if there exist operators K1, K2 ∈ B(Y, U) such that

(14) Re 〈(Φ(w))(t)−K1w(t), (Φ(w))(t)−K2w(t)〉 ≤ 0, ∀w ∈ dom(Φ), a.e. t ∈ R+.

The following lemma gives a norm-based characterization of the above sector

condition.

Lemma 4.2. The sector condition (14) holds if and only if

‖(Φ(w))(t) −
1

2
(K1 + K2)w(t)‖ ≤

1

2
‖(K2 − K1)w(t)‖, ∀w ∈ dom(Φ), a.e. t ∈ R+.

Proof. Setting

L :=
1

2
(K2 − K1), S(w, t) := 〈(Φ(w))(t) − K1w(t), (Φ(w))(t) − K2w(t)〉,

it follows from a routine calculation that, for w ∈ dom(Φ) and t ∈ R+,

(15) ‖(Φ(w))(t) −
1

2
(K1 + K2)w(t)‖2 = S(w, t) + T (w, t) − ‖Lw(t)‖2,

where

T (w, t) := i 2 Im 〈(Φ(w))(t), Lw(t)〉 + 〈Lw(t), K2w(t)〉 − 〈K1w(t), Lw(t)〉
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Now

〈Lw(t), K2w(t)〉 = 2‖Lw(t)‖2 + 〈Lw(t), K1w(t)〉,

so that

T (w, t) = i 2 Im
(
〈(Φ(w))(t), Lw(t)〉 + 〈Lw(t), K1w(t)〉

)
+ 2‖Lw(t)‖2

Inserting this into (15) and taking real parts, we obtain

‖(Φ(w))(t) −
1

2
(K1 + K2)w(t)‖2 = Re S(w, t) + ‖Lw(t)‖2,

from which the claim follows. 2

Example 4.3 (Static nonlinearities). Let ϕ : Y → U be continuous and

assume that there exist K1, K2 ∈ B(Y, U) such that

(16) Re〈ϕ(ξ) − K1ξ , ϕ(ξ) − K2ξ〉U ≤ 0 ∀ ξ ∈ Y.

With ϕ we may associate the Němyckĭı operator Φ : L2
loc(R+, Y ) → L2

loc(R+, U),

defined by Φ(w) := ϕ ◦ w. This operator satisfies the sector condition (14). Such

operators provide a simple prototype class for the general nonlinearities considered

in this section: at the simplest illustrative level, static sector-bounded scalar nonlin-

earities ϕ : R → R of the type shown in Figure 2 (ubiquitous in the literature on the

classical circle criterion) are subsumed by the formulation. This observation extends

mutatis mutandis to encompass time-dependent static nonlinearities ϕ : R+×Y → U .

3

Anticipating Sections 5 and 6 below, we will also consider static nonlinearities for

which the inequality in (16) is assumed to hold only outside some bounded set E ⊂ Y

(see Figure 3). To accommodate these and more general nonlinearities, in Section 5

we will introduce a generalized sector condition and remark here that the generalized

formulation encompasses a large class of hysteresis operators, including hysteresis of

Preisach and Prandtl type.

Let K1, K2 ∈ B(Y, U) and define

(17) K :=
1

2

(
K1 + K2

)
, κ := ‖K2 − K1‖

2.

We assemble the following hypotheses on the transfer function G of (8) which will be

variously invoked in the theory developed below.

(H1) There exist α < 0 and an open set Ω ⊂ Cα such that Cα \Ω is discrete in Cα

and G is holomorphic on Ω, the frequency-domain condition

(18) G∗(iω)
[κ + δ

4
I − K∗K

]
G(iω) ≤ I + 2 Re

(
KG(iω)

)
, a.e. ω ∈ R.

holds for some δ > 0 and G(I + KG)−1 ∈ H∞(B(U, Y )).
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ξ

ϕ(ξ)

Fig. 2. Sector-bounded static nonlinearity ϕ

(H2) G ∈ H∞(B(U, Y )) and there exist δ > 0 and ρ < 1 such that (18) holds and

(19) G∗(iω)
[κ + δ

4
I − K∗K

]
G(iω) ≥ −ρI, a.e. ω ∈ R.

(H3) There exists an open set Ω ⊂ C0 such that C0 \ Ω is discrete in C0 and G is

holomorphic on Ω, I + KG(s) is invertible for all s ∈ Ω and the frequency-

domain condition

(20) G∗(s)
[κ + δ

4
I − K∗K

]
G(s) ≤ I + 2 Re

(
KG(s)

)
, ∀ s ∈ Ω

holds for some δ > 0.

(H4) There exists an open set Ω ⊂ C0 such that C0 \ Ω is discrete in C0 and G is

holomorphic on Ω, KG(s) is compact for all s ∈ Ω and the frequency-domain

condition (20) holds for some δ > 0.

Remark 4.4. (a) In the case of scalar “sector data”, that is U = Y and there

exist k1, k2 ∈ C such that K1 = k1I and K2 = k2I, the term

κ + δ

4
I − K∗K

appearing on the left-hand sides of (18)-(20) simplifies to (δ/4 − Re(k̄1k2))I.

(b) If (8) is optimizable and estimatable, K is compact and G(I + KG)−1 ∈

H∞(B(U, Y )), then it can be shown that there exists α < 0 such that G is meromor-

phic on Cα. In particular, this means that there exists an open set Ω ⊂ Cα such that

Cα \ Ω is discrete in Cα and G is holomorphic on Ω (the existence of such a set Ω is

imposed in (H1)).

(c) The inequality
(

κ + δ

4
+

ρ

‖G‖2
H∞

)
I ≥ K∗K

is a sufficient condition for (19) to hold. In particular, if K1 = 0 or K2 = 0, then (19)

holds for every ρ ∈ [0, 1) and every δ > 0.
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(d) Assume that one of the operators K1 and K2 is the zero operator and that

the other is a scalar multiple of an isometry. Then it is not difficult to show that (H2)

is satisfied, provided that G ∈ H∞(B(U, Y )) and the positive-real condition

εI ≤ I + 2 Re
(
KG(iω)

)
, a.e. ω ∈ R

holds for some ε > 0.

(e) Trivially, the compactness assumption in (H4) is satisfied if K is compact or

if at least one of the spaces U and Y is finite-dimensional. Without the compactness

of KG(s), it is in general not true that invertibility of I + KG(s) is a consequence of

(20) (a counterexample is given by U = Y = l2(N), K1 = K2 = K = I and G(s) ≡ R,

where R is the right-shift operator).

(f) In certain situations – see part (d) of this remark and Corollary 4.7 below

(together with its proof) – hypotheses (H2) and (H3) are implied by standard positive-

real conditions. As is well-known, the latter are equivalent to (physically intuitive)

passivity conditions in the time-domain. Moreover, in the single-input-single-output

case, the hypotheses (H1)–(H4) can be replaced by graphical conditions familiar from

the classic circle criterion, see (C1)–(C3) in Corollary 4.8. 3

We are now in the position to state and prove the main result of this section.

Theorem 4.5. Assume that (8) is optimizable and estimatable and that there

exist operators K1, K2 ∈ B(Y, U) such that Φ satisfies the sector condition (14). Let

K ∈ B(Y, U) and κ ≥ 0 be given by (17). If at least one of hypotheses (H1)–(H4)

holds, then there exist positive constants Γ and γ, such that, for each (x0, v) ∈ S,

(21) ‖x(t; x0, v)‖ ≤ Γ
(
exp(−γt)‖x0‖ + ‖v‖L∞

)
, ∀ t ∈ R+.

For the above theorem to be non-vacuous, S should be non-empty: thus, there is

a tacit assumption of global existence of solutions. However, if the feedback system

given by (8) and (10) has the blow-up property, then the assumptions of Theorem

4.5 imply that every (local) solution can be extended to a global solution, see part

(a) of Remark 4.6 below. Furthermore, we emphasize that (21) implies in particular

that the feedback system is input-to-state stable in the sense of Sontag (see [34] for a

recent survey of the theory of input-to-state stability).

Proof of Theorem 4.5. Let (x0, v) ∈ S and define (x, y) by setting

(x(t), y(t)) := (x(t; x0, v), y(t; x0, v)), ∀ t ∈ R+.

Then (11) and (12) hold, with u = v−Φ(y). Invoking formula (9) for the input-output

operator G of the well-posed system (8), we conclude that y satisfies

y = CΛTx0 + G(v − Φ(y)).

Since

(22) G(I + KG)−1 = (I + GK)−1G ∈ H∞(B(U, Y ))
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(this is part of hypothesis (H1), whilst it is a consequence of each of the hypotheses

(H2)-(H4), as follows from Lemma 2.3 in the case of (H2) and from Lemma 2.4 in the

case of (H3) and (H4)), we conclude that (I + GK)−1 ∈ H∞(B(Y )). Consequently,

(I + GK)−1 ∈ B(L2(R+, Y )). Setting

(23) f := (I + GK)−1CΛTx0,

it follows that

(24) y = f + (I + GK)−1G(v − Φ(y) + Ky) = f + G(I + KG)−1(v − Φ(y) + Ky).

The fact that G(I +KG)−1 ∈ H∞(B(U, Y )) means in particular that K is a so-called

admissible feedback operator (see [39]). Hence, application of linear output feedback

of the form u = w−Ky (where w ∈ L2
loc(R+, U)) to the well-posed system (8) results

in a well-posed feedback system (with input w) which will be denoted by ΣK (see [39]

for details). The semigroup and the generating operators of ΣK are denoted by TK =

(TK
t )t≥0 and (AK , BK , CK), respectively, where AK is the generator of TK , BK is

the control operator of ΣK and CK is the observation operator of ΣK . The transfer

function of ΣK is G(I + KG)−1 and therefore, by (22), ΣK is input-output stable.

This, together with the assumptions of optimizability and estimatability, guarantees

that ΣK is exponentially stable (that is, the exponential growth constant ω(TK) of

(TK) is negative) as follows from results in [40]. Consequently, there exists α < 0

such that G(I + KG)−1 extends to a bounded holomorphic function defined on Cα,

that is, G(I + KG)−1 ∈ H∞
α (B(U, Y )). This implies that G(I + KG)−1 is uniformly

continuous on any vertical strip of the form β1 ≤ Re s ≤ β2, where α < β1 < β2 (see

[11, Theorem 3.7]). Next we observe that

‖G(I + KG)−1‖H∞ ≤
2

√
κ + δ

.

This follows from (18) and Lemma 2.1 if (H1) or (H2) hold and from Lemma 2.4 if

(H3) or (H4) hold. Thus, by the uniform continuity property, there exists a constant

β with

(25) max(ω(TK), α) < β < 0

and such that

(26) sup
s∈Cβ

‖G(s)(I + KG(s))−1‖ ≤
2√

κ + δ/2
.

We conclude that the operator H defined by

Hw = exp(−β ·)G(I + KG)−1(exp(β ·)w), ∀w ∈ L2(R+, U)

is a shift-invariant bounded operator from L2(R+, U) to L2(R+, Y ) with transfer

function H given by

H(s) = G(s − β)(I + KG(s − β))−1, ∀ s ∈ C0.
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Hence, by (26)

(27) ‖H‖ = ‖H‖H∞ ≤
2√

κ + δ/2
.

Furthermore, we define a causal operator Ψ : dom(Ψ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U)

by

Ψ(w) = exp(−β ·)
(
Φ(exp(β ·)w) − K(exp(β ·)w)

)
, ∀w ∈ dom(Ψ),

where dom(Ψ) = {exp(−β ·)w : w ∈ dom(Φ)}. It follows from the sector condition

(14) via Lemma 4.2 that

‖(Ψ(w))(t)‖ ≤

√
κ

2
‖w(t)‖, ∀w ∈ dom(Ψ), a.e. t ∈ R+.

Hence,

(28) ‖Ψ(w)‖L2(0,t) ≤

√
κ

2
‖w‖L2(0,t), ∀w ∈ dom(Ψ), ∀ t ∈ R+.

Combining (27) and (28), we obtain

(29) ‖HΨ(w)‖L2(0,t) ≤ ρ‖w‖L2(0,t), ∀w ∈ dom(Ψ), ∀ t ∈ R+,

where

(30) ρ :=

√
κ

κ + δ/2
< 1.

Defining exponentially weighted functions fβ, vβ and yβ by

fβ(t) := exp(−βt)f(t), vβ(t) := exp(−βt)v(t), yβ(t) := exp(−βt)y(t); ∀ t ∈ R+,

we derive from (24)

(31) yβ = fβ + H(vβ − Ψ(yβ)).

Therefore, invoking (29) and (30), we conclude that

(32) ‖yβ‖L2(0,t) ≤ Γ0

(
‖fβ‖L2(0,t) + ‖vβ‖L2(0,t)

)
, ∀ t ∈ R+,

where Γ0 := max(1, ‖H‖)/(1−ρ). By [39, Remark 6.3], the function f defined in (23)

satisfies

f = CK
Λ TKx0,

where CK
Λ denotes the Λ-extension of CK . Combined with (25) this shows that there

exists a constant Γ1 > 0 such that

‖fβ‖L2 ≤ Γ1‖x
0‖, ∀x0 ∈ X.
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Moreover, a routine calculation shows that

(33) ‖vβ‖L2(0,t) ≤ Γ2 exp(−βt)‖v‖L∞ , ∀ t ∈ R+,

where Γ2 := 1/
√

2|β|. The last two inequalities, combined with (32), show that there

exists Γ3 > 0 such that

(34) ‖yβ‖L2(0,t) ≤ Γ3

(
‖x0‖ + exp(−βt)‖v‖L∞

)
, ∀ t ∈ R+.

By [39, Remark 6.2], the state trajectory x satisfies

x(t) = TK(t)x0 +

∫ t

0

TK(t − τ)BK
(
v(τ) − (Φ(y))(τ) + Ky(τ)

)
dτ, ∀ t ∈ R+.

Now x(t) can be re-written in the form

(35) x(t) = TK(t)x0 + J(t), ∀ t ∈ R+,

where

J(t) := exp(βt)

∫ t

0

TK(t − τ) exp(−β(t − τ))BK
(
vβ(τ) − (Ψ(yβ))(τ)

)
dτ, ∀ t ∈ R+.

By the admissibility of BK , the exponential stability of TK and the fact that β >

ω(TK), there exists Γ4 > 0 such that

‖

∫ t

0

TK(t − τ)BK exp(−β(t − τ))w(τ)dτ‖ ≤ Γ4‖w‖L2(0,t), ∀ t ∈ R+,

∀w ∈ L2
loc(R+, U).

Consequently, we obtain from (35)

‖x(t)‖ ≤ Γ5 exp(βt)‖x0‖ + Γ4 exp(βt)‖vβ − Ψ(yβ)‖L2(0,t), ∀ t ∈ R+,

where Γ5 > 0 is a suitable constant (the existence of which is guaranteed by the fact

β > ω(TK)). Invoking (28), (33) and (34), it follows that

‖x(t)‖ ≤ Γ5 exp(βt)‖x0‖+Γ4

[
Γ2‖v‖L∞ +

Γ3
√

κ

2

(
exp(βt)‖x0‖ + ‖v‖L∞

)]
, ∀ t ∈ R+.

Setting γ := −β > 0, this shows that there exists Γ > 0 such that

‖x(t)‖ ≤ Γ
(
exp(−γt)‖x0‖ + ‖v‖L∞

)
, ∀ t ∈ R+.

Finally, since the constants Γj and β do not depend on (x0, v) ∈ S, the same applies

to Γ and γ, completing the proof. 2

Remark 4.6. (a) Under the additional assumption that the feedback system

given by (8) and (10) has the blow-up property, the hypotheses of Theorem 4.5 imply

that every maximal solution is global, so that every (local) solution can be extended
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to a global solution (to which then the stability conclusions of Theorem 4.5 apply).

Indeed, if, in the proof of Theorem 4.5, (x, y) is a maximal solution, defined on the

maximal interval of existence [0, σ), then, by using an argument identical to that

leading to (32), we may conclude that

‖yβ‖L2(0,t) ≤ Γ0

(
‖fβ‖L2(0,t) + ‖vβ‖L2(0,t)

)
, ∀ t ∈ [0, σ) .

Combined with the blow-up property and part (a) of Remark 3.1, this shows that

σ = ∞.

(b) Theorem 4.5 can be considered as a generalization and refinement of the

circle criterion (see, for example, [14, 21, 37]): in particular, it shows that, under the

standard assumptions of the circle criterion (see also Corollaries 4.7 and 4.8 below),

input-to-state stability is guaranteed. The exponential weighting technique used in

the proof of Theorem 4.5 is well-known and has been used to prove stability results of

input-output type (see [14, Section V.3] and the references therein). The application

of this technique in an input-to-state stability context seems to be new (even in

the finite-dimensional case). In particular, whilst the standard text-book version of

the circle criterion for finite-dimensional state-space systems is usually proved using

Lyapunov techniques combined with the positive-real lemma (see, for example, [21,

Theorem 7.1] or [37, p. 227]), the above proof of Theorem 4.5 provides an alternative,

more elementary, approach. 3

The following corollary considers the case of scalar “sector data”.

Corollary 4.7. Assume that (8) is optimizable and estimatable, U = Y and

that there exists an open set Ω ⊂ C0 such that C0 \ Ω is discrete in C0 and G is

holomorphic on Ω. Furthermore, assume that there exist k1, k2 ∈ C and ε > 0 such

that Φ satisfies (14) with K1 = k1I and K2 = k2I, I + k1G(s) is invertible for every

s ∈ Ω and

(36) Re
[(

I + k2G(s)
)(

I + k1G(s)
)−1]

≥ εI, ∀ s ∈ Ω.

Then there exist positive constants Γ and γ, such that, for each (x0, v) ∈ S, (21)

holds.

Note that (36) is a positive-real condition.

Proof of Corollary 4.7. By Theorem 4.5, it is sufficient to show that (H3) is

satisfied. To this end, we re-write (36) in the form

(37) (I + k2G)(I + k1G)−1 + (I + k̄1G
∗)−1(I + k̄2G

∗) ≥ 2εI,

to obtain

(38) (I + k̄1G
∗)−1

[
(I + k̄1G

∗)(I + k2G) + (I + k̄2G
∗)(I + k1G)

]
(I + k1G)−1 ≥ 2εI.

Since, for every s ∈ Ω, I + k1G(s) is invertible, there exists a function a : Ω → (0,∞)

such that

(39) εI ≥ a(I + k̄1G
∗)−1G∗G(I + k1G)−1
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and

(40) εI ≥ a(I + k1G)−1GG∗(I + k̄1G
∗)−1.

Combining (39) with (38) gives

(I + k̄1G
∗)(I + k2G) + (I + k̄2G

∗)(I + k1G) ≥ 2aG∗G,

implying that

(41)
(
a(s) − Re(k1k̄2)

)
G∗(s)G(s) ≤ I + Re

(
(k1 + k2)G(s)

)
, ∀ s ∈ Ω.

Note that by part (a) of Remark 4.4, the frequency-domain condition (41) is the same

as (20) (with K1 = k1I, K2 = k2I and δ = 4a(s)). Therefore, in order to show that

(H3) holds, it is sufficient to show that I + kG(s) is invertible for every s ∈ Ω, where

k := (k1 + k2)/2. To prove this, we re-write the left-hand side of (37) to obtain

(I + k1G)−1(I + k2G) + (I + k̄2G
∗)(I + k̄1G

∗)−1 ≥ 2εI.

An argument similar to that leading to (41) (invoking (40) instead of (39)) gives

(42)
(
a(s) − Re(k1k̄2)

)
G(s)G∗(s) ≤ I + Re

(
(k1 + k2)G(s)

)
, ∀ s ∈ Ω.

Setting b(s) := a(s) + |k2 − k1|2/4 > 0, (41) and (42) yield

(43) bG∗G ≤ (I + k̄G∗)(I + kG)

and

(44) bGG∗ ≤ (I + kG)(I + k̄G∗).

It follows from (43) that

(45)
√

b(s)‖G(s)w‖ ≤ ‖(I + kG(s))w‖, ∀w ∈ U, ∀ s ∈ Ω.

We claim that, for every s ∈ Ω, the operator I + kG(s) is bounded away from zero.

To this end, let w ∈ U and s ∈ Ω. If ‖G(s)w‖ ≥ ‖w‖/(2|k|), then, by (45),

√
b(s)

2|k|
‖w‖ ≤ ‖(I + kG(s))w‖.

Furthermore, if ‖G(s)w‖ < ‖w‖/(2|k|), then

1

2
‖w‖ ≤ ‖w‖ − |k|‖G(s)w‖ ≤ ‖(I + kG(s))w‖.

We conclude that

(46) ‖(I + kG(s))w‖ ≥ c(s)‖w‖, ∀w ∈ U, ∀ s ∈ Ω,
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where c(s) := min(1/2,
√

b(s)/(2|k|)) > 0. Invoking (44), a very similar argument

shows that

(47) ‖(I + k̄G∗(s))w‖ ≥ c(s)‖w‖, ∀w ∈ U, ∀ s ∈ Ω.

The inequalities (46) and (47) show that, for every s ∈ Ω, I +kG(s) and (I +kG(s))∗

are bounded away from zero, implying that I+kG(s) is invertible (see [31, Proposition

3.2.6]). 2

For non-zero real numbers k1 and k2, we define

∆(k1, k2) := open disk in C with centre in R and −
1

k1
and −

1

k2
in its boundary.

The next corollary focuses on the single-input-single-output case. In particular, the

classical circle criterion is recovered.

Corollary 4.8. Assume that (8) is optimizable and estimatable, U = Y = R

and there exist real numbers k1 < k2 such that

(48)
(
(Φ(w))(t) − k1w(t)

)(
(Φ(w))(t) − k2w(t)

)
≤ 0, ∀w ∈ dom(Φ), a.e. t ∈ R+.

Then there exist positive constants Γ and γ, such that, for each (x0, v) ∈ S, (21)

holds, provided that one of the following conditions is satisfied:

(C1) 0 < k1 < k2, G/
(
1 + [(k1 + k2)/2]G

)
∈ H∞, G(iω) is bounded away from

∆(k1, k2) for all ω ∈ R for which iω is not a pole of G;

(C2) 0 = k1 < k2, G ∈ H∞ and there exists δ > 0 such that 1 + k2ReG(iω) ≥ δ

for all ω ∈ R;

(C3) k1 < 0 < k2, G ∈ H∞, G(iω) ∈ ∆(k1, k2) for all ω ∈ R and G(iω) is

bounded away from ∂∆(k1, k2) for all ω ∈ R.

Observe that, in this single-input-single-output setting, the sector condition (48)

can be expressed in the equivalent form:

(49) k1w
2(t) ≤ (Φ(w))(t)w(t) ≤ k2w

2(t), ∀w ∈ dom(Φ), a.e. t ∈ R+.

In many situations, the input-output stability condition G/
(
1+[(k1+k2)/2]G

)
∈ H∞

(imposed in (C1)) is satisfied, provided that the number of anticlockwise encirclements

of ∆(k1, k2) by the Nyquist diagram of G is equal to the number of poles of G in C0,

see, for example, [14], [30], [37].

The following elementary lemma (the proof of which is left to the reader) is crucial

for the proof of Corollary 4.8.

Lemma 4.9. Let k1 and k2 be real numbers.

(a) If 0 < k1 < k2 and S ⊂ C is such that dist(S, ∆(k1, k2)) > 0, then there exists

η > 0 such that

(50) −(k1k2 − η)|s|2 ≤ 1 + (k1 + k2)Re s, ∀ s ∈ S.
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(b) If k1 < 0 < k2 and S ⊂ ∆(k1, k2) is such that dist(S, ∂∆(k1, k2)) > 0, then there

exists η > 0 such that (50) is satisfied.

Proof of Corollary 4.8. First assume that (C1) holds. Applying part (a) of

Lemma 4.9 with S given by

S := {G(iω) : ω ∈ R such that iω is not a pole of G}

and invoking part (b) of Remark 4.4, shows that (H1) holds and the claim follows from

Theorem 4.5. If (C3) holds, then a similar argument (based on part (b) of Lemma

4.9) shows that (H2) is satisfied. Again, the claim then follows from Theorem 4.5.

Finally, if (C2) holds, then part (c) of Remark 4.4 shows that (H2) is satisfied and

Theorem 4.5 yields the claim. 2

Remark 4.10. If the the feedback system given by (8) and (10) has the blow-up

property, then the hypotheses of Corollaries 4.7 and 4.8 imply that every maximal

solution is global, so that every (local) solution can be extended to a global solution

(to which then the stability conclusions of Corollaries 4.7 and 4.8, respectively, apply),

cf. part (a) of Remark 4.6. 3

5. Generalized sector condition and input-to-state stability with bias.

Next, we seek to relax the condition (14) to a generalized sector condition. Loosely

speaking, we wish to impose the (pointwise) inequality in (14) only when t ∈ R+

and w ∈ dom(Φ) are such that w(t) ∈ Y \E, where E (the exceptional set) is some

bounded subset of Y . A prototype to bear in mind is the case wherein Φ is the

Němyckĭı operator, given by Φ(w) := ϕ ◦ w, associated with a static nonlinearity

ϕ : R → R, of the form shown in Figure 3 (a nonlinearity with negative resistance),

satisfying a sector condition outside the interval E = [−1, 1].

ξ

ϕ(ξ)

b b

−1

+1

Fig. 3. Static nonlinearity ϕ satisfying a generalized sector condition

Extrapolating this prototype to our abstract setting requires care. The issue is to

circumvent the technical difficulty engendered by the fact that the general operator Φ

has domain dom(Φ) ⊂ L2
loc(R+, Y ) and so Φ acts on equivalence classes of functions
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R+ → Y . Let w ∈ L2
loc(R+, Y ) and Z ⊂ Y be arbitrary. Let wr : R+ → Y be any

representative of w and denote the preimage of Z under wr by w−1
r (Z) := {t ∈ R+ :

wr(t) ∈ Z}. Let Iw
−1
r (Z) be the indicator or characteristic function of the set w−1

r (Z)

and define χZ(w) ∈ L2
loc(R+, Y ) to be the equivalence class of this function, that is,

χZ(w) :=
[
Iw

−1
r (Z)

]
.

Every choice of representative wr of w yields the same equivalence class
[
Iw

−1
r (Z)

]
and

so χZ(w) is a well-defined element of L2
loc(R+, Y ) for all w ∈ L2

loc(R+, Y ). We are

now in a position to define the requisite generalized sector condition.

Definition 5.1. A nonlinearity Φ : dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U)

satisfies a generalized sector condition if there exist operators K1, K2 ∈ B(Y, U), a

bounded set E ⊂ Y and a constant b ≥ 0 such that

(51)

{
Re 〈(Φ(w))(t) − K1w(t), (Φ(w))(t) − K2w(t)〉(χY \E(w))(t) ≤ 0,

∀w ∈ dom(Φ), a.e. t ∈ R+

and

(52) ‖(Φ(w))(t)‖(χE(w))(t) ≤ b, ∀w ∈ dom(Φ), a.e. t ∈ R+ .

The following result generalizes Theorem 4.5.

Corollary 5.2. Assume that (8) is optimizable and estimatable and that there

exist operators K1, K2 ∈ B(Y, U), b ≥ 0 and a bounded set E ⊂ Y such that Φ

satisfies (51) and (52). Let K ∈ B(Y, U) and κ ≥ 0 be given by (17). If at least one

of hypotheses (H1)–(H4) holds, then there exist positive constants Γ and γ such that,

for each (x0, v) ∈ S,

(53) ‖x(t; x0, v)‖ ≤ Γ
(
exp(−γt)‖x0‖ + ‖v‖L∞ + β

)
, ∀ t ∈ R+,

where

(54) β := sup
{
‖(Φ(w) − Kw)χE(w)‖L∞ : w ∈ dom(Φ)

}
≤ b + sup

ξ∈E

‖Kξ‖,

In particular, (53) provides an input-to-state stability estimate with bias β (input-

to-state stability with bias β).

Proof. We define a new nonlinearity Φ̃ by setting dom(Φ̃) := dom(Φ) and

Φ̃(w) := Φ(w)χY \E(w) + Kw χE(w) ∀ w ∈ dom(Φ).

In view of (51), Φ̃ satisfies the sector condition

(55) Re 〈(Φ̃(w))(t)−K1w(t), (Φ̃(w))(t)−K2w(t)〉 ≤ 0, ∀w ∈ dom(Φ̃), a.e. t ∈ R+.
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Let S̃ denote the set of all (x0, ṽ) ∈ X × L∞(R+, U) for which the feedback system

given by (8) and

(56) u = ṽ − Φ̃(y)

has at least one global solution. If (x0, ṽ) ∈ S̃, then the notation x̃(· ; x0, ṽ) is used to

denote the state component of any global solution corresponding to the initial condi-

tion x0 and the closed-loop input ṽ. By Theorem 4.5, there exist positive constants

Γ and γ, such that, for each (x0, ṽ) ∈ S̃,

(57) ‖x̃(t; x0, ṽ)‖ ≤ Γ
(
exp(−γt)‖x0‖ + ‖ṽ‖L∞

)
, ∀ t ∈ R+.

Now let (x0, v) ∈ S and define (x, y) by setting (x(t), y(t)) := (x(t; x0, v), y(t; x0, v))

for all t ∈ R+, so that (x, y) is a global solution of the feedback systems given by (8)

and (10). Setting ṽ := v + Φ̃(y) − Φ(y), it follows from (52) that ṽ ∈ L∞(R+, U).

Since ṽ − Φ̃(y) = v − Φ(y), we conclude that (x, y) is also a global solution of the

feedback system given by (8) and (56), so that, in particular, (x0, ṽ) ∈ S̃. Thus, it

follows from (57) that

‖x(t)‖ ≤ Γ
(
exp(−γt)‖x0‖ + ‖ṽ‖L∞

)
, ∀ t ∈ R+.

Combining this inequality with

‖ṽ‖L∞ ≤ ‖v‖L∞ +‖Φ̃(y)−Φ(y)‖L∞ = ‖v‖L∞ +‖(Ky−Φ(y))χE(w)‖L∞ ≤ ‖v‖L∞ +β,

yields the claim. 2

Remark 5.3. Under the additional assumption that the feedback system given

by (8) and (10) has the blow-up property, the hypotheses of Corollary 5.2 imply that

every maximal solution is global, so that every (local) solution can be extended to a

global solution (to which then the stability conclusions of Corollary 5.2 apply). To

see this, assume that in the proof of Corollary 5.2, (x, y) is a maximal solution of the

feedback system given by (8) and (10) with maximal interval of existence [0, σ). As

in the proof Corollary 5.2, we conclude that (x, y) is also a (not necessarily maximal)

solution of the feedback system given by (8) and (56) with ṽ ∈ L∞(R+, U) defined

by ṽ := v + Φ̃(y) − Φ(y) on [0, σ) and ṽ := 0 on R+ \ [0, σ). Since Φ̃ satisfies the

sector condition (55), we may invoke the argument (with β = 0) used in the proof of

Theorem 4.5 and leading to (32) to conclude that there exist a positive constant Γ0

such that

‖y‖L2(0,t) ≤ Γ0

(
‖f‖L2(0,t) + ‖ṽ‖L2(0,t)

)
, ∀ t ∈ [0, σ) .

Combined with the blow-up property and part (a) of Remark 3.1, this shows that

σ = ∞. 3
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Arguments identical to those in the proof of Corollary 5.2 can be used to obtain

the following generalizations of Corollaries 4.7 and 4.8 which apply to nonlinearities

satisfying (51) and (52).

Corollary 5.4. Assume that (8) is optimizable and estimatable, U = Y and

that there exists an open set Ω ⊂ C0 such that C0 \ Ω is discrete in C0 and G is

holomorphic on Ω. Furthermore, assume that there exist k1, k2 ∈ C, a bounded set

E ⊂ Y and constants b ≥ 0 and ε > 0 such that Φ satisfies (51) and (52) (with

K1 = k1I and K2 = k2I), I + k1G(s) is invertible for every s ∈ Ω and the positive-

real condition

Re
[(

I + k2G(s)
)(

I + k1G(s)
)−1]

≥ εI, ∀ s ∈ Ω

holds. Then there exist constants Γ > 0 and γ > 0 such that, for each (x0, v) ∈ S,

(53) holds, where β ≥ 0 is given by (54).

Corollary 5.5. Assume that (8) is optimizable and estimatable, U = Y = R

and there exist real numbers k1 < k2, a bounded set E ⊂ R and b ≥ 0 such that

(58)

{(
(Φ(w))(t) − k1w(t)

)(
(Φ(w))(t) − k2w(t)

)
(χY \E(w))(t) ≤ 0,

∀w ∈ dom(Φ), a.e. t ∈ R+

and

(59) |(Φ(w))(t)|(χE(w))(t) ≤ b, ∀w ∈ dom(Φ), a.e. t ∈ R+ .

If at least one of the conditions (C1)–(C3) of Corollary 4.8 is satisfied, then there

exist Γ > 0 and γ > 0 such that, for each (x0, v) ∈ S, (53) holds, where

β : = sup
{
‖(Φ(w) − (k1 + k2)w/2)χE(w)‖L∞ : w ∈ dom(Φ)

}
(60)

≤ b + |k1 + k2| sup
ξ∈E

|ξ|/2,

Finally, we mention that Remark 5.3 (with obvious modifications) also applies to

Corollaries 5.4 and 5.5.

6. Hysteretic feedback systems. Consider again the feedback interconnection

of Figure 1, but now in a single-input (U = R), single-output (Y = R) setting and with

a hysteresis operator Φ in the feedback path. An operator Φ : C(R+) → C(R+) is a

hysteresis operator if it is causal and rate independent. Here rate independence means

that Φ(w◦ζ) = Φ(w)◦ζ for every w ∈ C(R+) and every time transformation ζ, where

ζ : R+ → R+ is said to be a time transformation if it is continuous, non-decreasing

and surjective. For simplicity of presentation, henceforth we restrict attention to the

class of Preisach hysteresis operators.
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Preisach and Prandtl hysteresis. The Preisach operator described in this

section encompasses both backlash and Prandtl operators. It can model complex

hysteresis effects: for example, nested loops in input-output characteristics. A basic

building block for these operators is the backlash operator. A discussion of the backlash

operator (also called play operator) can be found in a number of references, see for

example [8], [22] and [25]. Let σ ∈ R+ and introduce the function bσ : R
2 → R given

by

bσ(v1, v2) := max
{
v1 − σ , min{v1 + σ, v2}

}

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined

on R+. For all σ ∈ R+ and ξ ∈ R, define the operator Bσ, ξ : Cpm(R+) → C(R+) by

Bσ, ξ(w)(t) =

{
bσ(w(0), ξ) for t = 0 ,

bσ(w(t), (Bσ, ξ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < . . . , limn→∞ tn = ∞ and w is monotone on each interval

[ti, ti+1]. We remark that ξ plays the role of an “initial state”. It is not difficult to

show that the definition is independent of the choice of the partition (ti). Figure 4

illustrates how Bσ, ξ acts. It is well-known that Bσ, ξ extends to a Lipschitz continuous

w

Bσ,ξ(w)

−σ

σ

Fig. 4. Backlash hysteresis

hysteresis operator on C(R+) (with Lipschitz constant L = 1), the so-called backlash

operator, which we shall denote by the same symbol Bσ, ξ.

Let ξ : R+ → R be a compactly supported and globally Lipschitz function with

Lipschitz constant 1. Let µ be a regular signed Borel measure on R+. Denoting

Lebesgue measure on R by µL, let f : R × R+ → R be a locally (µL ⊗ µ)-integrable

function and let f0 ∈ R. The operator Pξ : C(R+) → C(R+) defined by

(61)





(Pξ(w))(t) =

∫ ∞

0

∫ (B
σ, ξ(σ)(w))(t)

0

f(s, σ)µL(ds)µ(dσ) + f0

∀w ∈ C(R+) , ∀ t ∈ R+ ,

is called a Preisach operator, cf. [8, p. 55]. It is well-known that Pξ is a hysteresis

operator (this follows from the fact that Bσ, ξ(σ) is a hysteresis operator for every σ ≥
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0). Under the assumption that the measure µ is finite and f is essentially bounded,

the operator Pξ is Lipschitz continuous with Lipschitz constant L = |µ|(R+)‖f‖∞

(see [25]) in the sense that

sup
t∈R+

|Pξ(w1)(t) − Pξ(w2)(t)| ≤ L sup
t∈R+

|w1(t) − w2(t)| ∀w1, w2 ∈ C(R+).

Setting f(·, ·) = 1 and f0 = 0 in (61), we obtain the Prandtl operator Pξ : C(R+) →

C(R+) defined by

(62) Pξ(w)(t) =

∫ ∞

0

(Bσ, ξ(σ)(w))(t)µ(dσ) ∀w ∈ C(R+) , ∀ t ∈ R+ .

For ξ(·) = 0 and µ given by µ(S) =
∫

S
I[0,5](σ)dσ (where I[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 5.

10
−20

0

0

40

t

P0(w)
w

−5 10
−20

0

40
P

0
(w

)

w

Fig. 5. Example of Prandtl hysteresis

The next proposition identifies (rather “mild”) conditions under which the Prei-

sach operator (61) satisfies a generalized sector bound and hence fits into the theory

developed in Section 5. For simplicity, we assume that the measure µ and the function

f are non-negative (an important case in applications), although the proposition can

be extended to signed measures µ and sign-indefinite functions f .

Proposition 6.1. Let Pξ be the Preisach operator defined in (61). Assume

that the measure µ is non-negative, a1 := µ(R+) < ∞ and a2 :=
∫ ∞

0
σµ(dσ) < ∞.

Furthermore, assume that

b1 := ess inf(s,σ)∈R×R+
f(s, σ) ≥ 0 , b2 := ess sup(s,σ)∈R×R+

f(s, σ) < ∞

and set

(63) aP := a1b1, bP := a1b2 , cP := a2b2 + |f0| .

Then, for all w ∈ C(R+) and all t ∈ R+,

(64) w(t) ≥ 0 =⇒ aPw(t) − cP ≤ (Pξ(w))(t) ≤ bPw(t) + cP ,
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(65) w(t) ≤ 0 =⇒ bPw(t) − cP ≤ (Pξ(w))(t) ≤ aPw(t) + cP ,

and, furthermore, for every η > 0,

(66) |w(t)| ≥ cP/η =⇒
(
(Pξ(w))(t)−(aP−η)w(t)

)(
(Pξ(w))(t)−(bP+η)w(t)

)
≤ 0.

In particular, for every η > 0, the generalized sector conditions (58) and (59) hold

with U = R = Y , E = [−cP/η , cP/η], k1 = aP−η, k2 = bP+η, and b = (bP/η+1)cP .

Proof. Arguments very similar to those in the proof of [29, Proposition 2.5] show

that (64) and (65) hold. The inequality (66) is a straightforward consequence of (64)

and (65). 2

7. Examples. We illustrate the results in Sections 4 and 5 with two examples.

Example 7.1. For z ∈ (0, 1) and t > 0, we consider the following system:

(67)





wtt(z, t) − wzz(z, t) + 2awt(z, t) + a2w(z, t) = 0,

w(0, t) = 0, wz(1, t) = u(t),

y(t) = wt(1, t) ,

where we assume that the viscous damping parameter a is non-negative.

A straightforward computation shows that the transfer function Ga of (67) is

given by

Ga(s) =
s

s + a

(
1 − e−2(s+a)

1 + e−2(s+a)

)
=

s

s + a

(
sinh(s + a)

cosh(s + a)

)
.

Trivially, Ga ∈ H∞
α for every α > −a and G0 has poles at s = i(2m + 1)π/2 for

m ∈ Z. It is known that, for every k > 0, the feedback control u = −ky leads to an

exponentially stable closed-loop system in the sense that there exist α > 0 and c ≥ 1

such that, if w is a solution, then

V (t) ≤ ce−αtV (0) ∀ t ≥ 0, where V (t) :=

∫ 1

0

(
w2

t (z, t) + w2
z(z, t) + aw2(z, t)

)
dz,

see, for instance, [9]. Hence, it follows in particular that, for every k > 0, Ga/(1 +

kGa) ∈ H∞. Elementary calculations show that Ga is positive real for every a ≥ 0.

Furthermore, it follows from [26, Example 9.1] that

‖Ga‖H∞ =
e2a + 1

e2a − 1
=

cosh(a)

sinh(a)
=: ga, for every a > 0.

Consider the closed-loop system obtained by applying the nonlinear feedback u =

v − Φ(y) to (67). Invoking the above observations and Corollary 4.8 (Corollary 5.5),

we see that the conclusions of Corollary 4.8 (Corollary 5.5) hold, provided that at

least one of the following assumptions are satisfied:

(i) a = 0 and Φ satisfies a sector condition (generalized sector condition) with

0 < k1 < k2;
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ξ

ϕ(ξ)

b b

−1

+1

Fig. 6. Static nonlinearity adopted in simulations (S2) and (S3)

(ii) a > 0 and Φ satisfies a sector condition (generalized sector condition) with

0 = k1 < k2;

(iii) a > 0 and Φ satisfies a sector condition (generalized sector condition) with

−1/ga < k1 < 0 and 0 < k2 < 1/(|k1|g2
a).

The rationale underpinning (iii) is as follows: since, for all ω ∈ R, Ga(iω) is bounded

by ga and ReGa(iω) ≥ 0, it follows that Ga(iω) lies in the half-disk H := {s ∈

C0 : |s| ≤ ga}. If k1 < 0 < k2, then H ⊂ ∆(k1, k2) if and only if ga and iga are in

∆(k1, k2), which in turn leads to the inequalties −1/ga < k1 and k2 < 1/(|k1|g2
a).

The findings in the above statements (i) and (iii) are illustrated by three sim-

ulations referred to as (S1)-(S3) and shown in Figures 7-9. These simulations were

performed using MATLAB in conjunction with [33]. In all simulations, the initial

conditions are

w(z, 0) = sin(2πz) and wt(z, 0) = cos(2πz); ∀ z ∈ (0, 1) .

Specifically, the time evolution of the L2-norms of the functions w(· , t), wz(· , t) and

wt(· , t) (where w is the solution of the closed-loop system obtained by applying the

nonlinear feedback u = −Φ(y) to (67)) are shown:

(S1) in Figure 7, with a = 0 and Φ = B1,0 (i.e. backlash in the input channel);

(S2) in Figure 8, with a = 0 and Φ is the Němyckĭı operator associated with the

continuous piecewise linear static nonlinearity ξ 7→ ϕ(ξ), where ϕ′(ξ) = −1/2

if |ξ| < 1 and ϕ′(ξ) = 1 if |ξ| ≥ 1, shown in Figure 6 (i.e. a component with

“negative resistance” effect);

(S3) in Figure 9, with a = 2 and Φ is the same as in (S2).

In (S1), the nonlinearity Φ = B1,0 satisfies a generalized sector conditions with

k1 = 1 − δ, k2 = 1 + δ and E = [−1/δ, 1/δ] for every δ ∈ (0, 1), so that (i) holds. It

is not difficult to show that the bias β defined by (60) is equal to 1 (independent of

δ). In (S2) and (S3), the nonlinearity ϕ exhibits “negative resistance”. It satisfies a

generalized sector conditions with k1 = 1 − δ, k2 = 1 and E = [−3/(2δ), 3/(2δ)] for

every δ ∈ (0, 1). In particular, if a = 0, then (i) holds. The bias β defined by (60)
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Fig. 9. Simulation S3

is in this case equal to (3 − δ)/2. On the other hand, ϕ satisfies a “proper” sector

condition with k1 = −1/2 and k2 = 1 and routine calculations show that, if a = 2,

then (iii) holds.

Example 7.2. In this example, the input and output spaces are R
2. We consider

two coupled vibrating undamped strings, one with spatial extent 0 ≤ z ≤ 1 and the

other with spatial extent 1 ≤ z ≤ 2.

(68)





wtt(z, t) − wzz(z, t) = 0, z ∈ (0, 1) ∪ (1, 2);

w(1−, t) = w(1+, t), w(2, t) = 0; t > 0;

wz(1
−, t) − wz(1

+, t) = u1(t), wz(0, t) = u2(t); t > 0;

y1(t) = wt(1, t), y2(t) = −wt(0, t); t > 0.

In the above system, the displacement is continuous at the linkage, the right endpoint

is fixed, the discontinuity of the vertical tension force is equal to the control variable

u1 and, at the left endpoint, the vertical tension force is equal to the control variable

u2.

The transfer function matrix G for this system is given by

G(s) =




1

2

1 − e−4s

1 + e−4s

e−s(e−2s − 1)

1 + e−4s

e−s(e−2s − 1)

1 + e−4s

1 − e−4s

1 + e−4s


 =




1

2

sinh(2s)

cosh(2s)

sinh(s)

cosh(2s)

sinh(s)

cosh(2s)

sinh(2s)

cosh(2s)


 .
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Note that G(s) has poles at s = i(2m + 1)π/2 for every m ∈ Z. It is not hard to

show that for any k > 0, the closed-loop transfer function matrix G(I + kG)−1 is in

H∞(C2, C2): in fact, as is proved in [23], the closed-loop system given by (68) and

the feedback law y = −ku (where y = (y1, y2)
T and u = (u1, u2)

T ) is exponentially

stable in the sense that there exist α > 0 and c ≥ 1 such that, if w is a solution, then

V (t) ≤ ce−αtV (0) ∀ t ≥ 0, where V (t) :=

∫ 2

0

(
w2

t (z, t) + w2
z(z, t)

)
dz.

A straightforward calculation shows that G(iω) is skew-Hermitian for all ω ∈ R \

{(2m + 1)π/2 : m ∈ Z}. Consequently, invoking part (a) of Remark 4.4, we conclude

that, if K1 = k1I and K2 = k2I with 0 < k1 < k2, then there exists δ > 0 such that

hypothesis (H1) is satisfied.

Now, consider the closed-loop system obtained by applying the nonlinear feedback

u = v−Φ(y) to (68). Invoking the above observations and Theorem 4.5 (Corollary 5.2),

we see that the conclusions of Theorem 4.5 (Corollary 5.2) hold, provided Φ satisfies

a sector condition (generalized sector condition) with K1 = k1I and K2 = k2I, where

0 < k1 < k2.

8. Concluding remarks. An input-to-state stability theory, which subsumes

results of circle criterion type, has been developed in the context of feedback inter-

connections with a linear system Σ in the forward path and a nonlinear causal operator

Φ in the feedback path. The approach combines ideas from absolute stability theory

with the more recent concept of input-to-state stability. Distinguishing features of the

paper are: (1) infinite-dimensionality of the linear component Σ, which is required

only to belong to the broad class of well-posed systems; (2) the breadth of the class

of operators Φ: dom(Φ) ⊂ L2
loc(R+, Y ) → L2

loc(R+, U) (U and Y Hilbert spaces),

which are assumed only to satisfy a generalized sector condition – thereby enlarging

the class of admissible nonlinearies and, in particular, encompassing hysteretic com-

ponents. The main results formulate conditions under which input-to-state stability

with bias is guaranteed (reducing to input-to-state stability in the special case of

nonlinearities satisfying a standard sector condition).
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