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LOWER BOUNDED CONTROL-LYAPUNOV FUNCTIONS∗

RONALD HIRSCHORN†

Abstract. The well known Brockett condition - a topological obstruction to the existence of

smooth stabilizing feedback laws - has engendered a large body of work on discontinuous feedback

stabilization. The purpose of this paper is to introduce a class of control-Lyapunov function from

which it is possible to specify a (possibly discontinuous) stabilizing feedback law. For control-affine

systems with unbounded controls Sontag has described a Lyapunov pair which gives rise to an explicit

stabilizing feedback law smooth away from the origin - Sontag’s “universal construction” of Artstein’s

Theorem. In this work we introduce the more general “lower bounded control-Lyapunov function”

and a “universal formula” for nonaffine systems. Our “universal formula” is a static state feedback

which is measurable and locally bounded but possibly discontinuous. Thus, for the corresponding

closed loop system, the classical notion of solution need not apply. To deal with this situation we

use the generalized solution due to Filippov.

Keywords: stabilization, control-Lyapunov function, discontinuous feedback, constrained controls.

1. Introduction. In his 1983 paper [1] Artstein proves that, for smooth control-

affine systems evolving on R
n with controls in R

m, there exists a globally stabilizing

feedback control law continuous on R
n \ {0} if the system has a smooth control-

Lyapunov function. In 1989 Sontag provided an explicit proof of Artstein’s Theorem

which uses a “universal formula” for the stabilizing controller (cf [14]). Our goal here is

to introduce the more general LB-CLF and a “universal formula” for a stabilizing feed-

back controller for possibly non-affine nonlinear systems for which a lower-bounded

CLF exists.

Consider a system together with a control-Lyapunov function (CLF). Correspond-

ing to each state x are control values for which the rate of change of the Lyapunov

function along a system trajectories at x is negative (cf. [14]). In particular the rate

of change of the CLF along system trajectories is upper bounded. For control-affine

systems with unconstrained controls and the small control property a CLF is auto-

matically lower-bounded as well. For a more general class of systems we call a CLF

with such a lower bound a lower bounded control-Lyapunov function (LB-CLF). One

consequence of having this lower bound is that one can always find control values for

which the “rate of change” of our LB-CLF v(x) is precisely −w(x) for some positive

definite function w(x). For control-affine systems this control value is unique, and

we show that, for an appropriate choice of w, this controller is Sontag’s “universal

formula”. For more general systems the control values at a state x for which the

“rate of change” of a lower-bounded CLF v(x) is precisely −w(x) need not be unique,
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and a controller enforcing “v̇(x) = −w(x)” need not stay bounded along the result-

ing state trajectories. We introduce a “universal formula” for a feedback controller

which enforces “v̇(x) = −w(x)” and which stays bounded along the resulting state

trajectories.

Sontag and Sussmann examine connections between continuous but possibly non-

differentiable CLFs and null controllability in [13]. The nondifferentiabilty of the CLF

necessitates the use of generalized derivatives to measure rates of change of the CLF

along system trajectories and the introduction of the Lyapunov pair. These ideas are

also employed in the present work. Finally, in [11], Smirnov considers the problem

of designing feedback regulators for possibly nonaffine nonlinear systems where the

set of controls can be a subset of R
m - i.e. constrained controls. His major result is

the construction of a Lyapunov function and an explicit feedback stabilizer for linear

systems with convex constraints on the control set. Our work provides an alternate

approach to this particular controller design problem.

The paper is organized as follows: in Section 2 we introduce notations used, define

our systems, and discuss the “basic conditions” for differential inclusions. In Section 3

we introduce the notion of lower bounded Lyapunov pairs and examine some of their

basic properties. In Section 4 we define our stabilizing feedback controller and present

our main result, and in Section 5 several examples are presented.

2. Preliminaries. We will consider systems of the form

(1) ẋ(t) = f(x(t), u(t))

where the state x(t) evolves in R
n and the controls u(t) take values in a subset

U ⊂ R
m containing the origin. For simplicity we assume that U = R

m. The map

f : R
n × R

m → R
n is locally Lipschitz at (x, u) and f(0, 0) = 0. To stabilize this

system to x = 0 we will use an abstract energy function v which can be made to

decrease along system trajectories. A function v : R
n → R≥0 is positive definite if

v(0) = 0, v(ξ) > 0 for ξ 6= 0, and proper if v(ξ) → ∞ as ‖ξ‖ → ∞. For ξ ∈ R
n

we denote by ‖ξ‖ the Euclidean norm. For a locally Lipschitz continuous function

v : R
n → R and ξ, ρ ∈ R

n we define the Dini derivative of v in the direction of ρ at

ξ to be

D+v(ξ, ρ) = lim sup
t→0+

[v(ξ + tρ) − v(ξ)]/t.

In what follows we will be considering “closed loop” systems of the form f(ξ, u∗(ξ))

where the feedback controller u∗ is measurable and locally bounded but possibly

discontinuous, hence the classical notion of solution need not apply. To deal with

this situation we will use the generalized solution due to Filippov [5]. Set fu∗
(ξ) =

f(ξ, u∗(ξ)) and associate to u∗ the set valued map

(2) Fu∗
(ξ) =

⋂

δ>0

⋂

µ(N)=0

co{fu∗
(B(ξ, δ) \ N)},



LOWER BOUNDED CONTROL-LYAPUNOV FUNCTIONS 401

where B(ξ, δ) is a ball of radius δ centered at ξ, co denoted the closure of the convex

hull, and µ is the usual Lebesque measure on R
n. A Filippov solution on an interval

I ⊂ R is function x : I → R
n such that x(·) is absolutely continuous on any interval

[t1, t2] ⊂ I and

(3) ẋ(t) ∈ Fu∗
(x(t))

almost everywhere on I (cf. [2, 5]). Solutions x(t) to (3) are thus state trajectories

of system (1) under the feedback controller u = u∗(x) which are differentiable almost

everywhere with respect to t.

Since f(ξ, u∗(ξ)) is measurable and locally bounded the set valued map Fu∗
(ξ) is

upper semicontinuous, compact and convex valued, and locally bounded (cf. [2, 10]).

In particular the differential inclusion (2) satisfies the basic conditions of [5, p. 76]

and thus has a Filippov solution for each initial state. The solution x(t) = 0 of a

differential inclusion ẋ(t) = F(x(t)) is called:

• stable [5] if for each ǫ > 0 there exists δ > 0 with the following property:

for each x0 such that ‖x0‖ < δ, each solution x(t) to ẋ(t) ∈ F(x(t)) with

initial data x(0) = x0 exists for 0 ≤ t < ∞ and satisfies the inequality

‖ x(t)‖ < ǫ (0 ≤ t < ∞).

• asymptotically stable if x(t) = 0 is stable and, in addition, x(t) → 0 as

t → 0.

The possibly discontinuous feedback controller x 7→ u∗(x) stabilizes system (1) iff

x(t) = 0 is a stable solution of the corresponding differential inclusion (3).

3. Lower bounded Lyapunov pairs. A Lipschitz continuous Lyapunov pair

(v, w) consists of a locally Lipschitz continuous, positive definite, proper function

v : R
n → R and a non-negative continuous function w : R

n → R such that, for ξ 6= 0,

there exists ρ ∈ f(ξ, U) with

D+v(ξ, ρ) ≤ −w(ξ).

Remark 3.1. In [13] Sontag and Sussmann examine the connection between

Lyapunov pairs and null asymptotic controllability using a Lyapunov pair (v, w) where

v only needs to be continuous. This necessitates the use of the more general directional

subderivative of v in the direction ρ at ξ, D−
ρ v(ξ), which can be infinite. They require

D−
ρ v(ξ) ≤ −w(ξ) for some ρ ∈ cof(ξ, U), where

D−
ρ v(ξ) = lim inf

t→0+,ω→ρ
[v(ξ + tω) − v(ξ)]/t.

The existence of this more relaxed Lyapunov pair with w positive definite is necessary

and sufficient for null controllability of system (1) [13]. Our interest is in the design of a

stabilizing feedback law which necessitates using ρ ∈ f(ξ, U) rather than ρ ∈ cof(ξ, U)

and the lower-bounded control-Lyapunov function introduced below.
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For control-affine systems with f = f0 +
∑m

i=1 uifi the existence of a Lipschitz

continuous Lyapunov pair (v, w) with w positive definite and v continuously differen-

tiable implies the existence of a feedback law u = k(x) so that the origin is a global

asymptotically stable equilibrium with u continuous on R
n \ {0} (cf. [1, 14]). In [14]

Sontag presents a “universal construction” of Artstein’s Theorem for control-affine

systems. This gives rise to a Lyapunov pair (v, w) with somewhat special properties.

Let v : R
n → R be a smooth control Lyapunov function for a single-input control

affine system ẋ = f0(x) + f1(x)u - that is v : R
n → R is positive definite, proper and

inf
u∈Rn

[▽v(ξ)f0(ξ) + u▽v(ξ)f1(ξ)] < 0

for each ξ 6= 0. Sontag’s “universal” feedback stabilizer is given by the formula

u = −
a +

√
a2 + b4

b
,

where a = ▽vf0 and b = ▽vf1. This controller is smooth on R
n \ {0} and along the

resulting state trajectory dv/dt = −
√

a2 + b4 (which implies stability). If v is a CLF

with the small control property (for ǫ > 0 there exists δ > 0 such that, for 0 < ||ξ|| < δ

there exists some |ℓ| < ǫ with a(ξ)+ℓb(ξ) < 0) then u∗ = −(a+
√

a2 + b4)/b is smooth

on R
n \ {0} and continuous on all of R

n. Set

(4) w =
√

a2 + b4,

a positive definite function. Here D+v(ξ, f(ξ, u)) = a(ξ) + b(ξ)u and Sontag’s “uni-

versal” feedback stabilizer u∗ is the unique solution u to

D+v(ξ, f(ξ, u)) = −w(ξ).

We note that the range (space) of the map u 7→ D+v(ξ, f(ξ, u)) will be R in the case

b(ξ) 6= 0 and {−w(ξ)} if b(ξ) = 0. In particular, for ξ 6= 0, there exists u1, u2 ∈ R such

that D+v(ξ, f(ξ, u1)) ≤ −w(ξ) ≤ D+v(ξ, f(ξ, u2)). We note that once we have se-

lected the positive definite function w we can immediately solve for the corresponding

stabilizing feedback controller.

We note that in the above case v is continuously differentiable. Thus the gradient

of v is continuous hence bounded on compact neighbourhoods of the origin. This im-

plies that “v̇” is both lower and upper bounded. If v is not continuously differentiable

this lower bound is not automatic. This motivates the following definition.

Definition 3.2. A lower bounded Lyapunov pair for the system (1) is a

Lipschitz continuous Lyapunov pair (v, w) such that

1. for ξ 6= 0 there exists ρ1, ρ2 ∈ f(ξ, U) such that

(5) D+v(ξ, ρ1) ≤ −w(ξ) ≤ D+v(ξ, ρ2),
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2. for ǫ > 0, there exists δ > 0 such that, for 0 < ||ξ|| < δ, (5) holds with

ρi = f(ξ, ui), ||ui|| < ǫ, i = 1, 2, . . . , m,

Item (2) above is essentially the small controls property of [14], a natural require-

ment for practical implementation. That ρ1, ρ2 are in f(ξ, U) rather than cof(ξ, U)

reflects our desire to steer the state to the origin using a feedback controller as opposed

to an open loop control.

Suppose that (v, w) is a lower bounded Lyapunov pair for system (1). Then,

corresponding to each ξ ∈ R
n, there is at least one solution u ∈ U to D+v(ξ, f(ξ, u)) =

−w(ξ). We now address the question of how to choose a feedback control u(ξ) to

ensure that the resulting feedback controller remains bounded along the closed loop

state trajectories. Set

(6) g(ξ, u) = D+v(ξ, f(ξ, u)) + w(ξ),

and let

Uv,w(ξ) = {u ∈ U | g(ξ, u) = 0, and, if g(ξ, ũ) = 0, ũ ∈ U, then ‖u‖ ≤ ‖ũ‖},

the set of minimum norm vectors u ∈ U with the property that g(ξ, u) = 0. We

associate with (v, w) the set valued map

(7) Fv,w(ξ) =
⋂

δ>0

⋂

µ(N)=0

co{fv,w(B(ξ, δ) \ N)}

where fv,w(ξ) = f(ξ,Uv,w(ξ)).

Remark 3.3. The minimum norm solution to

(8) D+v(ξ, f(ξ, u)) = −w(ξ)

often will be unique. In this common situation the set of minimum norm control

values Uv,w(ξ) which enforce (8) consists of a single element {u(ξ)}. In this case

Fv,w(ξ) contains a single vector ρ with

(9) D+v(ξ, ρ) = −w(ξ).

In the case where the “Lyapunov function” v is differentiable at ξ, then ρ → D+v(ξ, ρ)

is a linear map and (9) holds. Finally, if Fv,w(ξ) consists of a single element then (9)

holds as well.

If v is not differentiable at ξ (ρ → D+v(ξ, ρ) is not a linear map) and Fv,w(ξ)

contains more than a single vector we can no longer be assured that D+v(ξ, ρ) =

−w(ξ) for every ρ ∈ Fv,w(ξ). On the other hand, for every ρ ∈ Fv,w(ξ) the differential

inclusion

(10) ξ̇(t) ∈ Fv,w(ξ(t))
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need not have a solution ξ(t) with ξ(0) = ξ0 and ξ̇(0) = ρ. Thus, as in [2], we

introduce the (possibly empty) set Ev,w(ξ) of vectors ρ ∈ Fv,w(ξ) such that there

exists a solution ξ(t) of (10) defined for t ≥ 0 with the property that ξ(0) = ξ and

ξ̇(0) exists and is equal to ρ. Clearly the differential inclusion

ξ̇(t) ∈ Ev,w(ξ(t))

has the same solutions as (10). For example suppose that Fv,w(ξ) arises from a

sliding mode controller which steers states to a sliding surface S in finite time and has

x(t) ∈ S thereafter. We have smoothness away from the switching surface S hence

Fv,w(ξ) consists of a single vector when ξ 6∈ S and Ev,w(ξ) = Fv,w(ξ). If ξ0 ∈ S

then Fv,w(ξ0) is a closed convex set of vectors containing a unique vector v0 in the

tangent space to S. The only solution ξ(t) with ξ(t0) = ξ0 has ξ̇(t0) = v0 hence

Ev,w(ξ0) = {v0}.

As in [2] we use Ev,w to weaken the regularity conditions to deal with the degen-

erate case of points ξ ∈ R
n where the map ρ 7→ D+v(ξ, ρ) is not linear (which implies

v is not differentiable at ξ).

Definition 3.4. A lower bounded Lyapunov pair (v, w) said to be regular if

1. the set valued map Fv,w(ξ) is upper semicontinuous, compact and convex

valued, and locally bounded,

2. there is a positive definite continuous function w̃ on R
n such that at points

ξ where the map v is not differentiable (or, more generally, where ρ 7→

D+v(ξ, ρ) is not linear)

(11) D+v(ξ, ρ) ≤ −w̃(ξ) ∀ρ ∈ Ev,w(ξ).

Definition 3.5. A locally Lipschitz continuous, positive definite and proper

function v is called a lower bounded control-Lyapunov function (LB-CLF) if

there exists a positive definite function w such that (v, w) is a regular lower bounded

Lyapunov pair. The pair (v, w) will be called a regular Lyapunov pair for v.

We note that if (v, w) is a regular Lyapunov pair for v then the differential inclu-

sion (10) has a Filippov solution for each initial state. In [11] Smirnov considers the

feedback stabilization problem for a class of linear systems with constrained controls.

We now show that for the systems considered in Theorem 1 of [11] the existence

of a stabilizing feedback is equivalent to the existence of a regular lower bounded

control-Lyapunov function.

Proposition 3.6. Consider the linear system with constrained controls

(12) ẋ = Ax + u,

where x ∈ R
n, u ∈ K, a closed convex cone. Then there exists a feedback controller

u∗ such that the differential inclusion

ẋ(t) ∈ Fu∗
(x(t))
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is asymptotically stable if and only if there exists a regular lower bounded control-

Lyapunov function for the system (12).

Proof. In Theorem 1 of [11] Smirnov establishes that the existence of an asymptot-

ically stabilizing feedback controller u∗ for system (12) is equivalent to the existence of

a convex positively homogeneous function v(x) and θ > 0 such that, for any x ∈ R
n,

Dv(x)w ≤ −θv(x)

for some vector w ∈ Ax+K. Here v(x) is the Minkowski function of a set Mω = MI ×

ωMJ where MJ is an ellipsoid, MI the convex hull of a finite set of points I in R
n, and

ω > 0 [11]. The homogeneous function v need not be differentiable everywhere but the

directional derivative Dv(x)w is well defined (cf [12]). We note that by construction

Dv(x) is continuous almost everywhere and ||Dv(x)|| is bounded on the compact set

{v(x) = 1}. Thus some positive multiple w of v has the property that for ξ ∈ {v(x) =

1} there exists u1, u2 ∈ K such that D+v̂(ξ, f(ξ, u1)) ≤ −w(ξ) ≤ D+v̂(ξ, f(ξ, u2))

where f(ξ, u) = Aξ+u. This, combined with the homogeneity of v and w, means that

(v, w) satisfies 1. of Definition 3.2. Since v is positively homogeneous and Dv = D+v

a.e. it is easy to show that 2. of Definition 3.2 holds as well and hence (v, w) is a lower-

bounded Lyapunov pair. The proof that (v, w) is regular follows from the homogeneity

of v. To see this we first note that, as a consequence of the construction of v we have

Uv,w(ξ) = {u∗(ξ)} for some continuous function u∗ : M → R
m where M ⊂ R

n is open

and R
n \ M is the union of hyperplanes S1, . . . , Sk (cf [12]). It is straightforward to

verify that on the compact set {v(x) = 1} we can find a positive continuous function

α such that D+v(ξ, ρ) ≤ −α(ξ)w(ξ) ∀ξ ∈ Sj ∩ {v(x) = 1}, ρ ∈ Fv,w(ξ) ∩ TξSj for

j ∈ {1, 2, . . . , k}. Using the homogeneity of v and w we can extend the definition of

α to a positive definite function defined on all of R
n. The regularity of (v, w) follows

directly from Proposition 3.8 below.

Remark 3.7. The linear system model with non-negative inputs modelled by

(13)
ẋ1(t) =x2(t),

ẋ2(t) = − x1(t) + u2(t),

mirrors the linear system with with non-negative inputs examined in Smirnov [11].

Define a continuously differentiable function vA(ξ1, ξ2) = αξ1 + βξ2 where α =

e3π/2(
√

2e−7π/4 − 1), β = −e3π/2 and the continuously differentiable function ex-

pressed in polar coordinates as vB(r, θ) = reθ, and set

v(ξ) =





vA(ξ) for ξ2 ≤ −ξ1 ≤ 0,

vB(ξ) otherwise.

To motivate this choice of v we note that ẋ2 can be assigned a large positive value

by an appropriate choice for u but is only negative when x1 is positive. The level
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Fig. 1. Level Set for CLF in Remark 3.7

set for v must be designed to compensate for this lack of control over ẋ2. A level set

for v is shown in Figure 1. The choice of vA and vB was made to ensure that, for

x2 > 0 (where the control cannot be used to directly decrease x2), the drift vector

field points into the interior of region bounded by the level set.

One can show that v is a regular lower-bounded CLF and, setting

u∗(ξ) =





√
ξ1 − αξ2/β − vA/β for ξ2 ≤ −ξ1 ≤ 0,

0 otherwise,

it follows that v̇ = −v on M and the differential inclusion

ξ̇(t) ∈ Fu∗
(ξ(t))

is asymptotically stable. It is fairly straightforward to find functions vA and vB

which act as Lyapunov functions on disjoint regions of the state space - our task is

made more challenging because of the compatibility needed on the closures of these

disjoint sets. The results of a simulation of this case performed using SIMNON/PCW

for Windows, Version 2.01 (SSPA Maritime Consulting AB, Sweden) is presented in

Figure 2 where x0 = (−1,−1). We note that in this example solving “v̇ = −w” for u

has two solutions. The minimum norm solution is u∗ defined above. Other solutions

can be unbounded along state trajectories!

The following proposition shows that a lower bounded Lyapunov pair (v, w) is

regular in many common cases. We note that if v is differentiable on R
n then M = ∅

and (ii) of Proposition 3.8 is automatically satisfied.

Proposition 3.8. Let (v, w) be a lower bounded Lyapunov pair for system (1)

and M ⊂ R
n an open set on which v is differentiable (or, more generally, ρ 7→

D+v(ξ, ρ) is linear) and such that R
n\M is the union of a finite number of hyperspaces

S1, . . . Sk (cf [5]). Then (v, w) will be regular if

(i)

Uv,w(ξ) = {u1(ξ), . . . , uℓ(ξ)}, ξ ∈ M
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Fig. 2. Asymptotic stabilization in using a USFC, Example 4.4

for continuous functions uj , j = 1, . . . , ℓ on M and

(ii) there exists a continuous and positive definite function α on R
n such that

D+v(ξ, ρ) ≤ −α(ξ)w(ξ) ∀ξ ∈ Sj , ρ ∈ Fv,w(ξ) ∩ TξSj for j ∈ {1, 2, . . . , k}.

Proof. In the case where ℓ = 1 it is straightforward to show that Definition 3.4

1. holds (cf [5] Chapter 2). The extension to the case were ℓ > 1 is straightforward.

To establish Definition 3.4 2. we first note that, without loss of generality, we can

assume that |α(ξ)| ≤ 1 (if not replace α by min{1, α}). Setting w̃ = αw it follows

that D+v(ξ, ρ) ≤ −w̃(ξ) ∀ρ ∈ Fv,w(ξ). Noting that Ev,w(ξ) ⊂ Fv,w(ξ) establishes

Definition 3.4 2.

4. Universal stabilizing feedback controllers and asymptotic stabiliza-

tion.

Definition 4.1. Suppose that v is a LB-CLF for system (1). A universal sta-

bilizing feedback controller (USFC) for v is any measurable and locally bounded

function uv,w : R
n → U with the property that f(ξ, uv,w(ξ)) ∈ Fv,w(ξ) where (v, w) is

any regular Lyapunov pair for v.

Remark 4.2. If v is a CLF for a single-input control-affine system with the

small controls property the “universal stabilizing feedback controller” u∗ is uniquely

defined and continuous on R
n (cf [14]) and Fv,w(ξ) = {f(ξ, u∗(ξ))} is regular, with

w given by (4) (Proposition 3.8 above). Furthermore g(ξ, u) = a(ξ) + b(ξ)u + w(ξ)

where b(ξ) = ▽v(ξ)f1(ξ). Generically ∂g/∂u = b is nonzero on some open subset

M0 of R
n such that R

n \M0 has measure zero. For multi-input control-affine systems

g(ξ, u) = a(ξ)+
∑m

j=1 bj(ξ)uj +w(ξ) but g(ξ, u) = 0 does not uniquely determine u (cf.

[14]). Finding the minimum norm solution u∗ to g(ξ, u) = 0 is a linear optimization

problem with a unique solution u∗j = −((w + a)/
∑m

i=1 b2
i )bj which is smooth on

M0. Thus Proposition 3.8 (i) is satisfied. Since v is differentiable on R
n we can

take M = R
n and Proposition 3.8 (ii) is satisfied as well. In particular (v, w) is

a regular lower-bounded Lyapunov pair. For systems which are not control-affine

degenerate situations abound. For example the scalar system ẋ = −xu2 with v(x) =

w(x) = |x|, x ∈ R has v̇(x(t)) = −w(x(t)) if and only if u2 = 1 for all x, hence there
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are stabilizing feedback controllers which are not USFCs for v. Of course for this

example one can also find stabilizing feedback controllers which are USFCs for v.

Theorem 4.3. Let v be a LB-CLF for system (1) and u∗ any USFC for v.

Then x(t) = 0 is an asymptotically stable solution of (3). In particular u = u∗ is an

asymptotic stabilizing feedback controller for system (1).

Proof. Since u∗ is a universal stabilizing feedback controller we have f(ξ, uv,w̄(ξ))

∈ Fv,w̄(ξ) for some regular Lyapunov pair (v, w̄) for v. Since (v, w̄) is a regular

Lyapunov pair there exists a continuous positive definite function w̃ such that at

points ξ where the map v is not differentiable

D+v(ξ, ρ) ≤ −w̃(ξ) ∀ρ ∈ Ev,w(ξ).

Define w(ξ) by w(ξ) = min {w̄(ξ), w̃(ξ)}, so that w is a continuous positive definite

function and (v, w) is a regular Lyapunov pair for v. If ξ∗(t) denotes the state trajec-

tory of system (1) under the feedback control law u∗ then ξ∗(t) will be differentiable

for almost all t and

D+v(ξ∗(t), ξ̇∗(t)) = lim sup
h→0+

[v(ξ∗(t) + hξ̇∗(t)) − v(ξ∗(t))]/h.

This implies that v̇(ξ∗(t)), the rate of change of v at time t along the state trajectory

ξ∗(t), satisfies v̇(ξ∗(t)) ≤ −w(ξ∗(t)) ≤ 0. Then the extension of Theorem 1 in Chapter

3, section 15 of [5] to the case where v is only locally Lipschitz continuous (cf. page

159 of [5]) establishes that ξ(t) = 0 is an asymptotically stable solution of (3).

5. Examples.

5.1. Example 1. Consider the non-affine system model

(14)
ẋ1(t) =u(t),

ẋ2(t) = − x2
1(t) + u2(t).

Here ẋ = f(x, u) with f(x, u) = (u,−x2
1 + u2). This system does not satisfy the nec-

essary conditions for the construction of a continuous stabilizing feedback controller

[3, 8]. Here f is homogeneous with respect to the dilation r = (1, 2) (cf. [4] and so

it is natural to seek a CLF which is also homogeneous with respect to the dilation

r = (1, 2)S. Consider the continuously differentiable CLF candidate

v(ξ) = ξ4
1 − |ξ2|

3/2ξ1 + ξ2
2 .

To show that v is positive definite and radially unbounded (proper) we employ the

Holder inequality xy ≤ xp/p + yq/q where x, y > 0 and 1/p + 1/q = 1. Setting

x = |ξ2|3/2 and y = |ξ1| we have

|ξ2|
3/2|ξ1| ≤

3

4
ξ2
2 +

1

4
ξ4
1 .
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Thus, for ξ1 ≤ 0, it follows that v(ξ) ≥ ξ4
1 + ξ2

2 which implies v is proper and positive

definite. In the case where ξ1 > 0 we have

v(x) ≥ ξ4
1 −

3

4
ξ2
2 −

1

4
ξ4
1 + ξ2

2 .

This means v(ξ) ≥ 1
4ξ2

2 + 3
4ξ4

1 and is proper and positive definite. Since v is continu-

ously differentiable the Dini derivative

(15)
D+v(ξ, f(ξ, u)) =dvξf(ξ, u),

=a(ξ)u2 + b(ξ)u + c(ξ)

where

a(ξ) =2ξ2 − (3/2)ξ1|ξ2|
1/2sign(ξ2),

b(ξ) =4ξ3
1 − |ξ2|

3/2,

c(ξ) = − ξ2
1a(ξ).

Set wk(ξ) = v(ξ)/k where k is a positive integer. To enforce D+v(ξ, f(ξ, u)) = −wk(ξ)

requires that u satisfy

(16) a(ξ)u2 + b(ξ)u + (wk(ξ) − ξ2
1a(ξ)) = 0.

We first consider the case a(ξ) 6= 0 which means u = [−b(ξ) ±
√

α(ξ)]/(2a(ξ)) where

α(ξ) = b2(ξ) − 4a(ξ)(wk(ξ) − ξ2
1a(ξ)). Since u must be real α(ξ) ≥ 0. It is easy

to show that, for ξ fixed and k sufficiently large, this will be the case. Since α is

homogeneous of degree 6 with respect to the dilation r = (1, 2) and the compact n−

sphere is compact, the standard arguments can be used to establish that, for some k,

we have α(ξ) ≥ 0 for all ξ (cf. [4]). We set w = wk.

Suppose a(ξ) 6= 0. We know that u satisfies (16) iff u = −b(ξ) ±
√

α(ξ))/(2a(ξ))

and the minimum norm solution u = u∗(ξ) is

u∗(ξ) =





−b(ξ)+
√

α(ξ)

2a(ξ) if b(ξ) > 0,

−b(ξ)−
√

α(ξ)

2a(ξ) if b(ξ) < 0,

±
√

α(ξ)

2a(ξ) if b(ξ) = 0.

Suppose a(ξ) = 0, b(ξ) 6= 0. Then there is only one possible solution to (16),

namely u = u∗(ξ) = −(w(ξ) − ξ2
1a(ξ))/b(ξ). Setting M = {b(ξ) 6= 0}, an open set

which is a union of hypersurfaces (in the sense of [5]) whose complement is a set

of measure zero, we have unique solutions to (16) on M . In particular U(v,w)(ξ)) =

{u∗(ξ)} for ξ ∈ M where u∗ is defined above and is continuous on M . This means that

(v, w) is regular (Proposition 3.8). We will define our controller to be the continuous

function u∗ = −(w(ξ)−ξ2
1a(ξ))/b(ξ) on M and either

√
α(ξ)/2a(ξ) or −

√
α(ξ)/2a(ξ)

on R
n \ M . It follows [5] that

Fu∗
(ξ) = co{lim f(ξi, u∗(ξi)) | ξi → ξ, ξi 6∈ M}.
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From our definition of u∗ we have Fu∗
(ξ) = f(ξi, u∗(ξi)) if b(ξ) 6= 0 and Fu∗

(ξ) =

co{f(ξi,
√

α(ξ)/2a(ξ)), f(ξi,−
√

α(ξ)/2a(ξ))} if b(ξ) = 0. Here the set {b(ξ) = 0}

divides M into two domains, M+ where b(ξ) > 0 and M− where b(ξ) < 0. As in

[5] we set f+(ξ, u∗(ξi)) and f−(ξ, u∗(ξi)) to be the limiting values of f(ξ, u∗(ξi)) as ξ

approaches {b(ξ) = 0} from M+ and M− respectively. If N is a unit normal field to

{b(ξ) = 0} we set f+
N (ξ) and f−

N (ξ) to be the projections of f+ and f− onto N . It is

straightforward to verify that f−
N > 0 and f+

N < 0. This implies [Corollary 2 p 108

[5]] that the differential inclusion ẋ(t) ∈ Fu∗
(x(t)) has unique solutions x(t) with the

additional property that if b(x(t0)) = 0 then b(x(t)) = 0∀t > t0. That is {b(ξ) = 0} is

a “sliding surface” for ẋ(t) ∈ Fu∗
(x(t)) and u∗ a sliding mode controller.

As noted above in the case where u∗ is a sliding mode controller the set Ev,w(ξ) =

Fv,w(ξ) when ξ ∈ M (b(ξ) 6= 0) and when b(ξ) = 0 then Ea
∗ (ξ) is the unique vector q(ξ)

in co{f(ξi,
√

α(ξ)/2a(ξ)), f(ξi,−
√

α(ξ)/2a(ξ))} which is tangent to {b(ξ) = 0}. Since

D+v(ξ, f(ξ, u∗(ξ))) = −w(ξ) when b(ξ) 6= 0 and q(ξ) = sf(ξi,
√

α(ξ)/2a(ξ)) + (1 −

s)f(ξi,−
√

α(ξ)/2a(ξ)) for 0 ≤ s ≤ 1 it follows that D+q(ξ) = −w(ξ). In particular

we have v̇∗(ξ) = −w(ξ) < 0. Then Theorem 4.3 implies that the solution x(t) = 0 of

(10) is asymptotically stable.

The results of a simulation of this case performed using SIMNON/PCW for Win-

dows, Version 2.01 (SSPA Maritime Consulting AB, Sweden) is presented in Figure 3

where x0 = (−0.5, 1), k = 4.

5.2. Example 2. Consider the control-affine system model

(17)

ẋ1(t) =u1(t),

ẋ2(t) =u2(t),

ẋ3(t) =x2
1 − x2

2.

Here ẋ = f(x, u) with f(x, u) = (u,−x2
1 +u2). This system does not satisfy the neces-

sary conditions for the construction of a differentiable stabilizing feedback controller

[3, 8].

We modify the CLF candidate from example 5.1 as follows: set

(18)
v+(ξ) =1.2ξ4

1 + ξ4
2 − sign(x3)|ξ3|

3/2(ξ1 + ξ2) + 2ξ2
3 ,

v−(ξ) =ξ4
1 + 1.2ξ4

2 − sign(x3)|ξ3|
3/2(ξ1 + ξ2) + 2ξ2

3 .

Computing the rate of change of v+, v− along the state trajectory one finds that

(19)
v̇+(ξ(t)) =a(ξ(t)) + b+

1 (ξ(t))u1(t) + b+
2 (ξ(t))u2(t),

v̇−(ξ(t)) =a(ξ(t)) + b−1 (ξ(t))u1(t) + b−2 (ξ(t))u2(t),
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Fig. 3. Asymptotic stabilization using a USFC, Example 4.5

where

(20)

a(ξ) ={4ξ3 − 3/2(ξ1 + ξ2)|ξ3|
3/2}{ξ2

1 − ξ2
2)},

b+
1 (ξ) =4.8ξ3

1 − sign(ξ3)|ξ3|
3/2,

b+
2 (ξ) =4ξ3

2 − sign(ξ3)|ξ3|
3/2,

b−1 (ξ) =4ξ3
1 − sign(ξ3)|ξ3|

3/2,

b−2 (ξ) =4.8ξ3
1 − sign(ξ3)|ξ3|

3/2.

It follows that v̇+(ξ(t)) < 0 when b+
1 = b+

2 = 0 and x3 > 0 while v̇−(ξ(t)) < 0 when

b−1 = b−2 = 0 and x3 < 0. As in example 5.1 we set

(21)
w+ =|a| + k+

1 |b+
1 |

4

3 + k+
2 |b+

2 |
4

3 ,

w− =|a| + k−
1 |b−1 |

4

3 + k−
2 |b−2 |

4

3 .

where k+
1 , k+

2 , k−
1 , k−

2 > 0 and it is straightforward to verify that the functions v+, v−,

w+, w− are positive definite. We define a lower bounded Lyapunov pair (v, w) by

setting v = v+, w = w+ where ξ3 >
√

v+ and v = v−, w = w− where ξ3 < −
√

v−.
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This leaves the case
√

v+ ≥ ξ3 ≥ −
√

v− to consider. We first define the surface

S0 = {(1.1 + 0.1ξ3)ξ
4
1 + (1.1 − 0.1ξ3)ξ

4
2 − ξ3(ξ1 + ξ2) + 2ξ2

3 = 1} where − 1 ≤ ξ3 ≤ 1

and let v0 be the unique continuous function homogeneous of degree 4 with respect

to the dilation (r = (1, 1, 2) which takes on the value 1 on S0. We define w0 similarly,

and set v = v0, w = w0 in the case
√

v+ ≥ ξ3 ≥ −
√

v−. We note that the surface

S0 is transversal to R
2 × {0}, the set of possible control directions, one consequence

of which is controls can be chosen to give v any desired rate of change in the region

M0 = {
√

v+ ≥ ξ3 ≥ −
√

v−}. Finally we let bi = b+
i for ξ3 ≥ 0 and b−i otherwise, and

define our controller as in the above example, namely

(22) u∗
i = −

w + a

b1
2 + b22 bi.

It follows directly that v̇ = −w with ui continuous everywhere. Then, for ki sufficiently

large, v is a LB-CLF and u∗ = (u∗
1, u

∗
2) a USFC for v. Theorem 4.3 asserts that u = u∗

is an asymptotically stabilizing feedback controller for system (17).
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