
Chapter 4

Pólya Trees

4.1. Definition

An intuitively attractive way to construct RPMs is as a random histogram, with
a fixed set of bins and random probability mass associated with each bin (for
example, see Loredo, 2011). In anticipation of the upcoming discussion, we assume
that the bins define 2m partitioning subsets and index the subsets by an m-digit
binary number ε = e1 · · · em, ej ∈ {0, 1}. Let Πm = {Bε, ε = e1e2 · · · em} denote
this partition of the sample space into 2m bins or partitioning subsets. A random
histogram could define an RPM G by defining the joint distribution p(G(Bε); Bε ∈
Πm).

Pólya trees arise as an extension of this idea where the size of the bins is made
sequentially smaller. More specifically, consider sequentially refining a partition Πm

to Πm+1 by splitting Be1···em into Be1···em = Be1···em0 ∪Be1···em1 (see Figure 4.1.).
The problem now arises to define G(Bε) coherently across nested partitions, with
G(Bε) = G(Bε0) + G(Bε1). The elegant solution is to define the random G(Bε)
through a sequence of conditional probabilities as

G(Bε) =

m∏
k=1

G(Be1···ek−1ek | Be1···ek−1
),

with the understanding that B∅ denotes the entire sample space. An RPM p(G)
is then defined by specifying a prior for the random splitting probabilities Yε =
G(Bε0 | Bε) for any m-digit index ε = e1 · · · em, m > 0.

The resulting construction is called a Pólya tree (PT) prior (Lavine, 1992, 1994;
Mauldin et al., 1992). The PT model assumes that Yε ∼ Beta(aε0, aε1), indepen-
dently across m. In general, an RPM with independent splitting probabilities Yε is
known as tail-free with respect to Π. The PT can thus be characterized as a tail-free
process with respect to a nested partition sequence Π and beta distributed random
splitting probabilities.

Notice the similarities between the PT prior the class of neutral to the right
(NTR) priors introduced in §1.2.7. Recall that NTR refers to independence of the
normalized increments G(ti−1, ti]/G(−∞, ti] for a partition with partition bound-
aries t0 = −∞ < t1 . . . < tn <∞. In contrast, the tailfree property of the PT refers
to independence across two sets of partitions.

In summary, the PT prior defines an RPM by assigning any partitioning subset
Bε the random probability

G(Be1···em) =

m∏
j=1;ej=0

Ye1···ej−10

︸ ︷︷ ︸
all left splits

m∏
j=1;ej=1

(1− Ye1···ej−10)

︸ ︷︷ ︸
all right splits

,
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Fig 4.1. PT: The diagram shows the nested sequence of partitions Πm = {Bε, ε = e1 · · · em} with
ej ∈ {0, 1}. The PT is defined by random splitting probabilities Yε0 = G(Be1···em0 | Be1···em )
with Yε0 ∼ Beta(ae1···em0, ae1···em1).

with independent beta priors Yε0 ∼ Beta(aε0, aε1). The PT model is indexed with
two sets of parameters, the nested sequence of partitions Π = {Πm} and the pa-
rameters A = {aε} for the beta-distributed random splitting probabilities. Hence,
we write G ∼ PT(Π,A).

One of the important features of the PT prior is that it can generate continuous
probability measures. A random probability measures G ∼ PT(A,Π) is absolutely
continous with probability 1 when the αe1·em parameters increase suffiently fast
with m. A popular choice is αε1...εm = cm2. On the other hand, for decreasing α,
the random probability measure can also be almost surely discrete. For example,
for αe1···em = c/2m the PT prior reduces to the special case of the DP prior.

One of the attractions of the PT model is the ease of centering the model at any
desired prior mean G0. One way to accomplish this centering is to fix the partition-
ing subsets Bε as the dyadic quantiles of G0. More specifically, let zε =

∑m
j=1 2

−ej

and define Be1···cm = (G−1
0 (zε), G

−1
0 (zε+2−m)]. At m = 1, the two subsets {B0, B1}

are simply below and above the median of G0, at m = 2, the partitioning subsets
are determined by the quartiles, etc. If the aε parameters are chosen to be sym-
metric, aε0 = aε1, then it is easy to show that E(G(B)) = G0(B), i.e., the RPM is
centered at G0, as desired. Alternatively, the same centering can be achieved with
an arbitrary nested partition sequence Π by taking aε = cmG0(Bε) for some se-
quence (cm) (for example, cm = m2). This second method of prior centering might
be preferable when G0 = G0,η includes some unknown hyper-parameters η. It would
be computationally awkward if one had to change the partitioning sequence each
time a different value of η is being considered and, in most implementations of
posterior inference, it is easier to change the parameters aε. By a slight abuse of
notation we write PT(A, G0) to indicate a PT prior with partitioning subsets de-
termined to achieve a desired prior mean G0, and similarly we write PT(G0,Π)
for a PT prior with the beta parameters chosen to match a desired prior center-
ing.

Figure 4.9 shows some random realizations from a finite PT prior. More specifi-
cally, we plot the random probabilities G(Be1e2) up to level m = 2 under a PT prior
G ∼ PT. The plot highlights that realizations from a PT prior are discontinous at
the partition boundaries, a feature that is often considered as a limitation of this
class of priors. However, the effect of the discrete partition boundaries can trivially
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Fig 4.2. Prior simulation of 10 random realizations G ∼ PT with a standard Gaussian centering
measure. Note the discontinuities at the boundaries of the partitioning sets.

be removed. The most commonly used approach is to add a mixture with respect
to Π. We will return to this problem §4.4.

For later reference we note that the split at each level of the nested partition
sequence need not be binary. In general, each partitioning subset Bε could be split
into q subsets Be1···em−1

=
⊎q−1

em=0 Be1···em−1em , at the next level of the partitioning
sequence. The digits ej of the index ε are ej ∈ {0, . . . , q − 1} and the beta prior
for the random splitting probability G(Bε0 | Bε) is replaced by a Dirichlet dis-
tribution for the q−way splitting probabilities (G(Bε0), . . . , G(Bε,q−1) | G(Bε)) ∼
Dir(αε0, . . . , αε,q−1).

4.2. Posterior Inference

The PT is conjugate under i.i.d. sampling. Assume x|G ∼ G with a PT prior,
G ∼ PT(B,A). Then the posterior on the unknown probability measure G is again
a PT, (G|x) ∼ PT(B,A∗) with

α∗ε =

{
αε + 1 if x ∈ Bε

αε otherwise.
(4.1)

The αε parameters corresponding to the partitioning subsets are incremented by
one for each subset Bε that contains x. In practice, if a finite tree with T levels
is used, (typically with T ≈ 7) equation (4.1) allows for straightforward posterior
updating.

Figure 4.3 shows a simple example of posterior updating for a PT prior. The
prior model in the example is centered at a standard normal. The figure shows
posterior inference conditional on observed data. Posterior updating for censored
data introduces no additional difficulties if the partition boundaries are chosen to
match the censoring times (Muliere and Walker, 1997).

The nature of the posterior PT also leads to straightforward posterior predic-
tive simulation. To draw a new, future observation xn+1 from G conditional on
observed data, x1, . . . , xn also drawn from G we only need to follow the posterior
updating over finitely many levels. First generate an indicator e1 = I(xn+1 ∈ B0)
to determine whether the new observation xn+1 falls into B0. To determine e1
we generate y0 = G(B0). The earlier discussion of the posterior process implies
p(y0 | x1, . . . , xn) = Beta(α�

0, α
�
1). Next let e2 = I(xn+1 ∈ Be10). Again, p(e2 = 1 |
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Fig 4.3. Data (histogram), posterior mean E(G | y) (thick line), random posterior draws G ∼
p(G | y) (dashed lines). The prior mean was G0 = N(0, 1).

e1, G) = ye10 and p(ye10 | x1, . . . , xn) = Beta(α�
e10, α

�
e11), etc. The iteration ends

when it reaches the first level m with αe1···em = α�
e1···em , i.e., when the new draw

is imputed to fall within a partitioning subinterval without earlier data. At that
moment we simply generate xn+1 from the prior mean G0 = E(G) restricted to
this subset, xn+1 ∼ G0I(xn+1 ∈ Be1···em).

The described process of generating from the predictive distribution p(xn+1 |
x1, . . . , xn) is beautifully illustrated by the following special case. Consider n = 0,
i.e., marginal simulation for the first observation, assume that the sample space is
the unit interval B = [0, 1], the partition boundaries are the dyadic subintervales
[0, 1/2), [1/2, 1], [0, 1/4), [1/4, 1/2), . . ., and the centering measure is the uniform
distribution. In that case the indicators ej are simply the digits of xn+1 in a dyadic
expansion and the process amounts to iteratively generating its digits.

Example 12 (A Survival Model with a Longitudinal Covariate) Zhang
et al. (2010) report a typical application of PT models in survival analysis.
They discuss inference for data from a phase III trial of androgen ablation (AA)
vs. chemohormonal (CH) therapy for patients with metastatic prostate cancer.
Patients joined the trial with very diverse prior treatment histories, giving rise to
a challenging statistical inference problem. The study enrolled n = 286 subjects,
randomized to the two arms with n0 = 137 patients assigned to the AA arm, and
n1 = 149 patients assigned to CH. The primary endpoint is time to progression
(TTP) to androgen independent prostate cancer.

An important covariate for TTP is the change of prostate specific antigen (PSA)
over time. Let yi denote the longitudinal trajectory of PSA measurements over
time for patient i, let Ti denote the TTP, and let xi ∈ {0, 1} denote an indicator
for assignment to AA (0) or CH (1). Figure 4.4 shows the data as Kaplan Meier
plots arranged by treatment allocation.

We construct a joint probability model for yi and Ti for a patient in treatment
group xi as a marginal model Gxi(Ti) and a conditional model p(yi | Ti, xi). This
unusual factorization into a marginal model for TTP and a conditional model for
the longitudinal covariate given TTP makes it easy to go nonparametric on the event
time model. We assume Gx ∼ PT(A,Π), independently for x = 0, 1. Conditional
on Ti the model for yi is a non-linear regression. Details of the regression mean
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Fig 4.4. Prostate cancer trial. Kaplan Meier plot of the data, arranged by the two treatment arms.
The dot-dashed lines show the model based inference.

function are motivated by the typical PSA profiles and the nature of the intervention.
See Zhang et al. (2010) for details.

Figure 4.5a shows the estimated distributions of TTP under the two treatments.
For comparison, Figure 4.5b shows the same inference using two independent Weibull
models for Gx, x = 0, 1.

An important feature of density estimation with nonparametric Bayesian models
is the coherent nature of inference as a posterior probability model on the unknown
probability measure. This enables us to report uncertainties on any event or sum-
mary of interest. For example, Figure 4.6 shows the implied uncertainty on the
hazard function.

4.3. The Marginal Model

The PT prior allows a closed form expression for the marginal distribution
p(x1, . . . , xn) of a random sample xi ∼ G, i.i.d., under G ∼ PT(·). The PT shares
this practically very useful property with the DP. For the DP prior the marginal
model is determined by the Pólya urn in (7.1).

Lavine (1992) shows the expression of the marginal model for the PT prior. Let
εm(xi) = e1 . . . em denote the index of the level m subset that contains xi, i.e.,
xi ∈ Be1·em . Also, let m∗(xi) denote the lowest level m such that xi is the only
data point in Bεm(xi). Formally, m�(xi) = minm{xj �∈ Bεm(xi), j �= i}. Then

p(x1, . . . , xn | η) =
n∏

i=1

G0(xi | η)
n∏

j=2

m∗(xj)∏
m=1

α�
εm(xj)

αεm(xj)
· αεm−10(xj) + αεm−11(xj)

α�
εm−10(xj)

+ α�
εm−11(xj)

.

See Berger and Guglielmi (2001) and Hanson and Johnson (2002) for more discus-
sion. In particular, Berger and Guglielmi (2001) use the marginal model to evaluate
Bayes factors.
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Fig 4.5. Prostate cancer trial. Estimated Gx(T ) using PT (left) and Weibull (right).
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Fig 4.6. Prostate cancer trial. Uncertainty p(G(·) | y) using PT (left) and Weibull (right).

4.4. Mixtures of Pólya Trees

Figure 4.3 highlights a critical limitation of the PT prior, i.e., posterior draws
G ∼ p(G | x1, . . . , xm) as well as the posterior mean Ḡ = E(G | x1, . . . , xm)
show visible discontinuities at the partition boundaries. This sensitivity of posterior
inference to the chosen partition is undesirable in most data analyses.

One possible fix is to consider PTs with random centering measures. Recall the
discussion of the DP prior; a random probability measure which is assigned a DP
prior, G ∼ DP, is almost surely discrete. The discrete nature of the DP greatly
simplified many of the computational details of posterior simulation but is unap-
pealing for most applications. In that context, we mitigated concerns related to
the discrete nature of a DP random measure by convoluting G with an additional
smooth kernel to define DP mixture models. Similarly, we can mitigate the unde-
sirable sensitivity of the PT prior to partition boundaries by introducing additional
mixing with respect to the centering measure. Assume that the PT prior is centered
by defining the nested partition sequence Π to be determined by dyadic quantiles of
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Fig 4.7. Same data as in Figure 4.3, now with PT mixture (black). For comparison a kernel
density estimate (light grey).

a desired prior mean G0 = E(G). Hanson and Johnson (2002) propose to introduce
additional hyperparameters η to index the centering model G0,η and extend the
model with a hyperprior on η.

G | η ∼ PT(A, G0,η), η ∼ p(η).(4.2)

Mixing with respect to a hyperprior p(η) smoothes out the undesired dependence
on partition boundaries that appears in Figure 4.3. We refer to model (4.2) as a
mixture of PT model. Note the difference to the DP mixture model that defined
a mixture of a kernel with respect to a DP prior; hence, a mixture of PT models
is analogous to the MDP model discussed in §3.5. Figure 4.7 shows how posterior
inference is improved under a PT mixture prior.

4.5. Multivariate Pólya Trees

The definition of the PT prior is general, all we needed was a nested sequence of
partitions and the beta priors for the random splitting probabilities. When B =
R, the partitions can be described by partition boundaries and can be naturally
indexed by sequences of binary indicators for left versus right splits.

For higher dimensional sample spaces, it becomes awkward to specify and keep
track of the nested partition sequence. For B = R

p this task becomes challenging,
but not impossible. Jara et al. (2009) propose a possible construction that remains
feasible even for moderately high dimensions, p = 8 and beyond. The construction
works with a multivariate normal centering measure, G0 = N(μ,Σ) where Σ =
UU ′, along with a split of each partitioning subset into 2p partitioning subsets.
More specifically, the partitioning subsets Bε are indexed with sequences of base
2p digits, i.e., ε = e1 · em, ej ∈ {0, . . . , 2p − 1}. For example, in Figure 4.1, instead
of splitting each Bε into two daughters, each partitioning subset Bε is split into 2p

nested sets. The definition of these partitioning subsets Bε starts with p-dimensional
rectangles defined by standard normal dyadic quantiles. Let B0(m, k) denote the



50 Pólya Trees

RADIATION

O
Z

O
N

O
E

 2e−04 

 4e−04 

 6e−04 

 8e−04 

 0.001 

 0.0012 

 0.0014 

 0.0016 

 0.0018 

 0
.0

01
8 

 0.002 

0 100 200 300

1
2

3
4

5
6

Fig 4.8. Airquality data. Bivariate density estimate, using the R function PTdensity(·) from the
R package DPpackage. The air quality data is available in R.

k-th of 2m dyadic (univariate) standard normal quantiles at level m. At level m = 1
the two subsets are defined by the partition boundary at 0, the standard normal
median. At m = 2, the four subsets are defined by the partition boundaries at
the 1/4, 1/2 and 3/4 quantiles, etc. Next define the p-dimensional product sets
B0(m,k) = B0(j, k1) × . . . × B0(j, kp). Finally, the partitioning subsets for the
nested partition sequence Π are defined by an affine transformation B(m,k) =
{μ+ Uz; z ∈ B0(j,k)}.

The construction was easily explained, but the reader might be reluctant to
venture into an implementation. Fortunately inference for the multivariate PT is
implemented in DPpackage. Figure 4.8 shows an example of output from the func-
tion PTdensity(·).

4.6. Rubbery Pólya Tree

Recall that an RPMG with PT prior includes discontinuities at the partition bound-
aries. These discontinuities can clearly be seen in Figure 4.9, and they persist in the
posterior means. See, for example, see 4.3. This awkward property limits the use of
the PT prior for many data analysis problems. In §4.4 we discussed a construction
that can mitigate this awkward feature of the PT prior by adding uncertainty about
the centering measure G0η. Mixing over η smears out the partition boundaries. Al-
ternatively, Paddock et al. (2003) introduce additional randomness in the model
by jittering the cutoff points in a dyadic nested partition; the discontinuities in the
RPM are then removed by averaging with respect to this additional jittering.

A third approach that directly addresses the cause of the discontinuities in the
PT mode is the rubbery PT introduced by Nieto-Barajas and Müller (2012). Recall
the independent random splitting probabilities

Yε0 = G(Bε0 | Bε).
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Fig 4.9. Posterior predictive distributions for a rPT with a sample of size 1 at x = −2: Top left
δ = 0, top right δ = 1, bottom left δ = 5 and bottom right δ = 10. The posterior predictive is
identical to the posterior mean, p(x2 | x1 = x) = E(G | x).

The independence of these Yε, across ε is the source of the discontinuities in G at
the partition boundaries; by introducing dependence among these probabilities it
is possible to eliminate the discontinuities.

The construction of the rubbery PT is more easily explained in the context of a
finite PT. For ease of exposition assume a PT2 prior with only two levels and use
decimal integers to index the partitioning subsets at each level:

B11 | B12

B21 | B22 | B23 | B24(4.3)

A computationally easy way to introduce dependence between the two random
probabilities Y21 and Y23 while leaving the marginal beta distribution unchanged is
the use of a latent binomial variables Z21 sandwiched between them. We leave the
marginal distribution of Y21 unchanged as Y21 ∼ Beta(α2, α2) and Y22 = 1 − Y21.
The prior for Y23 is changed to

Z21 | Y21 ∼ Bin(δ21, Y21), Y23 | Z21 ∼ Beta(α2 + Z21, α2 + δ21 − Z21),

and Y24 = 1 − Y23. It is easily verified that the implied marginal prior p(Y23)
remained unchanged as a Beta(α2, α2) while introducing the desired dependence
of Y21 and Y23. Also, the level 1 priors remain unchanged. The Binomial sample
size parameter δ21 tunes the desired level of smoothing; large values imply more
smoothing. We use rPT(Π,A, δ) to denote a rubbery PT with a sequence of latent
binomial variables indexed by δmj , m > 1, j = 1, 3, . . . . Figure 4.9 shows posterior
predictive distributions for a future observation for different choices of δ.
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