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Self-organized criticality of aggregated animals
attributed to Tweedie convergence
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In memoriam: Prof. Bent Jorgensen (1954-2015), who contributed
the fundamentals on which this study was based.

Abstract. Ecologists have had an ongoing interest in a variance to mean
power law that governs the clustering of individuals of animal and plant
species. This same power law has been reported from disparate biological,
physical and mathematical systems, and also characterizes a family of sta-
tistical distributions known as the Tweedie exponential dispersion models.
Its widespread appearance can be explained by fundamental statistical con-
vergence effects on random data that cause this, and related, power laws to
emerge and provide mechanistic insight into its origin, as well as the origin of
1/ f noise, multifractality and other phenomena attributable to self-organized
criticality. A meta-analysis of ecological field data was conducted here to ex-
amine how such statistical convergence might affect the power law. These
findings provided conjectural insight into a form of self-organized criticality,
driven and modulated by the statistical convergence of random data, which
could underlie the power law’s emergence.

1 Introduction

Ecologists have long recognized that plants and animals tend to cluster together. The mech-
anism for this clustering, though, remains controversial. The late L. R. Taylor noted that if
a habitat were divided into equal-sized regions, and the numbers of a species enumerated
within these regions, the mean sample count Z and its variance s% would obey the power

law,
sz =a-ZP, (1.1)

where a and p were constants and p being of fractional value, Taylor (1961). This relation-
ship has come to be called Taylor’s power law, Taylor et al. (1983).

Taylor proposed the power law exponent p as a species-specific parameter and found that
its values ranged mainly between 1 and 2. This power law has been confirmed for hundreds of
animal and plant species, as well as for some microorganisms, Taylor (1961), Taylor, Woiwod
and Perry (1978), Taylor and Woiwod (1980), Taylor and Woiwod (1982), and Taylor et al.
(1983). On the basis of semi-quantitative arguments Taylor attributed the power law to the
balanced non-random repulsive and congregatory behavior of animals, Taylor and Taylor
(1977).

Many other explanations for the power law followed: Anderson et al. (1982) proposed
a Markovian population model moderated by stochastic demographics; Hanski (1980) sug-
gested a random walk model controlled by reproductive and survival rates; Kemp (1987)
advocated the negative binomial, Neyman type A, and Polya—Aeppli distributions as statis-
tical models for Taylor’s law; see also, Jgrgensen and Kokonendji (2016) and Bonat et al.
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(2018). Perry (1994) argued that chaotic dynamics could yield the law, and Kilpatrick and
Ives (2003) showed that simulated species interactions could generate the relation. Despite
these (and other) attempts to explain Taylor’s law, no consensus towards any particular ex-
planation has emerged.

Variance to mean power laws mathematically identical to Taylor’s law have also been im-
plicated in the transmission of human immunodeficiency virus (HIV) by Anderson and May
(1988), and recently by Petterle et al. (2019), as well as measles epidemics, Keeling and
Grenfell (1999), the geographic clustering of leukemia cases, Philippe (1999), the genomic
distribution of single nucleotide polymorphisms (SNPs), Kendal (2003) as well as genes,
Kendal (2004a), the distribution of the prime numbers, Kendal and Jgrgensen (2015), eigen-
value deviations from random matrices, Kendal and Jgrgensen (2011b), 1/ f noise, Kendal
and Jgrgensen (2011b), and self-organized criticality (SOC), Kendal (2015). In view of the
wide range of manifestations of the power law a more general explanation than that provided
by population dynamic models seemed required.

About the same time that Taylor was developing his hypothesis Tweedie (1984), a British
medical physicist and statistician, was studying statistical models that expressed an inherent
variance to mean power law. These models have come to be called the Tweedie exponential
dispersion models (EDMs), Jgrgensen (1997). The Tweedie EDMs have a fundamental role in
statistical theory as foci of convergence for a wide range of random and pseudorandom data,
similar to the role that the Gaussian distribution has in the central limit theorem, Jgrgensen,
Martinez and Tsao (1994).

The clustering of the potato beetle, Leptinotarsa decemlineata, was demonstrated to ex-
press Taylor’s power law and to correspond to a discrete equivalent of the Tweedie compound
Poisson EDM, Kendal (2002). A random distribution of insects would be conventionally rep-
resented by the Poisson distribution, which manifests no power law clustering. The compound
Poisson EDM, however, provides an alternative random model that inherently expresses the
variance to mean power law. An explanation for Taylor’s law based on the Tweedie EDMs
has met with criticism for reason of its lack of a population dynamic framework and for its
inability to account for observations where 0 < p < 1. The study reported here addresses
both of these criticisms.

A meta-analysis of three large ecological reviews, previously reported by Taylor and his
colleagues, will be examined. This analysis was focused upon the clustering of invertebrate
and bird species in the context of two related Tweedie convergence effects. The first effect,
mentioned above, causes certain variance functions of EDMs to converge towards a variance
to mean power law; this power law has been traditionally interpreted to represent non-random
self-organization amongst individuals of a species. A second convergence effect is presented
and conjectured here to shape the distribution of the Tweedie dimensional parameter -, which
shares a one- to-one relationship with the exponent p. This latter convergence effect, it will
be conjectured, introduces an instability in the values of «, which corresponds to a form of
SOC.

2 Field observations of Taylor’s law

To begin, some field observations of Taylor’s law from the scientific literature will be in-
troduced as a historical example. These observations were based on the combined study
of the aphid (Aphis fabae Scop.) from two varieties of bean plants (Mazagan and Claudia
Aquadulce), as enumerated and analyzed by Taylor (1970). The mean number of aphids per
stem (chosen by Taylor to represent an equitable measurement unit) and its corresponding
variance were plotted for N = 67 samples (Figure 1). A log-log plot has been typically used
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Figure 1 Taylor’s law from infestations of Aphis fabae Scop. on bean plants. These data were previously pub-
lished by Taylor (Taylor, 1970). The means and variances derived from the samples were plotted on a log-log
plot. A straight line relationship on this plot (solid line) suggested an underlying power law. Linear regression
yieldeczi the constant logo(a) = 1.20 (95% CI, 1.11 to 1.29) and the exponent p =1.63 (95% CI, 1.54 to 1.71)
with r= = 0.96.

for this purpose since the power law can be represented by a straight line, and linear regres-
sion can provide the power law parameters a and p. Following the methodology employed
by Taylor, and numerous other investigators over the last half century, linear regression was
used to reproduce the variance to mean power law from Taylor’s data. The exponent for these
particular data was p = 1.63, which was found to have a relatively narrow 95% confidence
interval (CI).

In this regression, the logarithm of the sample mean number of counts (the response vari-
able) and the logarithm of the variance of these counts (the explanatory variable) both repre-
sented random quantities; consequently care should be exercised in interpreting such regres-
sions. For this reason the analysis was performed here using two different methods: First,
following the conventional practice of Taylor (1961) and other investigators, the data were
logarithmically transformed and a linear regression performed with the 95% CI determined
under the assumption of normality. The second analysis was based on bootstrapping meth-
ods (STATA 13, College Station, Texas) as applied to the logarithmically transformed data.
Both p and its 95% CI obtained by bootstrapping agreed with the linear regression of the
conventional analysis.

The correlation coefficient squared from the regression was 7> = 0.96, indicating that the
power law appeared to account for 96% of the variance associated with these data. Inspection
of Figure 1 revealed an approximately even distribution of the data points about the linear fit.
Field data like these are invariably associated with additional spurious scatter. Consequently,
conclusions drawn from the estimated values of p should be considered in light of spurious
effects, associated with the unexplained variance.

Other historical assessments of Taylor’s law, reviewed in the meta-analysis below, were
based on smaller sample numbers N and/or yielded larger proportions of unexplained vari-
ance, which opened the possibility for larger spurious influences. The potential that these spu-
rious influences might have caused some assessments for p to fall within the range 0 < p <1
will be considered further, particularly in view of criticisms raised regarding inability of the
Tweedie EDMs to account for values within this range.

For each of the 67 samples in the analysis of aphids from Figure 1, Taylor provided the
mean number of individuals per stem and a variance. The variance is a measure of statistical
variability about the mean, and values of the variances Taylor obtained indicated that random
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Figure 2 Histogram of values of Taylor’s law exponent p. This figure represents a meta-analysis of data from 3
previous publications. Values of p were assessed from linear regression of log-log plots of Taylor’s law. In all 608
assessments of p were retrieved. Nearly 90% of assessments ranged between 1 and 2; 6.4% were less than 1 and
7.9% were greater than 2. The most frequent values occurred near p =1.4.

influences had contributed to these assessments beyond the variance to mean power law itself.
Taylor considered this variance to mean power law to represent non-random influences upon
the spatial distribution of animals. An alternative hypothesis is considered below that the
spatial distribution of animals and plants is inherently random, and primarily governed by a
Tweedie EDM.

The full meta-analysis began with the construction of a frequency histogram for the ex-
ponent p derived from 3 large reviews of field data derived mainly from insect and avian
species, Taylor, Woiwod and Perry (1978) and Taylor and Woiwod (1980, 1982). The re-
sultant distribution appeared more or less symmetrically peaked with a mode near p = 1.4
(Figure 2).

About 6.4% of the estimates for p were less than 1. From this initial examination it was
not clear as to the degree that spurious effects might have influenced the estimates in this
range. Before the data are examined more closely it would be useful to review some further
background regarding the Tweedie EDMs.

3 Foundations of the Tweedie exponential dispersion models

EDMs are statistical models created to describe the error distributions of generalized linear
models. See Jgrgensen (1997) for further detail of the theory. These EDMs are character-
ized by unique variance functions V (i), expressed in terms of the position parameter, (.,
Nelder and Wedderburn (1972). The Tweedie EDMs correspond to a subclass of these mod-
els distinguished by the mathematical properties of closure under additive and reproductive
convolution, as well as under scale transformation, Jgrgensen (1997), and Bonat and Koko-
nendji (2017). This latter property leads the Tweedie EDMs to have variance functions of the
form V() = P and thus an inherent variance to mean power law because if ¥ ~ ED(u, A)
then E(Y) = Au and Var(Y) = V().

The Tweedie EDMs are classified by their power law exponent p: p < 0 gives the extreme
stable distributions; p = 0, the Gaussian distribution; p = 1, the Poisson distribution; 1 <
p < 2, the compound Poisson distribution; p = 2, the gamma distribution; 2 < p < 3, the
positive stable distributions; p = 3, the inverse Gaussian distribution; p > 3, the positive
stable distributions; p = oo, the extreme stable distributions; and (as noted above) for 0 <
p < 1 the Tweedie models do not exist.
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Additive Tweedie EDMs have cumulant generating functions of the form, Jgrgensen
(1997),

ref(ef — 1), p=1
K%(s:0,0) = e, 0)[(1 +5/0)% 1], p#1,2, 3.1)
—Alog(1+5/0), p=2,

where s is the generating function variable and 6 and A are the canonical and index parame-
ters, respectively. The cumulant function «, (0) is

0

e, p=1,
oa—1 0 o

O =15 (ﬁ) Cp#L2, (3.2)
_log(_e)’ p:2'

The compound Poisson distribution (as indicated by the second CGF in Eq. (3.1)) repre-
sents the sum of a random (Poisson-distributed) number of gamma-distributed variables. It
has its values for p restricted within the range 1 < p < 2, which corresponded to the majority
of assessments for p from the field data provided here.

The constant « in Eq. (3.1) is referred to here as the Tweedie dimensional exponent; it is
related to the power law exponent p through the equations

a=(p—2)/(p—1) and (3.3)
p=(a—2)/(a—1). (3.4)

The Tweedie convergence theorem, used here to justify the application of the Tweedie
compound Poisson distribution to Taylor’s law, is directed towards the variance functions of
EDM s rather than the distributions, themselves. We have for independent and identically dis-
tributed random variables, described by EDMs with variance functions that approximate a
power law at some point, these variance functions are mathematically required to converge
towards the variance functions of the Tweedie EDMs, Jgrgensen, Martinez and Tsao (1994).
In this regard a theorem by Mora (1990) has shown that variance functions behave this way
provided uniform convergence on compact sets. Moreover, because the variance functions of
numerous probability distributions will approach V (u) = u” for marginal values of u, the
Tweedie EDMs would be expected to act as foci of convergence for a fairly comprehensive
range of random and pseudorandom data, Kendal and Jgrgensen (2011a). The term pseudo-
random is applied here to indicate data that are generated by deterministic means yet appear
to manifest with random properties such as a distribution function.

A population dynamic model based on the Tweedie compound Poisson distribution has
been proposed to explain the manifestation of Taylor’s law amongst individuals of a species,
Kendal (2004b): Clusters of individuals are assumed to be randomly distributed throughout
their habitat, in accordance with a Poisson distribution. The number of individuals within
each cluster is assumed governed by a stochastic birth, death and immigration process, and
consequently obeys a negative binomial distribution, Kendall (1949). The mean size of the
clusters, overall, would then be represented by a gamma distribution, Boswell and Patil
(1970). Indeed, the gamma distribution maximizes the entropy for positive valued distribu-
tions of a certain mean, providing additional insight into the role that this distribution may
have with cluster size. The number of individuals per quadrat then would obey a compound
Poisson distribution and Taylor’s law would result.

Other statistical models can be proposed that yield Taylor’s law, either approximately or
exactly. Arguably, on the basis of the Tweedie convergence theorem, many of these other
models would themselves be required to converge towards the form of the Tweedie EDMs.
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Indeed, the impact inhomogeneity model proposed by Eisler, Bartos and Kertesz (2008) for
Taylor’s law, and the maximum entropy model for Taylor’s law proposed by Fronczak and
Fronczak (2010), have been shown to mathematically yield the Tweedie EDMs, Eisler, Bartos
and Kertesz (2008) and Kendal and Jgrgensen (2011a).

4 Outlying assessments for the power law exponent

As noted above, 39 (6.4%) of 608 assessments of p in this meta-analysis came within the
range 0 < p < 1. Table 1 provides detail regarding these 39 outlying cases. They were ranked
here in accordance with the upper bound of their 95% ClIs for p. Only 8 (1.3%) of these out-
lying cases had an upper bound of less than 1. (The other 31 cases could thus be considered
potentially within the range of values of p for the Tweedie distributions.) Of these 8 remain-
ing cases one was based on 5 measurements; the other cases were based on from 10 to 92
measurements. The highest value for 7> determined from these 8 cases was 0.81, as reported
for Tribolum confusum. In this particular case, 19% of the variance remained unexplained
by the regression model. The other 7 cases had anywhere from 43% to 65% unexplained
variance, indicating major spurious effects, which provided reason to question the assessed
values for p.

Figure 3 provides a log-log plot of the data from Tribolum confusum, Naylor (1959), which
arguably presented the strongest case for p falling within the range 0 < p < 1. The solid line
represents the best regression fit for Taylor’s power law; the dotted line represents the equa-
tion s% = Z, an alternative model based on the Poisson distribution. There was qualitatively
not a large difference between both models; the Poisson model (p = 1) had no adjustable pa-
rameters whereas Taylor’s law had two parameters. For these reasons a Poisson model might
have been more appropriate to consider rather than application of Taylor’s law. Of the re-
maining 8 studies reviewed above, Naylor’s data provided a relatively large number of cases;
the remaining members of this group possessed larger degrees of unexplained variance. The
meta-analysis presented so far thus appeared to indicate that spurious effects may have had a
major role in causing the assessments of p to range between 0 and 1.

5 Field assessments of the Tweedie exponent

The exponent « from the Tweedie compound Poisson distribution represents one of two pa-
rameters that characterized its constituent gamma distribution (Eq. (3.1)). Equation (3.3) can
be used to estimate o from the values of p within the meta-analysis, provided that p # 1.
Figure 4 gives a frequency histogram for « derived from the evaluable data.

A sharply peaked distribution was evident with a modal value near « = —0.7, which corre-
sponded to p = 1.6. The peak was located close to the transition point (¢ = 0, p = 2) where
the Tweedie compound Poisson distribution is replaced by the gamma distribution. This peak
also represents a mathematical critical point, since at this point the derivative with respect to
a does not exist. The solid line from Figure 4 represents a fitted asymmetric Laplace distri-
bution with the probability density function,

A 1 1 A
fla;pu,y,m)= 7e><p{7[(a —m)jL —
V27 + a2 Y
where m is the mode and [t and y are the mean and variance, Jgrgensen and Kokonendji

(2011). The values corresponding to 0 < p < 1 appeared only as infrequent outliers in this
histogram.

w27+ 2]} )
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Table 1 Meta-analysis

Data sources N p SE*  Upper 95% CI' r?
Taylor, Woiwod and Perry (1978) Total number of cases, 156 13 cases with0 < p < 1

Tribolum confusum, Naylor (1959) 80 0.75 0.04 0.83 0.81
Tellina tenuis, Holme (1950) 5 0.56 0.16 0.88 N/A
Wheat straws, Bardner and Lofty (1971) 92 0.75 0.11 0.96 0.35
Dacus tyroni, Monro (1967) 10 047 022 0.98 0.4
Asphondylia, Shibuya and Ouchi (1955) 24 098 0.01 1 N/A
Arnica montana, Blackman (1942) 14 0.88 0.06 1.01 0.94
Agriotes, Burrage and Gyrisco (1956) 25 0.99 0.04 1.07 0.54
Wheat attacked by virus/insects, Bardner and Lofty (1971) 9% 092 0.1 1.12 0.47
Ranuculus bulbosa, Blackman (1942) 20 0.99 0.08 1.16 0.99
Poterium sanguisorba, Blackman (1942) 20 099 0.1 1.2 0.85
L. grandicollis Mason (1970) 37 091 0.15 1.21 N/A
Sahlbergella singularis, Youdeowei (1965) 10  0.85 0.21 1.33 0.68
Surviving wheat plants, Bardner and Lofty (1971) 7 084 025 1.48 0.7
Taylor and Woiwod (1980) Total no. of cases, 360 OcaseswithO < p <1

Taylor and Woiwod (1982) Total number of cases, 92 26 cases with0 < p < 1

Athene nocua 52 0.61 0.11 0.83 0.37
Picus viridis 35 0.73  0.072 0.88 0.57
Gallinago gallinago 27 0.75 0.081 0.92 0.74
Cuculus canorus 84 0.83  0.081 0.99 0.44
Turdus viscivorus 89 0.87 0.064 1 0.55
Buteo buteo 11 0.7 0.147 1.03 0.58
Numenius arquata 20 079 0.113 1.03 0.69
Motacilla alba 83 0.91 0.061 1.03 0.67
Sylvia atricapilla 71 0.94 0.051 1.04 0.83
Alectoris rufa 46 092 0.064 1.05 0.82
Garrulus glandarius 50 092 0.067 1.05 0.64
Pica pica 76 093 0.065 1.06 0.62
Emberiza citrinella 98 0.93  0.065 1.06 0.61
Perdix perdix 95 091 0.08 1.07 0.65
Streptopelia turtur 53 0.96 0.066 1.09 0.72
Strix aluco 48 0.93 0.081 1.09 0.59
Parus palustris 47 0.96 0.065 1.09 0.7
Pyrrhyla pyrrhula 84  0.99 0.049 1.09 0.74
Scolopax rusticola 10 086 0.104 1.1 0.65
Vanellus vanellus 87 0.99 0.059 1.11 0.77
Parus montanus 36 0.97 0.069 1.11 0.75
Miliaria calandra 47 093 0.1 1.13 0.86
Tyto alba 17 0.84 0.142 1.14 0.68
Saxicola rubetra 13 0.86 0.128 1.14 0.75
Corvus corone 95 098 0.11 1.2 0.56
Haematopus ostralegus 12 0.66 0.26 1.24 0.33

N, number of cases in the regression; p, Taylor’s power law exponent; N/A, not available; *SE, standard error;

t95% CI, 95% confidence interval

A chi-squared goodness of fit test revealed a statistically significant difference between the
histogram and the theoretical asymmetric Laplace model (probability value < 0.001). This
poor fit was not surprising considering that from a sample of 92 regression estimates of p
from one of the component studies used in this meta-analysis, Taylor and Woiwod (1982),
the percentage of unaccounted for variance was on average 25% (standard error 1%). There
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Figure 3 Taylor’s power law from Tribolum confusum, Naylor (1959). Naylor provided 80 assessments of the
variance and mean from laboratory experiments of this beetle’s distribution in flour meal. The solid line represents
the best fit of Taylor’s law. The broken line represents the relationship expected from a Poisson distribution where
the variance equaled the mean.
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Figure 4 Frequency histogram for the Tweedie exponent a. Meta-analysis of data reported by Taylor, Woiwod
and Perry (1978), Taylor and Woiwod (1980), and Taylor and Woiwod (1982) provided 601 evaluable assessments
for a. Their frequency histogram appeared sharply peaked and roughly corresponded to a normalized asymmetric
Laplace distribution (solid line, m = —0.5, y = 1.8, it = —0.9). The top horizontal axis provided values for p
corresponding to those of a (bottom horizontal axis). The broken line denotes the point (o« =0, p = 2) where the
compound Poisson distribution would be replaced by the gamma distribution.

seemed to be a major component of statistical error associated with such assessments that
might have interfered with the fit histogram.

We will see from the next section some theoretical justification for the choice of an asym-
metric Laplace distribution in this application. Further theoretical justification can be derived
from the placement of the mathematical critical point at « = —0.7, just prior to the transition
point where o = 0 (Section 7). As well, previously published analyses derived from the eigen-
value deviations of the Gaussian Unitary Ensemble (GUE), the deviations of the Chebyshev
prime counting function Kendal (2014), and the growth fluctuations of bristlecone pine trees
Kendal (2017) revealed similar correspondences and placements of the asymmetric Laplace
distribution to histograms derived from the Tweedie parameter «. For these reasons, and in
spite of the poor statistical fit, this distribution could be considered on an exploratory basis
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to conjecture a process analogous to SOC that was associated with the aggregation of these
animals.

6 The geometric Tweedie dispersion models

The asymmetric Laplace distribution is a member of a second family of Tweedie models
called the geometric Tweedie dispersion models, for which geometric sums of random vari-
ables possess properties analogous to the Tweedie EDMs, Jgrgensen and Kokonend;ji (2011).
These second models are characterized by their v-function, much as EDMs are character-
ized by their variance function, V(u), Jgrgensen (1997) and Jgrgensen and Kokonendji
(2011). The geometric Tweedie dispersion models are further identified by the power law
v(u) = AuP, with & > 0. The asymmetric Laplace distribution is the geometric Tweedie dis-
persion model generated from the Laplace distribution. It has a role analogous to that of
the Gaussian distribution, given its power law exponent p = 0, Jgrgensen and Kokonend;ji
(2011). (See also Abid, Kokonendji and Masmoudi (2019) and Abid, Kokonendji and Mas-
moudi (2020) for recent properties and regression models pertaining to this matter.)

Geometric dispersion models with v-functions asymptotic to v(u) = u? are mathemati-
cally required to converge towards the geometric Tweedie models in a second (and related)
convergence effect, Jgrgensen and Kokonendji (2011). The correspondence of an asymmet-
ric Laplace distribution to the data from Figure 4 provided reason to conjecture that the latter
convergence effect may have influenced the variation of @ amongst the assessments drawn
from the meta-analysis.

7 Discussion and conclusion

Taylor, Woiwod and Perry (1978) have argued that the behavior of living organisms causes
their spatial distribution to be non-random. They chose to restrict their definition of random-
ness to spatial distributions governed by the Poisson distribution, and to consider the variance
to mean power law as being non-random. As noted above, though, randomness can manifest
in other ways. In particular, the Tweedie EDMs provide a formal explanation for how a vari-
ance to mean power law can be represented by a random distribution. A more general view
of randomness was adopted here. Traditional count models, like those described by Kemp
(1987), can also be shown to have a random origin within a discrete Poisson-Tweedie conver-
gence theorem, Jgrgensen and Kokonendji (2016): Here, the variance functions V (u) = u?
and v-functions v(u) = w? are replaced by dispersion functions v(u) = u? that have the
Hermite, Neyman Type A, P6lya—Aeppli, binomial, negative binomial and Poisson-Inverse
Gaussian distributions as foci of convergence, analogous to the Tweedie EDMs, Jgrgensen
and Kokonendji (2016).

Emergent phenomena is a term applied to patterns that arise within complex systems that
are characterized by scale-free or power law behaviour, Barabasi and Albert (1999). SOC is a
hypothesis used to explain the emergence of certain power laws like 1/ f noise, Bak, Tang and
Wiesenfeld (1988). The aggregation of plants and animals also could similarly be considered
to reflect an emergent phenomenon by virtue of its apparent variance to mean power law. It
is conjectured here that such emergence could reflect a form of self-organization, driven by
a statistical convergence effects that govern non-Gaussian random data, which are focused
primarily on the Tweedie compound Poisson and asymmetric Laplace distributions.

The meta-analysis of the exponent p, from collected studies of animals presented here,
revealed that most of these values ranged between 1 and 2, and were within the domain of
p associated with the compound Poisson distribution. The amount of unexplained variance
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with the typical field evaluations of the power law exponent p makes it difficult to exclude
the application of the Tweedie EDMs because of apparent observations being in the range
O<p<l.

The hypothesis of SOC postulates that the power law relationship associated with 1/f
noise (and other power laws) represent the response of deterministic dynamical systems to
the self-organized critical state, Bak, Tang and Wiesenfeld (1988). This state was based by
analogy to phase transitions where at the critical point between phases dynamical variables
become unstable and manifest power law behavior. Such critical effects can be associated
with sharp peaks in their dynamical variables (for example, see Shan et al. (2014)).

Analysis of the exponent « in the meta-analysis provided a frequency histogram that was
sharply peaked and had qualitative resemblance to an asymmetric Laplace distribution, a dis-
tribution that acts as focus of a second convergence effect. This peak was closely located
to the transition point between the domains of the compound Poisson distribution and the
gamma distribution, much as how similar sharp peaks in dynamical variables can be associ-
ated with phase transitions.

The evolution of such systems towards critical states could be considered an identifying
feature of SOC, Bak, Tang and Wiesenfeld (1988). The hypothesis of SOC, though, was pro-
posed for dynamical systems; that is, systems whose evolution is described by deterministic
trajectories. The evidence drawn from the ecological systems presented here instead indicated
that the manifestation of Taylor’s law, and its associated criticality, might be more appropri-
ately attributed to random processes.

The power law aggregation of animals and plants, as indicated by Taylor’s law, is conjec-
tured here to represent the emergence of a form of SOC from random systems governed by
Tweedie convergence. Similar power law clustering found amongst other biological, physical
and mathematical systems would seem to indicate a general underlying mechanism, which re-
lates the variance to mean power law to phenomena like 1/ f noise and multifractality, Kendal
(2017).
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