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Reduction principle for functionals of strong-weak dependent
vector random fields
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Abstract. We prove the reduction principle for asymptotics of functionals
of vector random fields with weakly and strongly dependent components.
These functionals can be used to construct new classes of random fields with
skewed and heavy-tailed distributions. Contrary to the case of scalar long-
range dependent random fields, it is shown that the asymptotic behaviour of
such functionals is not necessarily determined by the terms at their Hermite
rank. The results are illustrated by an application to the first Minkowski func-
tional of the Student random fields. Some simulation studies based on the
theoretical findings are also presented.

1 Introduction

In various applications, researchers often encounter cases involving dependent observations
over time or space. Dependence properties of a random process are usually characterized by
the asymptotic behaviour of its covariance function. In particular, a stationary random process
η1(x), x ∈ R, is called weakly (short-range) dependent if its covariance function B(x) =
Cov(η1(x + y), η1(y)) is integrable, that is,

∫
R

|B(x)|dx < ∞. On the other hand, η1(x)

possesses strong (long-range) dependence if its covariance function decays slowly and is non-
integrable. An alternative definition of long-range dependence is based on singular properties
of the spectral density of a random process, such as unboundedness at zero (see Doukhan,
Oppenheim and Taqqu (2002), Souza (2008), Leonenko and Olenko (2013)).

Long-range dependent processes play a significant role in a wide range of areas, including
finance, geophysics, astronomy, hydrology, climate and engineering (see Leonenko (1989),
Ivanov and Leonenko (1989), Doukhan, Oppenheim and Taqqu (2002)). In statistical applica-
tions, long-range dependent models require developing new statistical methodologies, limit
theorems and parameter estimates compared to the weakly dependent case (see Ivanov and
Leonenko (1989), Worsley (1994), Leonenko and Olenko (2013), Beran et al. (2013)).

In statistical inference of random fields, limit theorems are the central topic. These theo-
rems play a crucial role in developing asymptotic tests in the large sample theory. The central
limit theorem (CLT) holds under the classical normalisation n−d/2 when the summands or in-
tegrands are weakly dependent random processes or fields. This result was proved by Breuer
and Major (1983) for nonlinear functionals of Gaussian random fields. A generalisation for
stationary Gaussian vector processes was obtained in de Naranjo (1995), for integral func-
tionals of Gaussian processes or fields in Chambers and Slud (1989), Hariz (2002), Leonenko
and Olenko (2014), for quasi-associated random fields under various conditions in Bulinski,
Spodarev and Timmermann (2012) and Demichev (2015). Some other CLTs for functionals
of Gaussian processes or fields can be found in Doukhan and Louhichi (1999), Coulon-Prieur
and Doukhan (2000) and Kratz and Vadlamani (2018).
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The non-central limit theorems arise in the presence of long-range dependence. They use
normalising coefficients different than in the CLT and have non-Gaussian limits. These lim-
its are known as Hermite type distributions. A non-Gaussian asymptotic was first obtained
in Rosenblatt (1961) as a limit for quadratic functionals of stationary Gaussian sequences.
The article Taqqu (1975) continued this research and investigated weak limits of partial
sums of Gaussian processes using characteristic functions. The Hermite processes of the
first two orders were used. Later on, Dobrushin and Major (1979) and Taqqu (1979) estab-
lished pioneering results in which asymptotics were presented in terms of multiple Wiener-
Itô stochastic integrals. A generalisation for stationary Gaussian sequences of vectors was
obtained in Arcones (1994) and Major (2019). Multivariate limit theorems for functionals of
stationary Gaussian series were addressed under long-range dependence, short-range depen-
dence and a mixture of both in Bai and Taqqu (2013). The asymtotices for Minkowski func-
tionals of stationary and isotropic Gaussian random fields with dependent structures were
studied in Ivanov and Leonenko (1989). Leonenko and Olenko (2014) obtained the limit
theorems for sojourn measures of heavy-tailed random fields (Student and Fisher-Snedecor)
under short or long-range dependence assumptions. Excellent surveys of limit theorems for
shortly and strongly dependent random fields can be found in Anh, Leonenko and Olenko
(2015), Doukhan, Oppenheim and Taqqu (2002), Ivanov and Leonenko (1989), Leonenko
(1989), Spodarev (2014).

The reduction theorems play an important role in studying the asymptotics for random
processes and fields. These theorems show that the asymptotic distributions for functionals
of random processes or fields coincide with distributions of other functionals that are much
simpler and easier to analyse. The CLT can be considered as the “extreme” reduction case,
when, due to weak dependence and despite the type of functionals and components distri-
butions, asymptotics are reduced to the Gaussian behaviour. The classical non-central limit
theorems are based on another “proper” reduction principle, when the asymptotic behaviour
is reduced only to the leading Hermite term of nonlinear functionals. Recently, Olenko and
Omari (2019) proved the reduction principle for functionals of strongly dependent vector ran-
dom fields. Components of such vector fields can possess different long-range dependences.
It was shown that, in contrast to the scalar cases, the limits can be degenerated or can include
not all leading Hermite terms.

The available literature, except a few publications, addresses limit theorems and reduc-
tion principles for functionals of weakly or strongly dependent random fields separately. For
scalar-valued random fields it is sufficient as such fields can exhibit only one type of depen-
dence. However, for vector random fields there are various cases with different dependence
structures of components. Such scenarios are important when one aggregates spatial data
with different properties. For example, brain images of different patients or GIS data from
different regions. Another reason for studying such models is constructing scalar random
fields by a nonlinear transformation of a vector field. This approach was used to obtain non-
Gaussian fields with some desirable properties, for example, skewed or heavy tailed marginal
distributions, see Example 1, Theorems 5 and Leonenko and Olenko (2014).

This paper considers functionals of vector random fields which have both strongly and
weakly dependent components. The results in the literature dealt with cases where the inter-
play between terms at the Hermite rank level and the memory parameter (covariance decay
rate) of a Gaussian field completely determines the asymptotic behavior. This paper shows
that in more general settings terms at non-Hermite rank levels can interplay with the memory
parameter to determine the limit. As an application of the new reduction principle we provide
some limit theorems for vector random fields. In particular, we show that it is possible to ob-
tain non-Gaussian behaviour for the first Minkowski functional of the Student random field
built on different memory type components. It contrasts to the known results about the cases
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of same type memory components in Leonenko and Olenko (2014) where, despite short or
long range dependence, only the Gaussian limit is possible.

The remainder of the paper is organised as follows. In Section 2, we outline basic notations
and definitions that are required in the subsequent sections. Section 3 presents assumptions
and main results for functionals of vector random fields with strongly and weakly dependent
components. Sections 4 gives the proofs. Section 5 demonstrates some numerical studies.
Short conclusions and some new problems are presented in Section 6.

2 Notations

This section presents basic notations and definitions of the random field theory and multi-
dimensional Hermite expansions. Also, we introduce the definition and basic properties of
the first Minkowski functional (see Adler and Taylor (2009)). Denote by | · | and ‖ · ‖ the
Lebesgue measure and the Euclidean distance in R

d , respectively. The symbol C denotes
constants that are not important for our exposition. Moreover, the same symbol may be used
for different constants appearing in the same proof. We assume that all random fields are
defined on the same probability space (�,F,P).

Definition 1 (Bingham, Goldie and Teugels (1989)). A measurable function L : (0,∞) →
(0,∞) is slowly varying at infinity if for all t > 0, limr→∞ L(tr)/L(r) = 1.

A real-valued random field η1(x), x ∈ R
d , satisfying Eη2

1(x) < ∞ is said to be homoge-
neous and isotropic if its mean function is a constant and the covariance function B(x, y)

depends only on the Euclidean distance ‖x − y‖ between x and y.
Let η1(x), x ∈ R

d , be a measurable mean square continuous zero-mean homogeneous
isotropic real-valued random field (see Ivanov and Leonenko (1989), Leonenko (1989)) with
the covariance function

B(r) := Cov
(
η1(x), η1(y)

)= ∫ ∞
0

2(d−2)/2�

(
d

2

)
J(d−2)/2(rz)

× (rz)(2−d)/2 d�(z), x, y ∈ R
d,

where r =‖x − y‖ and Jν(·) is the Bessel function of the first kind of order ν > −1/2. The
finite measure �(·) is called the isotropic spectral measure of the random field η1(x), x ∈ R

d .
The spectrum of the random field η1(x) is absolutely continuous if there exists a function

ϕ(z), z ∈ [0,∞), such that

�(z) = 2πd/2�−1(d/2)

∫ z

0
ud−1ϕ(u)du, ud−1ϕ(u) ∈ L1

([0,∞)
)
.

The function ϕ(·) is called the isotropic spectral density of the random field η1(x).
A random field η1(x) with an absolutely continuous spectrum has the following isonormal

spectral representation

η1(x) =
∫
Rd

ei〈λ,x〉
√

ϕ
(‖λ‖)W(dλ),

where W(·) is the complex Gaussian white noise random measure on R
d .

Let 
 ⊂ R
d be a Jordan-measurable compact connected set with |
| > 0, and 
 contains

the origin in its interior. Also, assume that 
(r), r > 0, is the homothetic image of the set 
,
with the centre of homothety in the origin and the coefficient r > 0, that is, |
(r)| = rd |
|.



888 A. Olenko and D. Omari

Definition 2. The first Minkowski functional is defined as

Mr{η1} := ∣∣{x ∈ 
(r) : η1(x) > a
}∣∣= ∫


(r)
χ
(
η1(x) > a

)
dx,

where χ(·) is the indicator function and a is a constant.

The functional Mr{η1} has a geometrical meaning, namely, the sojourn measure of the
random field η1(x).

In the following we will use integrals of the form
∫

(r)

∫

(r) Q(‖x−y‖) dx dy with various

integrable Borel functions Q(·). Let two independent random vectors U and V in R
d be

uniformly distributed inside the set 
(r). Consider a function Q :R →R. Then, we have the
following representation∫


(r)

∫

(r)

Q
(‖x − y‖)dx dy = |
|2r2dEQ

(‖U − V ‖)

= |
|2r2d
∫ diam{
(r)}

0
Q(ρ)ψ
(r)(ρ) dρ, (2.1)

where ψ
(r)(ρ), ρ ≥ 0, denotes the density function of the distance ‖U −V ‖ between U and
V .

Using (2.1) for r = 1 and Q(ρ) = 1
ρα0 one obtains for α0 < d∫




∫



dx dy

‖x − y‖α0
=
∫



∫



χ
(‖x − y‖ ≤ diam(
)

)‖x − y‖−α0 dx dy

≤ C|
|
∫ diam(
)

0
ρd−1−α0 dρ = C|
|(diam(
))d−α0

d − α0
< ∞. (2.2)

Let (η1, . . . , η2p) be a 2p-dimensional zero-mean Gaussian vector and Hk(u), k ≥ 0, u ∈ R,
be the Hermite polynomials, see Taqqu (1977).

Consider

ev(ω) :=
p∏

j=1

Hkj
(ωj ),

where ω = (ω1, . . . ,ωp)′ ∈R
p , v = (k1, . . . , kp) ∈ Z

p , and all kj ≥ 0 for j = 1, . . . , p.
The polynomials {ev(ω)}v form a complete orthogonal system in the Hilbert space

L2
(
R

p,φ
(‖ω‖)dω

)= {G :
∫
Rp

G2(ω)φ
(‖ω‖)dω < ∞

}
,

where

φ
(‖ω‖) := p∏

j=1

φ(ωj ), φ(ωj ) := e
−ω2

j /2

√
2π

.

An arbitrary function G(ω) ∈ L2(R
p,φ(‖ω‖) dω) admits an expansion with Hermite coeffi-

cients Cv , given as the following:

G(ω) =
∞∑

k=0

∑
v∈Nk

Cvev(ω)

v! , Cv :=
∫
Rp

G(ω)ev(ω)φ
(‖ω‖)dω,

where v! = k1! . . . kp! and

Nk :=
{
(k1, . . . , kp) ∈ Z

p :
p∑

j=1

kj = k, kj ≥ 0, j = 1, . . . , p

}
.
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Definition 3. The smallest integer κ ≥ 1 such that Cv = 0 for all v ∈ Nj , j = 1, . . . , κ − 1,
but Cv = 0 for some v ∈ Nκ is called the Hermite rank of G(·) and is denoted by H rankG.

In this paper, we consider Student random fields which are an example of heavy-tailed ran-
dom fields. To define such fields, we use a vector random field η(x) = [η1(x), . . . , ηn+1(x)]′,
x ∈ R

d , with Eηi(x) = 0 where ηi(x), i = 1, . . . , n + 1, are independent homogeneous
isotropic unit variance Gaussian random fields.

Definition 4. The Student random field (t-random field) Tn(x), x ∈ R
d , is defined by

Tn(x) = η1(x)√
(1/n)(η2

2(x) + · · · + η2
n+1(x))

, x ∈ R
d .

3 Reduction principles and limit theorems

In this section, we present some assumptions and the main results. We prove a version of the
reduction principle for vector random fields with weakly and strongly dependent components.

In the following, we will use the notation

η(x) = [η1(x), . . . , ηm(x), ηm+1(x), . . . , ηm+n(x)
]′
, x ∈ R

d,

for a vector random field with m + n components.

Assumption 1. Let η(x) be a vector homogeneous isotropic Gaussian random field with
independent components, Eη(x) = 0 and a covariance matrix B(x) such that B(0) = I and

Bij

(‖x‖)=
⎧⎪⎪⎨
⎪⎪⎩

0 if i = j,

I1 · ‖x‖−βL1
(‖x‖) if i = j = 1, . . . ,m,β > d,

I2 · ‖x‖−αL2
(‖x‖) if i = j = m + 1, . . . ,m + n,α < d/κ,

where I , I1 and I2 are unit matrices of size m + n, m and n, respectively, Li(‖ · ‖), i = 1,2,
are slowly varying functions at infinity.

Remark 1. If Assumption 1 holds true the diagonal elements of the covariance matrix B(x)

are integrable for the first m elements of η(x), which corresponds to the case of short-range
dependence, and non-integrable for the other elements, which corresponds to the case of
long-range dependence. For simplicity, this paper investigates only the case of uncorrelated
components.

Remark 2. For j = m + 1, . . . ,m + n the random field η(x) in Assumption 1 satisfies

E
(
Hκ

(
ηj (x)

)
Hκ

(
ηj (y)

))= κ!Bκ
jj

(‖x − y‖), x, y ∈R
d, (3.1)

see Leonenko (1989). Hence, under Assumption 1 the right-hand side of (3.1) is non-
integrable when α < d/κ , which guarantees the case of long-range dependence.

Consider the following random variables:

Kr :=
∫

(r)

G
(
η(x)

)
dx,Kr,κ := ∑

v∈Nκ

Cv

v!
∫

(r)

ev

(
η(x)

)
dx,

and

Vr := ∑
l≥κ+1

∑
v∈Nl

Cv

v!
∫

(r)

ev

(
η(x)

)
dx,
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where Cv(r) are the Hermite coefficients and κ is the Hermite rank of the function G(·). Then

Kr = Kr,κ + Vr.

Remark 3. The random variable Kr is correctly defined, finite with probability 1 and in the
mean square sense, see Section 3, Chapter IV in Gihman and Skorokhod (2004).

We will use the following notations. Consider the set

N+ := {v = (k1,l , . . . , km+n,l) : v ∈ Nl,Cv = 0, l ≥ κ
}
.

Let

γ := min
v∈N+

(
β

m∑
j=1

kj,l + α

m+n∑
j=m+1

kj,l

)
.

Note that γ ≥ ακ and there are cases when γ can be reached at multiple v ∈ N+. Therefore,
we define the sets

N∗
l :=

{
v = (k1,l , . . . , km+n,l) : v ∈ N+ ∩ Nl,β

m∑
j=1

kj,l + α

m+n∑
j=m+1

kj,l = γ

}

and

L+ := {l : N∗
l = ∅, l ≥ κ

}
.

Also, we define the random variable

K∗
r,l := ∑

v∈N∗
l

Cv

v!
∫

(r)

ev

(
η(x)

)
dx.

The random variable K∗
r,l ≡ 0 if and only if l ∈ L+.

Theorem 1 in Olenko and Omari (2019) gives a reduction principle for vector random
fields with strongly dependent components. The following result complements it for the case
of random fields with strongly and weakly dependent components.

Theorem 1. Suppose that a the vector random field η(x), x ∈ R
d , satisfies Assumption 1,

H rankG(·) = κ ≥ 1 and there is at least one v = (k1,κ , . . . , km+n,κ) ∈ Nκ ∩ N+ such that∑m+n
j=m+1 kj,κ = κ . If for r → ∞ a limit distribution exists for at least one of the random

variables
Kr√

Var(Kr)
and

Kr,κ√
Var(Kr,κ)

,

then the limit distribution of the other random variable exists as well, and the limit distribu-
tions coincide. Moreover, the limit distributions of

Kr,κ√
Var(Kr,κ)

and
K∗

r,κ√
Var(K∗

r,κ )
,

are the same.

Remark 4. It will be shown in the proof that the assumptions of Theorem 1 guarantee that
κ ∈ L+.

Remark 5. It follows from the asymptotic analysis of the variances in Theorem 1 that

Var(Kr) ∼ Var(Kr,κ) ∼ Var
(
K∗

r,κ

)
, r → ∞.
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Assumption 2. Components ηj (x), j = m + 1, . . . ,m + n, of η(x) have the spectral density
f (‖λ‖), λ ∈ R

d , such that

f
(‖λ‖)∼ c2(d,α)‖λ‖α−dL2

(
1

‖λ‖
)
, ‖λ‖ → 0,

where

c2(d,α) = �((d − α)/2)

2απd/2�(α/2)
.

Denote the Fourier transform of the indicator function of the set 
 by

K(x) :=
∫



ei〈u,x〉 du, x ∈ R
d .

Let us define the following random variable

Xκ :=
∫ ′
Rdκ

K(λ1 + · · · + λκ)
W(dλ1) . . .W(dλκ)

‖λ1‖(d−α)/2 . . .‖λκ‖(d−α)/2 , (3.2)

where W(·) is the Wiener measure on (Rd,Bd) and
∫ ′
Rdκ denotes the multiple Wiener-Itô

integral.

Theorem 2. Let the vector random field η(x), x ∈ R
d , and the function G(·) satisfy as-

sumptions of Theorem 1 and Assumption 2 holds true. Suppose that N∗
κ = {v ∈ N+ : kj,κ =

κ for some j = m + 1, . . . ,m + n}. Then, for r → ∞ the random variables

Xκ(r) := c
−κ/2
2 (d,α)r(κα)/2−dL

−κ/2
2 (r)Kr

converge in distribution to the random variable
∑

v∈N∗
κ

Cv
κ! Xv , where Xv are independent

copies of Xκ defined by (3.2).

A popular recent approach to model skew distributed random variables is a convolution
Y = η1 + η̃2, where η1 is Gaussian and η̃2 is continuous positive-valued independent random
variables. In this case, the probability density of Y has the form fY (y) = Cφ(y)G(y), where
φ(·) is the p.d.f. of η1 and G(·) is the c.d.f. of η̃2, which controls the skewness, see Arellano-
Valle and Genton (2005), Azzalini and Capitanio (2014) and Amiri et al. (2019). This ap-
proach can be extended to the case of random fields as Y(x) = η1(x)+ η̃2(x), x ∈ R

d , result-
ing in Y(x) with skewed marginal distributions. In the example below, we use η̃2(x) = η2

2(x)

and show that contrary to the reduction principle for strongly dependent vector random fields
in Olenko and Omari (2019) it is not enough to request H rankG(·) = κ . The assumption of
the existence of v ∈ Nκ ∩ N+ satisfying

∑m+n
j=m+1 kj,κ = κ in Theorem 1 is essential.

Example 1. Let m = n = 1, d = 2 and G(w1,w2) = w1 + w2
2 − 1. In this case G(w1,w2) =

H1(w1) + H2(w2) and κ = 1, but k2,1 = 0 = κ . So, the assumption of Theorem 1 does not
hold and

Kr√
Var(Kr)

D→ c2(2, α)X2, r → ∞,

which is indeed different from the Gaussian limit that is expected for the case H rankG = 1.

To address situations similar to Example 1 and investigate wider classes of vector field, we
introduce the following modification of Assumption 1.
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Assumption 1′. Let η(x), x ∈ R
d , be a vector homogeneous isotropic Gaussian random field

with independent components, Eη(x) = 0 and a covariance matrix B(x) such that B(0) = I
and

Bij

(‖x‖)=
⎧⎪⎪⎨
⎪⎪⎩

0 if i = j,

I1 · ‖x‖−βiL1
(‖x‖) if i = j = 1, . . . ,m,

I2 · ‖x‖−αj L2
(‖x‖) if i = j = m + 1, . . . ,m + n,

where βi > d , i = 1, . . . ,m and αj < d , j = m + 1, . . . ,m + n.

Remark 6. Under Assumption 1′ the components ηm+1(x), . . . , ηm+n(x) are still strongly
dependent, but Hκ(ηj (x)), j = m + 1, . . . ,m + n, do not necessarily preserve strong depen-
dence. If καj > d the Hermite polynomials of ηj (x) become weakly dependent.

The following modifications of γ , N∗
l , L+ and K∗

r,l will be used to match Assumption 1′:

γ̃ := min
v∈N+

(
m∑

j=1

βjkj,l +
m+n∑

j=m+1

αjkj,l

)
,

Ñ∗
l :=

{
v = (k1,l , . . . , km+n,l) : v ∈ N+ ∩ Nl,

m∑
j=1

βjkj,l +
m+n∑

j=m+1

αjkj,l = γ̃

}
,

L̃+ := {l : Ñ∗
l =∅, l ≥ κ

}
,

and

K̃∗
r,l := ∑

v∈Ñ∗
l

Cv

v!
∫

(r)

ev

(
η(x)

)
dx.

In the following, we consider only the cases
∑m

j=1 βjkj,l +∑m+n
j=m+1 αjkj,l = d . The case

when the sum equals d requires additional assumptions, see Section 6, and will be covered in
other publications.

Now, we are ready to formulate a generalization of Theorem 1.

Theorem 3. Suppose that a vector random field η(x), x ∈ R
d , satisfies Assumption 1′ and

γ̃ < d . If a limit distribution exists for at least one of the random variables

Kr√
Var(Kr)

and

∑
l∈L̃+ K̃∗

r,l√
Var(
∑

l∈L̃+ K̃∗
r,l)

,

then the limit distribution of the other random variable exists as well, and the limit distribu-
tions coincide when r → ∞.

Assumption 2′. Components ηj (x), j = m + 1, . . . ,m + n, of η(x) have spectral densities
fj (‖λ‖), λ ∈ R

d , such that

fj

(‖λ‖)∼ c2(d,αj )‖λ‖αj−dL2

(
1

‖λ‖
)
, ‖λ‖ → 0.

Theorem 4. Let Assumption 2′ and conditions of Theorem 3 hold true. Suppose that
Ñ∗

l = {v ∈ N+ : kjl,l = lfor somejl = m + 1, . . . ,m + n} and there exists a finite or infinite
limr→∞ L2(r). Then, for r → ∞ the random variables

Kr

rd−γ̃ /2∑
l∈L̃+ L

l/2
2 (r)
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Figure 1 A two-dimensional excursion set.

converge in distribution to the random variable

∑
l∈L̃+

al · ∑
v∈Ñ∗

l

Cv

v! c
l/2
2 (d,αjl

)Xv, (3.3)

where Xv are independent copies of random variables∫ ′
Rdl

K(λ1 + · · · + λl)
W(dλ1) . . .W(dλl)

‖λ1‖(d−αjl
)/2 . . .‖λl‖(d−αjl

)/2 ,

and the coefficients al are finite and defined by al := limr→∞
L

l/2
2 (r)∑

i∈L̃+ L
i/2
2 (r)

.

Corollary 1. Let Assumption 2′ and conditions of Theorem 3 hold true and n = 1. Then, for
r → ∞ the random variable c−1

2 (d,αm+1)r
γ̃ /2−dL

−l/2
2 (r)Kr converges in distribution to the

random variable (l!)−1C(0,...,0,l) X(0,...,0,l), where l = γ̃
αm+1

.

Remark 7. It is possible to obtain general versions of Theorems 2 and 4 by removing the
assumptions about N∗

κ and Ñ∗
l and requesting only L+ = ∅ or L̃+ = ∅, respectively. How-

ever, it requires an extension of the known non-central limit theorems for vector fields from
the discrete to continuous settings, see Section 6. Also, in such general cases the summands
in the limit random variables analogous to (3.3) would be dependent.

As an example, we consider the first Minkowski functional of Student random fields. The
special cases of only weakly or strongly dependent components were studied in Leonenko
and Olenko (2014). It was shown that in the both cases the asymptotic distribution is N(0,1),
but with different normalisations, see Theorems 3 and 6 in Leonenko and Olenko (2014).
Figure 1 gives a two-dimensional excursion set above the level a = 0.5 for a realisation of
a long-range dependent Cauchy model. The excursion set is shown in black colour. More
details are provided in Section 5.

The next result shows that for the first Minkowski functional of t-fields obtained from vec-
tor random fields with both weakly and strongly dependent components the limit distributions
can be non-Gaussian.
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Theorem 5. Let Assumption 2′ hold true, m = 1, a = 0, α2 = · · · = αm+1 = α < d
2 . Then the

random variable

Mr{Tn} − |
|rd(1
2 − 1

2(1 − I n

n+a2
(n

2 , 1
2)) · sgn(a))

rd−αL(r)

converges in distribution to the random variable∑
v∈N2:kj,2=2,j=2,...,n+1

Cv

v! c2(d,α)X̃v, as r → ∞,

where X̃v are independent copies of the random variable∫ ′
R2d

K(λ1 + λ2)
W(dλ1)W(dλ2)

‖λ1‖(d−α)/2‖λ2‖(d−α)/2 ,

and sgn(·) is the signum function.

Remark 8. Random variables X̃v have the Rosenblatt-type distribution, see Anh, Leonenko
and Olenko (2015).

Remark 9. As m = 1, the first component η1(x) is weakly dependent and the remaining
components ηj (x), j = 2, . . . , n + 1, are strongly dependent.

4 Proofs of the results from Section 3

Proof of Theorem 1. First, we study the behaviour of Kr,κ . Note, that

Kr,κ = ∑
v∈Nκ

Cv

v!
∫

(r)

m+n∏
j=1

Hkj

(
ηj (x)

)
dx.

Let us denote the sets N
(i)
κ , i = 1,2,3, as follows

N(1)
κ :=

{
(k1,κ , . . . , km+n,κ) :

m∑
j=1

kj,κ = κ

}
,

N(2)
κ :=

{
(k1,κ , . . . , km+n,κ) :

m+n∑
j=m+1

kj,κ = κ

}
,

and

N(3)
κ :=

{
(k1,κ , . . . , km+n,κ) :

m+n∑
j=1

kj,κ = κ and 0 <

m∑
j=1

kj,κ < κ

}
.

Then Nκ =⋃∞
i=1 N

(i)
κ and Kr,κ can be written as

Kr,κ = ∑
v1∈N

(1)
κ

Cv1

v1!
∫

(r)

m∏
j=1

Hkj,κ

(
ηj (x)

)
dx

+ ∑
v2∈N

(2)
κ

Cv2

v2!
∫

(r)

m+n∏
j=m+1

Hkj,κ

(
ηj (x)

)
dx

+ ∑
v3∈N

(3)
κ

Cv3

v3!
∫

(r)

m+n∏
j=1

Hkj,κ

(
ηj (x)

)
dx =:

3∑
i=1

Ii.
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Note, that all components ηj (x), j = 1, . . . ,m, in the first term I1 are weakly dependent and
the variance Var(I1) is equal

Var(I1) = Var

( ∑
v1∈N

(1)
κ

Cv1

v1!
∫

(r)

m∏
j=1

Hkj,κ

(
ηj (x)

)
dx

)

= ∑
v1∈N

(1)
κ

C2
v1

(v1!)2

∫

(r)

∫

(r)

E
m∏

j=1

Hkj,κ

(
ηj (x)

)
Hkj,κ

(
ηj (y)

)

= ∑
v1∈N

(1)
κ

C2
v1

v1!
∫

(r)

∫

(r)

m∏
j=1

B
kj,κ

jj

(‖x − y‖)dx dy

= ∑
v1∈N

(1)
κ

C2
v1

v1!
∫

(r)

∫

(r)

Bκ
11
(‖x − y‖)dx dy.

Let u = x − y and v = y. The Jacobian of this transformation is |J | = 1. By denoting 
(r)−

(r) := {u ∈ R

d : u = x − y, x, y ∈ 
(r)} then Var(I1) can be rewritten as

Var(I1) = Crd
∑

v1∈N
(1)
κ

C2
v1

v1!
∫

(r)−
(r)

Bκ
11
(‖u‖)du.

It follows from Bκ
jj (‖u‖) ≤ Bjj (‖u‖) ≤ 1 that for weakly dependent components we get∫

(r)−
(r)

Bκ
11
(‖u‖)du < ∞ and

∫
Rd

Bκ
11
(‖u‖)du < ∞.

Noting that ∫

(r)−
(r)

Bκ
jj

(‖u‖)du →
∫
Rd

Bκ
jj

(‖u‖)du, r → ∞,

one obtains the following asymptotic behaviour of Var(I1)

Var(I1) ∼ Crd
∑

v1∈N
(1)
κ

C2
v1

v1!
∫
Rd

Bκ
jj

(‖u‖)du, r → ∞. (4.1)

In contrast, the components ηj (x), j = m + 1, . . . ,m + n, in the second term I2 are strongly
dependent and Var(I2) can be obtained as follows

Var(I2) = Var

( ∑
v2∈N

(2)
κ

Cv2

v2!
∫

(r)

m+n∏
j=m+1

Hkj,κ

(
ηj (x)

)
dx

)

= ∑
v2∈N

(2)
κ

C2
v2

(v2!)2

∫

(r)

∫

(r)

E
m+n∏

j=m+1

Hkj,κ

(
ηj (x)

)
Hkj,κ

(
ηj (y)

)

= ∑
v2∈N

(2)
κ

C2
v2

v2!
∫

(r)

∫

(r)

m+n∏
j=m+1

[‖x − y‖−αL2
(‖x − y‖)]kj,κ dx dy

= r2d−ακ
∑

v2∈N
(2)
κ

C2
v2

v2!
∫



∫



‖x − y‖−ακLκ
2
(
r‖x − y‖)dx dy.
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By (2.1) we get

Var(I2) = |
|2r2d−ακ
∑

v2∈N
(2)
κ

C2
v2

v2!
∫ diam{
}

0
z−ακLκ

2(rz)ψ
(z) dz.

Noting that α ∈ (0, d/κ) by Theorem 2.7 in Seneta (1976) we obtain

Var(I2) ∼ c1(κ,α,
)|
|2 ∑
v2∈N

(2)
κ

C2
v2

v2! r2d−ακLκ
2(r), r → ∞, (4.2)

where c1(κ,α,
) := ∫ diam{
}
0 z−ακψ
(z) dz. By (2.2) and the condition α < d/κ the coeffi-

cient c1(κ,α,
) is finite as

c1(κ,α,
) =
∫ diam{
}

0
z−ακψ
(z) dz = |
|−2

∫



∫



‖x − y‖−ακ dx dy

≤ |
|−1
∫ diam{
}

0
ρd−(1+ακ) dρ < ∞.

There are strongly and weakly dependent components in the term I3 and its variance Var(I3)

can be rewritten as follows

Var(I3) = Var

( ∑
v3∈N

(3)
κ

Cv3

v3!
∫

(r)

m+n∏
j=1

Hkj,κ

(
ηj (x)

)
dx

)

= ∑
v3∈N

(3)
κ

C2
v3

(v3!)2

∫

(r)

∫

(r)

E
m∏

j=1

Hkj,κ

(
ηj (x)

)
Hkj,κ

(
ηj (y)

)

× E
m+n∏

j=m+1

Hkj,κ

(
ηj (x)

)
Hkj,κ

(
ηj (y)

)
dx dy

= ∑
v3∈N

(3)
κ

C2
v3

v3!
∫

(r)

∫

(r)

B

∑m
j=1 kj,κ

11

(‖x − y‖)B∑m+n
j=m+1 kj,κ

m+1m+1

(‖x − y‖)dx dy

= ∑
v3∈N

(3)
κ

C2
v3

v3!
∫

(r)

∫

(r)

B̃
(‖x − y‖)dx dy, (4.3)

where

B̃
(‖x − y‖) := B

∑m
j=1 kj,κ

11

(‖x − y‖)B∑m+n
j=m+1 kj,κ

m+1m+1

(‖x − y‖)
= ‖x − y‖−(β

∑m
j=1 kj,κ+α

∑m+n
j=m+1 kj,κ )

L̃
(‖x − y‖), (4.4)

and

L̃
(‖x − y‖) := L

∑m
j=1 kj,κ

1

(‖x − y‖)L∑m+n
j=m+1 kj,κ

2

(‖x − y‖).
Note, that by properties of slowly varying functions L̃(·) is also a slowly varying function.

If in (4.4) the power β
∑m

j=1 kj,κ + α
∑m+n

j=m+1 kj,κ is greater than d then this case is anal-
ogous to the case of I1 with short-range dependence and similar to (4.1) one obtains

Var(I3) ∼ Crd
∑

v3∈N
(3)
κ

C2
v3

v3!
∫
Rd

B̃
(‖u‖)du, r → ∞. (4.5)

This is indeed the case for N
(3)
κ as

∑m
j=1 kj,κ ≥ 1 and β > d .
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Note, that by the conditions of the theorem N
(2)
κ =∅. Now, by properties of slowly varying

functions (see Preposition 1.3.6 in Bingham, Goldie and Teugels (1989)), we get

Var(I1)

Var(I2)
=

Crd∑
v1∈N

(1)
κ

C2
v1

v1!
∫
Rd Bκ

11(‖u‖) du

c1(κ,α,
)|
|2∑
v2∈N

(2)
κ

C2
v2

v2! r
2d−ακLκ

2(r)

→ 0, r → ∞. (4.6)

By (4.2) and (4.5), we also obtain

Var(I3)

Var(I2)
=

Crd∑
v3∈N

(3)
κ

C2
v3

v3!
∫
Rd B̃(‖u‖) du

c1(κ,α,
)|
|2∑
v2∈N

(2)
κ

C2
v2

v2! r
2d−ακLκ

2(r)

→ 0, r → ∞. (4.7)

Note, that

Var

( 3∑
i=1

Ii

)
= Var(I2)

(
Var(I1)

Var(I2)
+ 1 + Var(I3)

Var(I2)
+ 2
∑

1≤i<j≤3 Cov(Ii, Ij )

Var(I2)

)
.

Using the Cauchy –Schwarz inequality |Cov(Ii, Ij )| ≤
√

Var(Ii)Var(Ij ) by (4.6) and (4.7),
we get for r → ∞ that

|Cov(I1, I2)|
Var(I2)

≤
√

Var(I1)

Var(I2)
→ 0,

|Cov(I2, I3)|
Var(I2)

≤
√

Var(I3)

Var(I2)
→ 0,

|Cov(I1, I3)|
Var(I2)

≤
√

Var(I1)

Var(I2)

√
Var(I3)

Var(I2)
→ 0.

(4.8)

Therefore, combining the above results we obtain

Var(Kr,κ) = Var

( 3∑
i=1

Ii

)
∼ Var(I2)

(
1 + o(1)

)
, r → ∞. (4.9)

Now, we study the behaviour of Vr . Similarly to Kr,κ , to investigate Var(Vr) we define the
following sets

N
(1)
l =

{
(k1,l , . . . , km,l) :

m∑
j=1

kj,l = l

}
,

N
(2)
l =

{
(k1,l , . . . , km+n,l) :

m+n∑
j=m+1

kj,l = l

}
,

and

N
(3)
l =

{
(k1,l , . . . , km+n,l) :

m+n∑
j=1

kj,l = l and 0 <

m∑
j=1

kj,l < l

}
.

Then Vr can be written as

Vr = ∑
l≥κ+1

∑
v1∈N

(1)
l

Cv1

v1!
∫

(r)

m∏
j=1

Hkj,l

(
ηj (x)

)
dx

+ ∑
l≥κ+1

∑
v2∈N

(2)
l

Cv2

v2!
∫

(r)

m+n∏
j=m+1

Hkj,l

(
ηj (x)

)
dx
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+ ∑
l≥κ+1

∑
v3∈N

(3)
l

Cv3

v3!
∫

(r)

m+n∏
j=1

Hkj,l

(
ηj (x)

)
dx =:

3∑
i=1

I
(l)
i .

Hence,

Var(Vr) = Var

( 3∑
i=1

I
(l)
i

)
=

3∑
i=1

Var
(
I

(l)
i

)+ 2
∑

1≤i<j≤3

Cov
(
I

(l)
i , I

(l)
j

)
.

The components ηj (x), j = 1, . . . ,m, in I
(l)
1 are weakly dependent and Var(I (l)

1 ) is given by

Var
(
I

(l)
1

)= ∑
l≥κ+1

∑
v1∈N

(1)
l

C2
v1

v1!
∫

(r)

∫

(r)

m∏
j=1

B
kj,l

jj

(‖x − y‖)dx dy

= ∑
l≥κ+1

∑
v1∈N

(1)
l

C2
v1

v1!
∫

(r)

∫

(r)

Bl
jj

(‖x − y‖)dx dy. (4.10)

As Bjj (·) ≤ 1 and l > κ we can estimate the expression in (4.10) by

Var
(
I

(l)
1

)≤ ∑
l≥κ+1

∑
v1∈N

(1)
l

C2
v1

v1!
∫

(r)

∫

(r)

Bκ
jj

(‖x − y‖)dx dy.

It follows from this estimates and the asymptotic (4.1) for Var(I1) that

Var
(
I

(l)
1

)≤ Crd
∑

l≥κ+1

∑
v1∈N

(1)
l

C2
v1

v1!
∫
Rd

Bκ
11
(‖u‖)du, r → ∞. (4.11)

In the term I
(l)
3 the components are strongly and weakly dependent random fields. Similarly

to the case of Var(I3) we obtain that Var(I (l)
3 ) is equal

Var

( ∑
l≥κ+1

∑
v3∈N

(3)
l

Cv3

v3!
∫

(r)

m∏
j=1

Hkj,l

(
ηj (x)

) m+n∏
j=m+1

Hkj,l

(
ηj (x)

)
dx

)

= ∑
l≥κ+1

∑
v3∈N

(3)
l

C2
v3

(v3!)2

∫

(r)

∫

(r)

E

(
m∏

j=1

Hkj,l

(
ηj (x)

)
Hkj,l

(
ηj (y)

))

× E

(
m+n∏

j=m+1

Hkj,l

(
ηj (x)

)
Hkj,l

(
ηj (y)

))
dx dy

= ∑
l≥κ+1

∑
v3∈N

(3)
l

C2
v3

v3!
∫

(r)

∫

(r)

B

∑m
j=1 kj,l

11

(‖x − y‖)B∑m+n
j=m+1 kj,l

m+1m+1

(‖x − y‖)dx dy

= ∑
l≥κ+1

∑
v3∈N

(3)
l

C2
v3

v3!
∫

(r)

∫

(r)

B̂
(‖x − y‖)dx dy,

where

B̂
(‖x − y‖) := ‖x − y‖−(β

∑m
j=1 kj,l+α

∑m+n
j=m+1 kj,l )L̂

(‖x − y‖),
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and

L̂
(‖x − y‖) := L

∑m
j=1 kj,l

1

(‖x − y‖)L∑m+n
j=m+1 kj,l

2

(‖x − y‖)
is a slowly varying function.

Now, as
∑m

j=1 kj,l ≥ 1 then β
∑m

j=1 kj,l + α
∑m+n

j=m+1 kj,l > d and similar to (4.1) the vari-

ance Var(I (l)
3 ) has the asymptotic behaviour

Var
(
I

(l)
3

)∼ Crd
∑

l≥κ+1

∑
v3∈N

(3)
l

C2
v3

v3!
∫
Rd

B̂
(‖u‖)du, r → ∞. (4.12)

Note, that all assumptions of Theorem 1 in Olenko and Omari (2019) are satisfied in our case
as αj = α, j = 1, . . . ,m, and then

m∑
j=1

αjkj,κ = ακ ≤ (κ + 1) min
1≤j≤m

αj = (κ + 1)α.

Therefore, by Theorem 1 in Olenko and Omari (2019), we get

Var(I (l)
2 )

Var(I2)
→ 0, r → ∞. (4.13)

Finally, combining (4.11), (4.13) (4.12) and applying the Cauchy–Schwarz inequality anal-
ogously to Var(Kr,κ) one obtains that Var(Vr )

Var(Kr,κ )
→ 0, r → ∞, which proves the asymptotic

equivalence of Kr√
Var(Kr )

and Kr,κ√
Var(Kr,κ )

.

It follows from Assumption 1 that

β

m∑
j=1

kj,l + α

m+n∑
j=m+1

kj,l > α

m+n∑
j=m+1

kj,κ = ακ

for all v = (k1,l , . . . , km+n,l) ∈ N+\N(2)
κ and any v2 = (0, . . . ,0, km+1,κ , . . . , km+n,κ) ∈ N

(2)
κ .

Hence, γ = ακ , N∗
κ = N

(2)
κ ∩ N+ = {(0, . . . ,0, km+1,κ , . . . , km+n,κ) ∈ N+} = ∅ and L+ =

{κ}. For v2 ∈ N
(2)
κ the coefficient Cv2 = 0 only if v2 ∈ N∗

κ . Thus, by (4.9) we obtain that
Kr,κ√

Var(Kr,κ )
and

K∗
r,κ√

Var(K∗
r,κ )

, have the same limit distribution, which completes the proof. �

Proof of Theorem 2. By Theorem 1,

Xκ(r) =
√

Var(Kr)

c
κ/2
2 (d,α)rd−(κα)/2L

κ/2
2 (r)

· Kr√
Var(Kr)

and

X∗
κ(r) :=

√
Var(Kr)

c
κ/2
2 (d,α)rd−(κα)/2L

κ/2
2 (r)

· K∗
r,κ√

Var(K∗
r,κ )

have the same limit distribution if it exists.
By Remark 5,

√
Var(Kr) ∼

√
Var(K∗

r,κ ), r → ∞, and hence X∗
κ(r) and c

−κ/2
2 (d,

α)r(κα)/2−dL
−κ/2
2 K∗

r,κ have the same limit distribution.
K∗

r,k is a sum of independent terms of the form

Cv

v!
∫

(r)

Hκ

(
ηj (x)

)
dx, j = m + 1, . . . ,m + n.
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It follows from Theorem 5 in Leonenko and Olenko (2014) that for the independent com-
ponents ηj (x) and for each v ∈ N∗

κ

c
−κ/2
2 (d,α)r(κα)/2−dL

−κ/2
2 (r)

∫

(r)

Hκ

(
ηj (x)

)
dx → Xκ, r → ∞,

which completes the proof. �

Proof of Example 1. It follows from the form of G(w1,w2) that

Kr,1 =
∫

(r)

η1(x) dx and Vr =
∫

(r)

η2
2(x) dx − 
(r).

Then by Theorem 1 in Leonenko and Olenko (2014)

Kr,1√
Var(Kr,1)

D→ N(0,1), r → ∞, (4.14)

and by Theorem 5 in Leonenko and Olenko (2014)

Vr√
Var(Vr)

D→ c2(2, α)X2, r → ∞.

Using the independence of η1(·) and η2(·), (4.1) and applying (4.2) to H2(·) one obtains

Var(Kr) = Var(Kr,1) + Var(Vr) ∼ C1r
2 + C2r

2(2−α)L2
2(r), r → ∞.

Therefore, for α ∈ (0,1)

Var(Kr,1)

r2(2−α)L2
2(r)

→ 0 and Var(Kr) ∼ C2r
2(2−α)L2

2(r), r → ∞.

Hence, Kr√
Var(Kr)

D→ c2(2, α)X2, r → ∞, which is different from the limit distribution
in (4.14). �

Proof of Theorem 3. It follows from γ̃ < d that there is at least one v ∈ N+ such that∑m+n
j=m+1 αjkj,l < d . Moreover, as γ̃ can be obtained only for v ∈ N+ with

∑m
j=1 kj,l = 0 and∑m+n

j=m+1 kj,l = l then L̃+ is a finite set. Hence, it holds N+ = N
(1)
+ ∪ N

(2)
+ ∪ N

(3)
+ , where

N
(1)
+ =

{
(k1,l , . . . , km+n,l) :

m∑
j=1

βjkj,l +
m+n∑

j=m+1

αjkj,l > d, l ≥ κ

}
,

N
(2)
+ =

{
(k1,l , . . . , km+n,l) :

m+n∑
j=m+1

αjkj,l = γ̃ , l ≥ κ

}
,

and

N
(3)
+ =

{
(k1,l , . . . , km+n,l) : γ̃ <

m∑
j=1

βjkj,l +
m+n∑

j=m+1

αjkj,l < d, l ≥ κ

}
,

are disjoint sets.
Using the Hermite expansion of G(·), we obtain

Kr = ∑
v1∈N

(1)
+

Cv1

v1!
∫

(r)

m+n∏
j=1

Hkj,l

(
ηj (x)

)
dx
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+ ∑
v2∈N

(2)
+

Cv2

v2!
∫

(r)

m+n∏
j=m+1

Hkj,l

(
ηj (x)

)
dx

+ ∑
v3∈N

(3)
+

Cv3

v3!
∫

(r)

m+n∏
j=1

Hkj,l

(
ηj (x)

)
dx =:

3∑
i=1

I ′
i .

Analogously to (4.3) and (4.4) the variance of each summand in Kr has the form

C

∫

(r)

∫

(r)

‖x − y‖−(
∑m

j=1 βj kj,l+∑m+n
j=m+1 αj kj,l )

× L

∑m
j=1 kj,l

1

(‖x − y‖)L∑m+n
j=m+1 kj,l

2

(‖x − y‖)dx dy.

Then, similarly to (4.1) and (4.2) we obtain that Var(I ′
1) ∼ Crd and Var(I ′

2) ∼ Cr2d−γ̃ ×∑
l∈L̃+ Ll

2(r), r → ∞, and each term in I ′
3 has the variance that is asymptotically equivalent

to

Cr
2d−(

∑m
j=1 βj kj,l+∑m+n

j=m+1 αj kj,l ), r → ∞.

By the definition of N
(i)
+ , i = 1,2,3, we get

Var(I ′
1)

Var(I ′
2)

→ 0,
Var(I ′

3)

Var(I ′
2)

→ 0, r → ∞.

Using the Cauchy Schwarz inequality analogously to (4.8) one obtains

Var(Kr) = Var

( 3∑
i=1

I ′
i

)
∼ Var

(
I ′

2
)(

1 + o(1)
)
, r → ∞.

Finally, noting that N
(2)
+ =⋃l∈L̃+ Ñ∗

l completes the proof. �

Proof of Theorem 4. By Theorem 3,
√

Var(Kr)

rd−γ̃ /2∑
l∈L̃+ Ll

2(r)
· Kr√

Var(Kr)
and

√
Var(Kr)

rd−γ̃ /2∑
l∈L̃+ Ll

2(r)
·
∑

l∈L̃+ K̃∗
r,l√

Var(Kr)

have the same limit distribution if it exists. It follows from the structure of Ñ∗
l that

∑
l∈L̃+ K̃∗

r,l

is a sum of terms
Cv

v!
∫

(r)

Hl

(
ηjl

(x)
)
dx, jl = m + 1, . . . ,m + n.

By Theorem 5 in Leonenko and Olenko (2014) for v ∈ Ñ∗
l

r γ̃ /2−dL
−l/2
2 (r)

∫

(r)

Hl

(
ηjl

(x)
)
dx → c

l/2
2 (d,αjl

)Xv. (4.15)

Note, that from αjl1
l1 = αjl1

l2, if l1 = l2, follows that jl1 = jl2 , if l1, l2 ∈ L̃+. Therefore, the
term in (4.15) are independent for different jl .

From the existence of limr→∞ L2(r) it follows that(∑
i∈L̃+

L
i/2
2 (r)

)−1
= L

l/2
2 (r)∑

i∈L̃+ L
i/2
2 (r)

· L−l/2
2 (r) ∼ alL

−l/2
2 (r), (4.16)

for l ∈ L̃+ and r → ∞.
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As l ∈ L̃+ then L
l/2
2 (r) ≤∑i∈L̃+ L

i/2
2 (r) and all coefficients al are finite.

Finally, by combining (4.15), (4.16), and noting that

√
Var(Kr) ∼

√√√√Var
(∑

l∈L̃+

K̃∗
r,l

)
, r → ∞,

we obtain the statement of the theorem. �

Proof of Theorem 5. It was shown in Leonenko and Olenko (2014) that∫

(r)

(
χ
(
Tn(x) > a

)− E
(
χ
(
Tn(x) > a

)))
dx =

∫

(r)

G
(
η(x)

)
dx,

where

G(w) = χ

(
w1√

1
n
(w2

2 + · · · + w2
n+1)

> a

)
+ 1

2

(
1 − I n

n+a2

(
n

2
,

1

2

))
· sgn(a) − 1

2
.

Formula (24) in Leonenko and Olenko (2014) gives the Hermite coefficients of G(w) for
v ∈ N1:

Cv =
⎧⎪⎨
⎪⎩

1√
2π(1 + a2/n)n/2

if v = (1,0, . . . ,0),

0 if v ∈ N1\{(1,0, . . . ,0)
}
.

Thus, H rankG = 1.
As G(w) is an even function of wi , i = 2, . . . , n + 1, then Cv = 0 for all v ∈ N2 such that

k2,i = k2,j = 1 for some i = j . For v ∈ N2 such that k2,j = 2 for some j = 2, . . . , n + 1, we
obtain

Cv =
∫
Rn+1

G(w)H2(wj )φ
(‖w‖)dw

=
∫
Rn+1

χ

(
w1√

1
n
(w2

2 + · · · + w2
n+1)

> a

)(
w2

j − 1
)
φ
(‖w‖)dw

+
(

1

2

(
1 − I n

n+a2

(
n

2
,

1

2

))
· sgn(a) − 1

2

)∫
Rn+1

(
w2

j − 1
)
φ
(‖w‖)dw

= 1

n

∫
Rn+1

χ

(
w1√

1
n
(w2

2 + · · · + w2
n+1)

> a

)(n+1∑
j=2

w2
j − n

)
φ
(‖w‖)dw

= 2πn/2

n(2π)(n+1)/2�(n/2)

∫ ∞
0

(
ρ2 − n

)
ρn−1e− ρ2

2

∫ ∞
aρ/

√
n
e−w2

1
2 dw1 dρ.

Now we investigate Cv as a function of a:

d

da
Cv = −

√
(1 + a2

n
)/(2π)

n3/22(n−2)/2�(n/2)

√
1 + a2

n

·
∫ ∞

0

(
ρn+2 − nρn)e− ρ2

2 (1+ a2
n

) dρ

= − 1

n3/22n/2�(n/2)

√
1 + a2

n

(
E|z|n+2 − nE|z|n),

where z ∼ N
(
0, 1

1+ a2
n

)
.
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Using the formula for the central absolute moments, we obtain

d

da
Cv = �(n+1

2 )(1 − n+1
n+a2 )

√
nπ�(n/2)(1 + a2

n
)(n+1)/2

.

Thus, Cv is a strictly increasing function on (−∞,−1)∪ (1,∞) and it decreases on (−1,1).
Note, that lima→∞ Cv = 0 and by the formula for the central absolute moments

Cv = C

∫ ∞
0

(
ρn+1 − nρn−1)e− ρ2

2 dρ = 0, when a = 0.

Therefore, Cv = 0 for a = 0 and v ∈ N2 such that k2,j = 2 for some j = 2, . . . , n+ 1. Hence,
we obtain that L̃+ = {2}, Ñ+

2 = {v ∈ N+ ∩ N2 : kj,2 = 2, j = 2, . . . , n + 1} and al = 1. The
application of Theorem 4 completes the proof. �

5 Simulation studies

In the following numerical examples, we use the generalised Cauchy family covariance,
see Gneiting and Schlather (2004) and Schlather et al. (2019), to model components of η(x),
x ∈ R

2.
The Cauchy covariance function is

B
(‖x‖)= (1 + ‖x‖2)− z

2 , z > 0.

To simulate long-range dependent components we consider 0 < z < 1. In this range of z, the
covariance function is non-integrable. For the case of weakly dependent components we use
z > 2 which gives integrable covariance functions.

Limit distributions were investigated using the following procedure. Random fields were
simulated on the plane R

2, that is, d = 2, using the square observation window 
(r) = {x ∈
R

2 : |xi | < r, i = 1,2}. The R software package RandomFields (see Schlather et al. (2019))
was used to simulate ηi(x), x ∈ R

2, i = 1,2,3, from Cauchy models.

Example 1′. Here we illustrate the results in Example 1. The Cauchy model was used
to simulate ηi(x), x ∈ R

2, i = 1,2, satisfying Assumption 1′ with β = 2.5 and α = 0.2
respectively. 1000 realisations of H1(η1(x)), H2(η2(x)) and Y(x) = G(η1(x), η2(x)) =
H1(η1(x)) + H2(η2(x)) were generated for the large value r = 80 to compute distributions
of Kr,1, Vr and Kr , respectively.

Notice that the random field Y(x) has skewed marginal distributions, see Figure 2. The
coefficient of the skewness equals 1.62, that is, the marginal distribution of Y(x) has a heavy
right-hand tail.

To compare empirical distributions, Q–Q plots of realisations of Kr versus realisations of
Vr and Kr,1 are produced in Figure 3. As large r and the number of realisations were se-
lected for simulations these empirical distributions are close to the corresponding asymptotic
distributions.

It is clear from Figure 3(a) that asymptotic distributions of Kr and Vr are close and the
reduction principle works. The Kolmogorov–Smirnov test confirms this result with p-value =
0.9937, see also Figure 4 where the plots of empirical cdfs of Kr and Vr are almost identical.
However, Figure 3(b) shows that the distributions of Kr and Kr,1 are different, i.e. asymptotic
behaviour of functionals of vector random fields with weak-strong dependent components
is not necessarily determined by their Hermite ranks. This result is also confirmed by the
Kolmogorov–Smirnov p-value = 1.412 × 10−8 and Figure 4.
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Figure 2 The histogram of Y (x).

Figure 3 Q–Q plots of (a) Kr versus Vr , (b) Kr versus Kr,1.

Figure 4 Plots of empirical cdfs of Kr , Vr and Kr,1.
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Figure 5 Q–Q plots of realisations of Mr {T2(x)} of a short-range dependent Cauchy model versus (a) the
normal distribution, (b) Mr {T2(x)} of a long-range dependent Cauchy model and (c) Mr {T2(x)} of a strong-weak
dependent Cauchy model.

Example 2. This example illustrates Theorem 5. For m = 1, n = 2 and r = 600, we simu-
lated 500 realisations of the field T2(x) = η1(x)√

(1/2)(η2
2(x)+η2

3(x))
, x ∈R

2. For each realisation the

area of the excursion set above the level a = 0.5 was computed. Figure 5 presents the Q–Q
plots with 99% pointwise normal confidence bands for empirical distributions of excursion
areas.

The short-range dependent Cauchy model was used to generate realisations of T2(x) with
β = 4 for all ηi(x), i = 1,2,3. Figure 5(a) shows that all the quantiles lie within the confi-
dence bands which confirms that the first Minkowski functional Mr{T2(x)} is Gaussian.

Another set of realisations of T2(x) was generated using the long-range dependent Cauchy
model with α = 0.4 for all ηi(x), i = 1,2,3. Empirical distributions of Mr{T2(x)} for the
obtained realisations of this long-range dependent and the previous short-range dependent
Cauchy models were compared. Figure 5(b) shows that the empirical distributions are close
and hence, the asymptotic is Gaussian. It is also supported by the Kolmogorov–Smirnov test
with p-value = 0.96. Note, that the Gaussianity for these two models follows from the results
of Theorems 3 and 6 in Leonenko and Olenko (2014).

Finally, T2(x) was generated using the Cauchy fields η1(x) with β = 4, and η2(x) and
η3(x) with α = 0.4. Note, that η1(x) is a weakly dependent component while η2(x) and η3(x)

are strongly dependent ones. The Q–Q plot analogous to Figure 5(b) presented in Figure 5(c)
demonstrates that the distributions are different. The corresponding Kolmogorov–Smirnov p-
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value is 0.03. In this case the asymptotic distribution of Mr{T2(x)} of strong-weak dependent
components is non-Gaussian and is given by Theorem 5.

6 Conclusions

The paper obtains the reduction principle for vector random fields with strong-weak depen-
dent components. In contrast to the known scalar and vector cases with same type memory
components, it is shown that terms at H rankG levels do not necessarily determine limit
behaviours. Applications to Minkowski functionals of Student random fields and numerical
examples that illustrate the obtained theoretical results are presented. It would be interesting
to extend the obtained results to the cases of:

(1) cross-correlated components by using some ideas from Theorems 10 and 11 in
Leonenko and Olenko (2014). In these theorems it was assumed that the cross-correlation
of components is given by some positive definite matrix A. Then, by using the transforma-
tion η̃ = A−1/2η, it was possible to transform the vector field to the one with non-correlated
components;

(2)
∑m

j=1 βjkj,l +∑m+n
j=m+1 αjkj,l = d . It is expected that under some additional assump-

tions these cases will lead to the CLT, see Remark 2.4 in Bai and Taqqu (2018);
(3) non-central limit theorems where the condition kjl,l = lfor somejl = m+1, . . . ,m+n

is not satisfied. Obtaining such analogous of Theorems 4 and 5, it requires an extension of
Arcones–Major results, see Arcones (1994), Major (2019), to continuous settings. While the
direct proof may need substantial efforts, see Major (2019), one can try the simpler strategy
proposed in Alodat and Olenko (2019). Namely, to prove that discrete and continuous func-
tionals have same limits and then to apply the known discrete result from Arcones (1994) and
Major (2019);

(4) cyclically dependent components, that is, when the spectral density has singular points
outside the origin, see, for examples, Klykavka, Olenko and Vicendese (2012) and Olenko
(2013).
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