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Abstract. In this work, we investigate the asymptotic behavior of the ex-
tremes of a multivariate data by using the Reduced Ordering Principle (R-
ordering). When, the sup-norm is used, we reveal the interrelation between
the R-ordering principle and Marginal Ordering Principle (M-ordering). The
asymptotic behavior of the maximum sup-norms corresponding to the bivari-
ate data is completely determined. Finally, an application to real data illus-
trates and corroborates the theoretical results.

1 Introduction

Multivariate extreme value theory is perhaps the only known toolbox for analyzing several
extremal events simultaneously. Generally, the order multivariate data subject is an active
field of research in theoretical and applied statistics. The ordered data may belong to the
usual model of order statistics (see, e.g., Galambos, 1987, David and Nagaraja, 2003) or
its extensions such as the model of generalized order statistics (see, e.g., Kamps, 1995,
Burkschat, Cramer and Kamps, 2003). Moreover, the ordered data may arise from a com-
mon distribution function (DF) or it may be dependent on non-identical multivariate data
(e.g., Barakat, 2009).

In this paper, we are focusing on the study of the model of multivariate order statistics. The
study will extend to distributional theory and the asymptotic distributional theory. It is known
that there is no any natural basis for ordering multivariate data. Therefore, the first obstacle
that encounters the researchers in studying the subject of ordered multivariate data is to extend
the univariate order concepts to the higher dimensional situation. Actually, a substantial effort
has been directed to define some sorts of higher dimensional analogous of univariate order
concepts, and much of statistical method employs various types of sub-ordering principle.
Barnet (1976) presented a fourfold classification of sub-ordering principles for multivariate
random vectors. These principles can be classified as follows:

1. Marginal Ordering (M-ordering). As the name suggests, ordering here takes place within
one or more of the marginal samples. Most of the researchers who work on ordered mul-
tivariate data adopt this principle, among them are Finkelshtein (1953); Galambos (1975);
Barakat (1997, 2001); Barakat, Nigm and Al-Awady (2015); Falk and Wisheckel (2018);
Falk (2019).

2. Reduced (Aggregate) Ordering (R-ordering). With this type of ordering, each multivariate
observation is reduced to a single value by means of some combinations of the component
sample values. One of the most effective ways to apply this principle is by ordering the
random vectors in the norm sense (see Bairamov and Gebizlioglu, 1997, Arnold, Castillo
and Sarabia, 2009, Bairamov, 2016).
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3. Conditional (Sequential) Ordering (C-ordering). The final sub-ordering principle for mul-
tivariate data is one in which ordering or ranking is conducted on one of the marginal
sets of observations conditional on selection, or ordering or ranking, within the data in
terms of other marginal sets of observations (see Arnold, Castillo and Sarabia, 2009,
Barakat and El-Shandidy, 2004, Balakrishnan and Stepanov, 2015, Barakat, Nigm and
Syam, 2019).

4. Partial Ordering (P-ordering). The emphasis here moves away from consideration of the
marginal samples or individual multivariate observations to consider overall interrelations
properties in the total deployment of the sample. The way in which observations fall into
different regions of the sample space, where such partitioning may be based on one of
several possible principles, is used to distinguish between groups of observations with
regard to order, rank or extremeness (see, e.g., Chaudhuri, 1996, Zani, Riani and Corbellin,
1999).

In this work, we are concerned with ordered multivariate data based on R-ordering prin-
ciple. The seminal work of the R-ordering principle is Bairamov and Gebizlioglu (1997),
where the authors introduced a so-called norm-ordering in multivariate observations. Namely,
let Rm, m ≥ 1, be the real Euclidean space. Consider a probability space (�,F,P ) and R

m

valued random vectors Zi = (Xi1(ω),Xi2(ω), . . . ,Xim(ω)), i = 1,2, . . . , n, ω ∈ �, defined
on the space (�,F,P ). Let the m-dimensional DF F(x1, . . . , xm) be the common DF of the
random vectors Z1, . . . ,Zn. Denote by ‖ · ‖ a norm defined in R

m. Clearly, due to an ele-
mentary result in probability theory, ‖Z1‖,‖Z2‖, . . . ,‖Zn‖ are i.i.d. random variables (RVs)
with the DF P(‖Zi‖ ≤ z) = F(z), z ∈ R. Moreover, if F(x1, . . . , xm) is assumed to be con-
tinuous, the probability of any two or more of these RVs assuming equal magnitudes is zero.
Therefore, there exists a unique ordered arrangement within the RVs ‖Z1‖,‖Z2‖, . . . ,‖Zn‖.
According to the definition of norm-ordering due to Bairamov and Gebizlioglu (1997), if
‖Zi‖ < ‖Zj‖, i, j = 1,2, . . . , n, then Zi is said to be less than Zj in a norm sense and
this is shown as Zi ≺ Zj . Suppose Z1:n denotes the smallest of the set Z1,Z2, . . . ,Zn;
Z2:n denotes the second smallest, etc.; and Zn:n denotes the largest in a norm sense, then,
Z1:n ≺ Z2:n ≺ · · · ≺ Zn:n. However, this definition brings us to the following important ques-
tion that was not tackled by Bairamov and Gebizlioglu (1997). Is any norm defined on R fit to
define such ordered relation? To answer on this question, we first consider the case Zi <c Zj ,
where <c is meant componentwise, that is, Xit (ω) < Xjt (ω), t = 1,2, . . . ,m, and the vec-
tors Zi, i = 1,2, . . . , n, are non-negative, that is, Zi ≥ 0. Then it is not acceptable to use any
non-monotone norm ‖ ·‖, for which Zj ≺ Zi (i.e., ‖Zj‖ < ‖Zi‖). Example of non-monotone
norm (in the literature, the definition of monotone norm is a norm, for which ‖Zj‖ < ‖Zi‖,

whenever |Zj | <c |Zi |) is the quadratic form norm ‖Zi‖A =
√

(ZT
i AZi), i = 1,2, . . . , n, de-

fined on R
2 (say), where A = AT = (aji)1≤i,j≤2 is a positive definite 2 × 2 matrix, such that

a11 = a22 = 1 and a12 = a21 = δ, δ ∈ (−1,0) (cf. Falk, 2019). Therefore, we should consider
only the monotone norms, especially for non-negative RVs. On the other hand, it is natural
that the employed norm is radial symmetric, that is, changing the sign of arbitrary components
of Zi ∈ R

m does not alter the value of this norm. This means that the values of the consid-
ered norm are completely determined by its values on the subset {Zi ∈ R

m : Zi ≥ 0}. Also,
the norm ‖Zt‖A is not radial symmetric. However, there is a norm defined on R

m, which is
strongly related to the asymptotic behavior of the multivariate extreme theory (cf. Falk and
Wisheckel, 2018, see also Remark 2.2) and above all it is monotone and radial symmetric.
This norm is known as D-norm and defined by ‖Zi‖D = Eη(max1≤t≤m |Xit (ω)ηt |), where
ηt are non-negative RVs, with Eη(ηt ) = ∫ · · · ∫ xt dFη1,...,ηt ,...,ηm(x1, . . . , xt , . . . , xm) = 1,
t = 1,2, . . . ,m. The random vector η = (η1, η2, . . . , ηm) is called the generator of the D-

norm. Moreover, this norm contains the Logistic norm family ‖Zi‖p = (
∑m

t=1 |Xit (ω)|p)
1
p
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and the sup-norm ‖Zi‖∞ = max1≤t≤m |Xit (ω)| (it is known that limp→∞ ‖Zi‖p = ‖Zi‖∞).
In this paper, we Consider the sup-norm and in the sequel we write ‖ · ‖ instead of ‖ · ‖∞.
Namely, we study the asymptotic behavior of the DF

Fn:n(z) = P
(
max

(‖Z1‖,‖Z2‖, . . . ,‖Zn‖
) ≤ z

) = P
(‖Z‖n:n ≤ z

) = Fn(z).

For seeking the ease, we consider m = 2. However, in Section 3.2, we will show that the
main result Theorem 3.1, which is a two-dimensional theorem concerning the asymptotic
behavior of the maximum vector Zn:n in a norm sense, can be applied, without new formula-
tion, to deal with the cases of more than two dimensions. Moreover, in this paper we consider
only the case Zi ≥ 0. Later, we will show that we can get rid the last restriction in many
cases (see Remark 3.2). Everywhere in what follows the symbols (−→

n
) and (

w−→
n

) stand for

convergence and the weak convergence, as n → ∞.

Motivation of the work

Actually there are many motivations of this study. First, the asymptotic behavior of the statis-
tics ‖Z‖n:n and Zn:n is very strongly relevant and any modeling problem related to the ex-
treme values starting with asymptotic behavior of the extreme values. Moreover, the study of
the DF Fn:n(z) itself is important in many applications. Below, we list some of these appli-
cations.

1. As Bairamov and Gebizlioglu (1997) indicated, there are many situations in practice for
which we need to investigate the distributional properties of a random vector whose ele-
ments are magnitudes of distance related characteristics of an event. For instance, in a two
dimensional space, bombing on and around a target point has destructive effects on the
point itself depending on its distance from the site of explosion in conjunction with some
other factors (see Example 3.1). Similarly, multidimensional epidemiological processes
can be analyzed in terms of the norm ordered statistics for the spread of disease analysis.

2. Consider a model in reliability theory, which has n independent components each con-
sisting of m arbitrarily dependent elements connected by using a parallel system. De-
note the life length of the ith component of the system by Zi = (Xi1,Xi2, . . . ,Xim),
i = 1,2, . . . , n, where Xit (t = 1,2, . . . ,m) denotes the life length of the t th element of
the ith component. Thus, the first and last failures in the system occur at times

Z1:n = min
{
max{X11,X12, . . . ,X1m},max{X21,X22, . . . ,X2m},

. . . ,max{Xn1,Xn2, . . . ,Xnm}} = min
{‖Z1‖,‖Z2‖, . . . ,‖Zn‖

}
and Zn:n = max{‖Z1‖,‖Z2‖, . . . ,‖Zn‖}, respectively. Therefore, to know the time of the
first failure and the time of the second failure, etc. in such a system, we need to ar-
range random vectors Z1,Z2, . . . ,Zn by the magnitude of sup-norm (for more details,
see Bairamov, 2006).

2 Auxiliary and preliminary results

In this section, we will give some required results of extreme value theory in univariate and
bivariate cases. The results concerning the bivariate extreme value theory are based on the
M-ordering principle.
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2.1 Some required results of univariate order statistics

Theorem 2.1 (Extremal Types Theorem, for maximum). Let Xn:n = max (X1,X2, . . . ,

Xn), where Xi i.i.d. RVs with univariate DF F(x). Then, by using the elementary relation
limx→1

logx
x−1 = 1, we get

Fn:n(anx + bn) = P(Xn:n ≤ anx + bn)
w−→
n

H(x), (2.1)

where an > 0, bn ∈ R are some suitable normalizing constants and H(·) is a non-degenerate
DF, if and only if

n
(
1 − F(anx + bn)

) −→
n

− logH(x). (2.2)

Moreover, the limit function H(·) must have one and only one of three types Hi,β(x) =
exp(−ui,β(x)), i = 1,2,3, β > 0, where H3,β(x) = H3(x) = exp(−u3(x)) (in which x may
be replaced by ax + b for any a > 0, b ∈ R), where

Type I (Fréchet type): u1,β(x) =
{
x−β, x > 0,

∞, x ≤ 0,

Type II (max-Weibull type): u2,β(x) =
{
(−x)β, x ≤ 0,

0, x > 0,

Type III (Gumbel type): u3,β(x) = u3(x) = e−x, −∞ < x < ∞.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

Conversely, any such DF exp(−ui,β(x)), i ∈ {1,2,3}, appears as a limit in (2.1) and in fact
does so when exp(−ui,β(x)) is itself the DF of each Xi . In this case, we write F ∈ D(Hi,β)

and call Hi,β(·), i = 1,2,3, max-stable DFs.

In the sequel, we write (ai,n, bi,n), ai,n > 0, for the used normalizing constants, where the
subscript i is equal 1, or 2, or 3, according to the weak convergence was took place to the
type H1,β(x), or H2,β(x), or H3(x), respectively.

Corollary 2.1 (cf. Leadbetter, Lindgren and Rootzén, 1983). Set x0 = sup{x : F(x) < 1}
and γ (t) = inf{x : F(x) ≥ 1 − 1

t
} (clearly, γ (t) −→

t
x0). The normalizing constants ai,n > 0

and bi,n for each types in Theorem 2.1 can be chosen such as

Type I: a1,n = |γ (n)| and b1,n = 0, where x0 = ∞.
Type II: a2,n = |x0 − γ (n)| and b2,n = x0, where x0 < ∞.

Type III: a3,n = g(b3,n) and b3,n = γ (n), where x0 ≤ ∞ and g(t) = (1 − F(t))−1 ∫ x0

t (1 −
F(x)) dx < ∞, t < x0.

Lemma 2.1 (Gnedenko, 1943). If F ∈ D(H3), then a3,n/b3,n −→
n

0.

Lemma 2.2 (Barakat, 1998). Let ε be an arbitrary small positive number.

(i) If F ∈ D(H1,β), then a1,nn
−β−1+ε −→

n
∞ and a1,nn

−β−1−ε −→
n

0;

(ii) If F ∈ D(H2,β), then a2,nn
β−1+ε −→

n
∞ and a2,nn

β−1−ε −→
n

0;

(iii) If F ∈ D(H3), then a3,nn
+ε −→

n
∞ and a3,nn

−ε −→
n

0.

The following corollary is a simple consequence of Lemma 2.2.

Corollary 2.2. Let ε be an arbitrary small positive number. Then, we get
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(i) a1,n

a2,n
n−2β−1+2ε −→

n
∞ and a1,n

a2,n
n−2β−1−2ε −→

n
0;

(ii) a1,n

a3,n
n−β−1+2ε −→

n
∞ and a1,n

a3,n
n−β−1−2ε −→

n
0;

(iii) a2,n

a3,n
nβ−1+2ε −→

n
∞ and a2,n

a3,n
nβ−1−2ε −→

n
0.

Lemma 2.2 determines the essential term on which the asymptotic behavior of the scale
normalizing constant solely depends. For example, due to Lemma 2.2 the normalizing con-

stants Cn
1
β , Cn

1
β logn and Cn

1
β

logn
may fit for a1,n −→

n
∞, where C > 0 is a constant, while

Cn
− 1

β , Cn
− 1

β logn and Cn
− 1

β

logn
may fit for a2,n −→

n
0, finally C, C logn and C

logn
may fit for

a3,n.

2.2 Some required results of asymptotic behavior of bivariate maximum order
statistics

In this subsection, we first give some required results of asymptotic behavior of bivariate max-
imum order statistics based on M-ordering principle. Then, we present a lemma that connects
between the M-ordering and the R-ordering principles, when we use the sup-norm. Through-
out this subsection and the rest of all the paper, let Z1,Z2, . . . ,Zn ∈ R

2, where Zi = (Xi, Yi),
i = 1,2, . . . , n, be i.i.d. random vectors distributed as F(x, y) = P((Xi, Yi) ≤c (x, y)). Fur-
thermore, let X1:n ≤ X2:n ≤ · · · ≤ Xn:n and Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the two marginal
ordered statistics concerning the variables Xi, i = 1,2, . . . , n, and Yi, i = 1,2, . . . , n, respec-
tively. Furthermore, let G(x,y) = P((Xi, Yi) >c (x, y)), where >c is meant component-
wise, be the survival function of the DF F(x, y). Also, let F1(x), F2(y), G1(x) and G2(y)

be the marginals of F(x, y) and G(x,y), respectively. Moreover, write Mn:n = (Xn:n, Yn:n)
and Fn:n(x, y) = P(Mn:n ≤c (x, y)). Finally, let F1,n:n(x) and F2,n:n(y) be the marginals of
Fn:n(x, y). Clearly,

Fn:n(x, y) = Fn(x, y). (2.4)

Theorem 2.2 (see, Galambos 1975, 1987, Barakat, 2001). For any suitable normalizing
constants an > 0, cn > 0, bn, dn ∈R and some non-degenerate DF Hn(x, y), we get

Fn:n(anx + bn, cny + dn)
w−→
n

H(x, y), (2.5)

if and only if

(1) nG1(anx + bn) −→
n

U1(x),

(2) nG2(cny + dn) −→
n

U2(y),

(3) nG(anx + bn, cny + dn) −→
n

U(x, y),

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

where each of the functions U1(x) and U2(x) takes one and only one of the types (2.3). More-
over, we have 0 ≤ U(x, y) < min(U1(x),U2(y)) < ∞, or U(x, y) = min(U1(x),U2(y)) = 0.
In this case the limit H(x,y) has the form

H(x,y) = exp
(−U1(x) − U2(y) + U(x, y)

)
. (2.7)

Furthermore, the asymptotic independence of the marginals of H(z) (i.e., the limit of
Fn:n(anx + bn, cny + dn) splits into the product of the limit marginals) occurs, if and only if
U(x, y) = 0.
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Remark 2.1 (see, Barakat, 2001). It is worth mentioning that, for many known bivariate
models such as Morgenstern distribution F(x, y) = F1(x)F2(y)(1 + αG1(x)G2(y)), −1 ≤
α ≤ 1; Gumbel’s type 1 exponential distribution, for which G(x,y) = exp(−x − y − θxy),
0 ≤ θ < 1, x, y ≥ 0; and the usual bivariate normal distribution, the limit of Fn:n(anx +
bn, cny + dn) splits into the product of the limit marginals. On the other hand, the Mardia’s
distribution, for which G(x,y) = G1(x)G2(y)

G1(x)+G2(y)−G1(x)G2(y)
, the limit of Fn:n(anx + bn, cny +

dn) does not split into the product of the limit marginals.

Remark 2.2. It is remarkable that, any bivariate DF H(x,y) serves as a limit DF in (2.5) if
and only if there exists a D-norm on R

2 such that H(x,y) = exp(−‖(x, y)‖D) (cf. Falk and
Wisheckel, 2018).

We conclude this section with a lemma, which is considered an important pillar of the next
our study.

Lemma 2.3. Assuming that Z1,Z2, . . . ,Zn ≥ 0, the exact DF of the maximum of the RVs
‖Z1‖,‖Z2‖, . . . ,‖Zn‖ (i.e., the exact DF of ‖Z‖n:n) is Fn:n(z) = Fn(z) = Fn:n(z, z).

Proof. Clearly, since Z1,Z2, . . . ,Zn are i.i.d. random vectors, then by using (2.4), we get

Fn:n(z) = Fn(z) = P
[
max

(‖Z1‖,‖Z2‖, . . . ,‖Zn‖
) ≤ z

]
= P

[
max

(
max

(|X1|, |Y1|),max
(|X2|, |Y2|), . . . ,max

(|Xn|, |Yn|) ≤ z
)]

= P
[
max(X1, Y1) ≤ z,max(X2, Y2) ≤ z, . . . ,max(Xn,Yn) ≤ z

]
= P n[

max(X1, Y1) ≤ z
] = P n[X1 ≤ z,Y1 ≤ z] = Fn(z, z) = Fn:n(z, z).

This completes the proof. �

Remark 2.3. The main advantage of Lemma 2.3 is that if there are normalizing constants
an > 0 and bn ∈ R, for which (1)–(3) in (2.6) are satisfied for some functions U1(x), U2(x)

and U(x), then

Fn:n(anz + bn)
w−→
n

H(z, z),

where H(z, z) is defined by (2.7). This strong interrelation between the M-ordering and R-
ordering principles, when we use sup-norm will be emphasized in the next section.

3 The main results

In this section, the sufficient conditions for obtaining the weak limits of the DF Fn:n(z), under
the conditions (1)–(3) defined in (2.6), are derived. Throughout this section, we assume that
the conditions (1)–(3) are satisfied with the normalizing constants (ai,n, bi,n) and (ci,n, di,n),
ai,n, ci,n > 0, respectively, where the subscript i is equal 1, or 2, or 3, according to the weak
convergence was took place to the type H1,β(x), or H2,β(x), or H3,β(x), respectively. More-
over, define the notations x0

i = sup{x : Fi(x) < 1}, i = 1,2, and x0 = sup{x : F(x) < 1}, for
the right-end points for the two marginals F1(·), F2(·) and the DF F(·), respectively. Clearly,
x0 = max(x0

1 , x0
2).
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3.1 The case of the two marginals of H(x,y) are asymptotic independent

In this subsection, we study the asymptotic behavior of the DF Fn:n(z) under the condition
U(x, y) = 0, that is, under the condition that the two marginals of H(x,y) are asymptotic
independent.

Theorem 3.1.

1. Let F1(a1,nz + b1,n) ∈ D(H1,β1) and F2(c1,nz + d1,n) ∈ D(H1,β2). Then,
(i) if β1 < β2, we get F(a1,nz + b1,n) ∈ D(H1,β1);

(ii) if β1 = β2, we get F(a1,nz + b1,n), F(c1,nz + d1,n) ∈ D(H1,β1), provided that 0 <

limn→∞ a1,n

c1,n
< ∞; F(a1,nz + b1,n) ∈D(H1,β1), provided that limn→∞ a1,n

c1,n
= ∞ and

F(c1,nz + d1,n) ∈ D(H1,β1), provided that limn→∞ a1,n

c1,n
= 0.

2. Let F1(a2,nz + b2,n) ∈ D(H2,β1) and F2(c2,nz + d2,n) ∈ D(H2,β2). Then, if x0
1 < x0

2 , we
have F(c2,nz+d2,n) ∈ D(H2,β2). On the other hand, if x0

2 < x0
1 , we have F(a2,nz+b2,n) ∈

D(H2,β1). Furthermore, let x0
1 = x0

2 . Then,
(i) if β1 < β2, or if β1 = β2 and 0 ≤ limn→∞ a2,n

c2,n
< ∞, we get F(a2,nz + b2,n) ∈

D(H2,β1), or
(ii) if β2 < β1, or if β1 = β2 and 0 ≤ limn→∞ c2,n

a2,n
< ∞, we get F(c2,nz + d2,n) ∈

D(H2,β2).
3. Let F1(a3,nz + b3,n) and F2(c3,nz + d3,n) ∈D(H3). Then, F(a3,nz + b3,n) ∈D(H3), if

L3,3;n(z) ≡
(

a3,n

c3,n

z + b3,n − d3,n

c3,n

)
−→

n

{
z + B, or

∞,

where B is a finite constant. Moreover, F(c3,nz + d3,n) ∈ D(H3), if

L−
3,3;n(z) ≡

(
c3,n

a3,n

z + d3,n − b3,n

a3,n

)
−→

n

{
z − B, or

∞.

4. Let F1(a1,nz + b1,n) ∈ D(H1,β1) and F2(c2,nz + d2,n) ∈ D(H2,β2). Then, F(a1,nz +
b1,n) ∈ D(H1,β1).

5. Let F1(a1,nz + b1,n) ∈ D(H1,β) and F2(c3,nz + d3,n) ∈ D(H3). Then F(c3,nz + d3,n) ∈
D(H3), if d3,n

a1,n
−→

n
∞. Moreover, F(a1,nz + b1,n) ∈D(H1,β), if d3,n

a1,n
−→

n
0.

6. Let F1(a2,nz + b2,n) ∈ D(H2,β) and F2(c3,nz + d3,n) ∈ D(H3). Then F(a2,nz + b2,n) ∈
D(H2,β), if x0

2 < x0
1 , or x0

2 = x0
1 and

x0
1−d3,n

c3,n
−→

n
∞. Moreover, F(c3,nz+d3,n) ∈ D(H3),

if x0
2 > x0

1 .

Remark 3.1. Clearly, in view of Theorem 2.1, any non-degenerate limit of Fn:n(·) is one
and only one of the max-stable DFs defined in Theorem 2.1. However, in Theorem 3.1, the
limits of Fn:n(·) in all cases are written in the standard form, that is, up to using scale and
location constants. These scale and location constants are explicitly shown within the proof
of Theorem 3.1.

The following two elementary lemmas will be needed in the proof of Theorem 3.1.

Lemma 3.1. For any finite A ≥ 0 and B , H(x) = H3(x) × H1,β(Ax + B) is not max-stable
DF. Moreover, H(x) = H3(x) × H2,β(Ax + B) is max-stable DF only if A = B = 0 (i.e.,
in this case H(x) = H3(x). Finally, H(x) = H3(x) × H3(Ax + B) is max-stable DF only if
A = 1 (i.e., in this case H(x) = H3(x − log(1 + e−B)).
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Proof. First, if H(x) = H3(x) × H1,β(Ax + B), A > 0, then we get H(x) = e−u3(x) ×
e−u1(Ax+B) = e−e−x × e−(Ax+B)−β

, Ax + B > 0, which is impossible to be a max-stable DF.
Also, if A = 0, we get H(x) = CH3(x), where C = H1,β(B) = constant, is not a max-stable
DF (actually H(x) in this case is a defective DF, that is, H(∞) = C < 1). On the other hand,
if H(x) = H3(x) × H2,β(Ax + B), A > 0, then we get H(x) = e−u3(x) × e−u2(Ax+B) =
e−e−x × e−(−Ax−B)β , Ax + B ≤ 0, which is impossible to be a max-stable DF, unless
A = B = 0 (in this case H(x) = H(3)). Finally, if H(x) = H3(x) × H3(Ax + B), we get
H(x) = e−u3(x) × e−u3(Ax+B) = e−e−x × e−e−Ax−B

, which is impossible to be a max-stable
DF, unless A = 1. Moreover, in this case we have H(x) = H3(x − log (1 + e−B)). This com-
pletes the proof of the lemma. �

Lemma 3.2. Let An and Bn be two sequences such that An −→
n

∞ and Bn −→
n

∞, then we

have

(1) Ln(x) = Anx + Bn has at most the following limit points ∞, ∀x,

ϒ0(x) =
{−∞, x < 0,

∞, x ≥ 0,
and ϒ1(x) =

⎧⎪⎪⎨
⎪⎪⎩

−∞, x < x�,

B, x = x�,

∞, x > x�.

(2) L�
n(x) = Anx − Bn has at most the following limit points −∞, ∀x, ϒ�

0 (x) = {−∞, x ≤ 0,

∞, x > 0

and ϒ1(x) (clearly, B and x� in ϒ1(x) defined in (1) are different than those in ϒ1(x)

defined in (2)).

Proof. Clearly, the possible limit points of Ln(x) are −∞,∞ and ax + b,−∞ < x < ∞,
where a and b are finite constants. Besides, there may be a finite value B and a unique
negative value x�, for which Ln(x�) −→

n
B (e.g., if An = n + 1, Bn = n, then x� = B = −1).

Clearly, this possibility gives Ln(x) −→
n

ϒ1(x). Now, let Ln(x) −→
n

ax + b. Put x = 1, we
get

An + Bn −→
n

a + b. (3.1)

On the other hand, by setting x = 2, we get

2An + Bn −→
n

2a + b. (3.2)

By subtracting (3.1) and (3.2), we get An −→
n

a, which contradicts the assumption of the

lemma. This completes the proof of first part and the proof of the second part follows by
using the same argument. �

Proof of Theorem 3.1. In view of Corollary 2.1, b1,n = d1,n = 0. Moreover in view of
Lemma 2.2, Part (i), we have a1,n

c1,n
−→

n
∞, if β1 < β2. Moreover, if β1 = β2, we have

either limn→∞ a1,n

c1,n
= θ1, 0 < θ1 < ∞, or limn→∞ a1,n

c1,n
= 0, or limn→∞ a1,n

c1,n
= ∞. Note that

if limn→∞ a1,n

c1,n
does not exist, then we can choose a subsequence nk for which the limit

converges. Meanwhile, by using the Khinchin’s type theorem (cf. Theorem 1.13 in Barakat,
Nigm and Khaled, 2019), we can replace the normalizing constants a1,n and c1,n by a1,nk

and
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c1,nk
, respectively. Now, consider

Fn
2 (a1,nz) = Fn

2

[
c1,n

(
a1,n

c1,n

z

)]
w−→
n

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∈0 (z),

if β1 < β2, or β1 = β2, lim
n→∞

a1,n

c1,n

= ∞,

H1,β1(θ1z),

if β1 = β2, lim
n→∞

a1,n

c1,n

= θ1,

where ∈0 (z) = {1, z > 0,

0, z ≤ 0 is a degenerate limit DF. Therefore, by using Lemma 2.3 and in view

of Remark 2.3, we get

Fn:n(a1,nz + b1,n) = Fn(a1,nz + b1,n, a1,nz + b1,n)

w−→
n

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∈0 (z) × H1,β1(z) = H1,β1(z),

if β1 < β2 or β1 = β2, lim
n→∞

a1,n

c1,n

= ∞,

H1,β1(z) × H1,β1(θ1z) = e−u1,β1 (z)−u1,β1 (θ1z)

= H1,β1

((
1 + θ

−β1
1

)− 1
β1 z

)
, if β1 = β2, lim

n→∞
a1,n

c1,n

= θ1.

The case β1 = β2, limn→∞ a1,n

c1,n
= 0 is now obvious. In addition, the Khinchin’s type theorem

guarantees that the types of the obtained non-degenerate limits do not change if we use any
other normalizing constants. This completes the proof of the Part (1) of Theorem 3.1.

Consider, now Part (2). In view of Corollary 2.1, we have b2,n = x0
1 < ∞, d2,n =

x0
2 < ∞, a2,n −→

n
0 and c2,n −→

n
0. Let x0

1 < x0
2 . Then, in view of (2.2), we have that

c2,nz + d2,n −→
n

x0
2 . Therefore, there exists n0 such that c2,nz + d2,n > x0

1 , for n > n0.

That means F1(c2,nz + d2,n) = 1, if n > n0. Consequently, Fn
1 (c2,nz + d2,n) = 1, if n > n0.

Hence, Fn:n(c2,nz + d2,n) = Fn(c2,nz + d2,n) converges weakly to H2,β2(z). Similarly, of
course, the same argument can be used to conclude that, if x0

2 < x0
1 , then, Fn:n(a2,nz + b2,n)

= Fn(a2,nz + b2,n) converges weakly to H2,β1(z).
Now, consider the case x0

1 = x0
2 . In view of Lemma 2.2, we have a2,n

c2,n
−→

n
0, if β1 < β2.

However, if β1 = β2, we have either limn→∞ a2,n

c2,n
= θ2, 0 ≤ θ2 < ∞, or limn→∞ a2,n

c2,n
= ∞, or

a2,n

c2,n
does not have a limit. Therefore, for the case 0 ≤ θ2 < ∞, we get

Fn
2

(
a2,nz + x0

1
) = Fn

2

[
c2,n

(
a2,n

c2,n

z + x0
1 − x0

2

c2,n

)
+ x0

2

]

w−→
n

⎧⎪⎪⎨
⎪⎪⎩

1, −∞ < z ≤ ∞, if β1 < β2, or β1 = β2, lim
n→∞

a2,n

c2,n

= 0,

H2,β(θ2z), if β1 = β2 = β, lim
n→∞

a2,n

c2,n

= θ2,0 < θ2,∞.

Therefore, by using Lemma 2.3 and Remark 2.3, we get

Fn:n(a2,nz + b2,n)
w−→
n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H2,β1(z), if β1 < β2, or β1 = β2, lim
n→∞

a2,n

c2,n

= 0,

H2,β(z) × H2,β(θ2z) = e−u2,β (z)−u2,β (θ2z)

= H2,β

((
1 + θ

β
2

) 1
β z

)
, if β1 = β2 = β, lim

n→∞
a2,n

c2,n

= θ2.

On the other hand, if θ2 = ∞ (i.e., c2,n

a2,n
−→

n
0) by using the above argument, clearly

we have Fn:n(c2,nz + d2,n) converges weakly to H2,β(z). Also, if 0 < θ2 < ∞, we get
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c2,n

a2,n
−→

n

1
θ

. Therefore, by using the same argument, Fn:n(c2,nz + d2,n) converges weakly

to H2,β((1 + θ
−β
2 )

1
β z). Finally, if a2,n

c2,n
does not have a limit, then we can choose a subse-

quence nk for which the limit converges. Meanwhile, by using the Khinchin’s type theorem,
we can replace the normalizing constants a2,n and c2,n by a2,nk

and c2,nk
, respectively. More-

over, the Khinchin’s type theorem guarantees that the types of the obtained non-degenerate
limits do not change if we use any other normalizing constants. This completes the proof of
the part (2) of Theorem 3.1.

We turn now to prove Part (3). First, we consider

Fn
2 (a3,nz + b3,n) = Fn

2

[
c3,n

(
a3,n

c3,n

z + b3,n − d3,n

c3,n

)
+ d3,n

]
= Fn

2
[
c3,nL3,3;n(z) + d3,n

]
.

Clearly, the sequence L3,3;n(z) has possible limit points not more than that determined by the
set {−∞,ϒ0(z),ϒ

�
0 (z),ϒ1(z),∞,Az + B}, where A ≥ 0 and B are finite constants. How-

ever, in view of Lemma 3.1, this set must be reduced to {−∞,ϒ0(z),ϒ
�
0 (z),ϒ1(z),∞, z +

B}, otherwise Fn:n(a3,nz + b3:n) may converge to a non max-stable DF H3(z) × H3(Az +
B),0 < A �= 1, which contradicts the extremal types theorem (Theorem 2.1). On the other
hand, the limit points determined by the set {−∞,ϒ0(z),ϒ

�
0 (z),ϒ1(z),B} can not yield any

non-degenerate limit for Fn:n(a3,nz + b3:n). Moreover, the other two limits points ∞ and
z + B give the non-degenerate max-stable limits H3(z) and H3(z − log(1 + e−B)), respec-
tively. Finally, in the case that the sequence {L3,3;n} does not converge at all, we can pick out
a convergent subsequence {L3,3;nk

}. In this case, Fn:n(a3,nk
z + b3:nk

) weakly converges to a
non max-stable non-degenerate DF H3(z) × H3(Az + B),0 < A �= 1, which in view of the
Khinchin’s type theorem, leads to a contradiction with the extremal types theorem. Moreover,
the Khinchin’s type theorem guarantees that the types of the obtained non-degenerate limits
do not change if we use any other normalizing constants. This completes the proof of the
part (3) of Theorem 3.1.

Consider, now Part (4). In view of Corollary 2.1, b1,n = 0 and d2,n = x0
2 < ∞. Moreover

in view of Lemma 2.2 and Corollary 2.2, we have

Fn
2 (a1,nz) = Fn

2

[
c2,n

(
a1,n

c2,n

z − x0
2

c2,n

)
+ x0

2

]

= Fn
2

[
c2,n

[
a1,n

c2,n

(
z − x0

2

a1,n

)]
+ x0

2

]
w−→
n

∈0 (z).

Therefore Fn:n(a1,nz+b1:n)
w−→
n

H1,β1(z)× ∈0 (z) = H1,β1(z). The Khinchin’s type theorem

guarantees that the types of the obtained non-degenerate limits do not change if we use any
other normalizing constants. This completes the proof of the Part (4).

Consider, now Part (5). First, set

Fn
1 (c3,nz + d3,n) = Fn

1

[
a1,n

(
c3,n

a1,n

z + d3,n

a1,n

)]
.

Actually, the sequence {d3,n

a1,n
} has limit points no more than that determined by the set

{C,0,∞}, where C is some positive constant (note that due to Corollary 2.1, d3,n = γ (n) −→
n

x0
2 > 0). On the other hand, by using Lemma 3.1, we necessarily have c3,n

a1,n
z + d3,n

a1,n
→ ∞, but

in view of Corollary 2.2(ii), c3,n

a1,n
→ 0, then, it suffices that d3,n

a1,n
→ ∞ (i.e., the first and the

second limit points, C and 0, do not yield any non-degenerate limit DF for Fn:n(c3,nz+d3,n)).
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Hence, Fn:n(c3,nz + d3,n)
w−→
n

H3(z), provided that d3,n

a1,n
−→

n
∞. Also,

Fn
2 (a1,nz) = Fn

2

[
c3,n

(
a1,n

c3,n

z − d3,n

c3,n

)
+ d3,n

]
= Fn

2

[
c3,n

[
a1,n

c3,n

(
z − d3,n

a1,n

)]
+ d3,n

]

−→
n

⎧⎪⎪⎨
⎪⎪⎩

∈0 (z), if
d3,n

a1,n

−→
n

0,

0, if
d3,n

a1,n

−→
n

∞

(remember that, in view of Corollary 2.2(ii), a1,n

c3,n
→ ∞). Thus, Fn:n(a1,nz)

w−→
n

H1,β(z),

provided that d3,n

a1,n
−→

n
0 (note that, the second limit C yield a non max-stable DF for

Fn:n(a1,nz), which contradicts the extremal types theorem (i.e., Theorem 2.1). Again, the
Khinchin’s type theorem guarantees that the types of the obtained non-degenerate limits do
not change if we use any other normalizing constants. This completes the proof of the part (5).

We turn now to prove the last part. First, remember that x0
1 < ∞ and x0

2 ≤ ∞. Thus, if
we assume that x0

2 < x0
1 , we have a2,nz + b2,n → x0

1 . Therefore, there exist n0 such that
a2,nz + b2,n > x0

2 , for n > n0. That means F2(a2,nz + b2,n) = 1, if n > n0. Consequently,
Fn

2 (a2,nz + b2,n) = 1, if n > n0. Hence, Fn:n(a2,nz + b2,n) converges weakly to H2,β(z).
Similarly, by using the same argument, if we assume that x0

1 < x0
2 , then Fn:n(c3,nz + d3,n)

converges weakly to H3(z).
Now, suppose x0

1 = x0
2 . Consider

Fn
2

(
a2,nz + x0

1
) = Fn

2

[
c3,n

(
a2,n

c3,n

z + x0
1 − d3,n

c3,n

)
+ d3,n

]
.

Clearly, the sequence {x0
1−d3,n

c3,n
} = {d3,n

c3,n
(

x0
1

d3,n
− 1)} has no more than limit points that de-

termined by the set {∞,0,C}, where C is some positive constant (note that d3,n ↑ x0
2 , as

n → ∞, remember that x0
1 = x0

2 . Thus,
x0

1
d3,n

− 1 ↓ 0, as n → ∞). On the other hand, the sec-

ond and third limit points give Fn
2 (a2,nz + x0

1) = Fn
2 [c3,n(

a2,n

c3,n
z + x0

1−d3,n

c3,n
) + d3,n] −→

n
e−1

and Fn
2 (a2,nz + x0

1) = Fn
2 [c3,n(

a2,n

c3,n
z + x0

1−d3,n

c3,n
) + d3,n] −→

n
e−e−C

, respectively, which im-

plies that Fn:n(a2,nz + x0
1) does not converge to a non-degenerate max-stable DF. Thus, the

only limit point of the sequence {x0
1−d3,n

c3,n
} is ∞, which yields Fn:n(a2,nz + x0

1)
w−→
n

H2(z).

This completes the proof of Part (6), as well as the theorem. �

Corollary 3.1. Let F1 and F2 be defined as any of Parts (1)–(6) of Theorem 3.1. Then, from
the proof of Theorem 3.1, we conclude an interesting fact that, the DFs F(·) and F2(·) belong
to the same domain of attraction of a max-stable DF, if x0

1 < x0
2 ≤ ∞.

Remark 3.2. Let us consider the case that the condition Zi ≥ 0 is removed in such a way that
min(x0

1 , x0
2) > 0, that is, we have a marginal RV (or two) that has negative and positive values.

In this case, instead of this marginal we can treat with its left-truncated version at zero. In this
case, Theorem 3.1 can be applied to detect the asymptotic behavior of the maximum vector
Zn:n in the norm sense by using the fact that (cf. Galambos, 1987, Page 73) F(anx + bn) ∈
D(Hi,β), i ∈ {1,2,3}, if and only if Fu(a

�
nx + b�

n) ∈ D(Hi,β), where F is any DF, Fu is the
left-truncated DF of F at u and the interrelation between the normalizing constants an > 0, bn

and a�
n > 0, b�

n can be determined by using Remark 2.2.1 in Galambos, 1987. Clearly, when
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max(x0
1 , x0

2) ≤ 0 the last procedure is not applicable. In this case we can proceed as follows:
Let the marginal F1 (say) is such that x0

1 ≤ 0. Then, if the left-end point of the marginal F1 is
α > −∞, then replace F1(x) with F�

1 (x) = F1(x −α). Clearly, F�
1 has a positive support and

Theorem 3.1 can be applied now to detect the asymptotic behavior of the maximum vector
Zn:n in the norm sense by using the obvious fact that F� ∈ D(Hi,β), i ∈ {1,2,3}, if and only
if F ∈ D(Hi,β).

3.2 Application of Theorem 3.1 in a more than two-dimensional case

It worth mentioning that Theorem 3.1 may be formulated for multivariate order statistics
(rather than bivariate order statistics), by adapting the procedure that was applied in Theo-
rem 3.1 into more than two dimensions. Taking into account that the formulation of theory
in a more than two dimensions will be confusing and impractical due to the large num-
ber of cases that should be investigated. Fortunately, we don’t need to formulate Theo-
rem 3.1 to more than two dimensions thanks to use the fact that max{X1,X2, . . . ,Xm} =
max{max{X1,X2, . . . ,Xm−1},Xm}. Namely, by using this fact, Theorem 3.1 can be ap-
plied to deal directly with more than two-dimensional case. For example consider three-
dimensional case, that is, m = 3. Let (X1,X2,X3) be a random vector, which is distributed
as a DF F(x1, x2, x3). Furthermore, let Fi(xi), 1, 2, 3, and Fi1,i2(xi1, xi2), i1, i2 = 1,2,3, i1 �=
i2 be the univariate and bivariate marginals of F(x1, x2, x3). Finally, let a

(i)
1,n > 0 and

b
(i)
1,n, i = 1,2,3, be suitable normalizing constants, for which F1(a

(1)
1,nz + b

(1)
1,n) ∈ D(H1,β1),

F2(a
(2)
1,nz + b

(2)
1,n) ∈ D(H1,β2), F3(a

(3)
1,nz + b

(3)
1,n) ∈ D(H1,β3) and β1 < β2 < β3. According

to the above fact, if the RVs (Xi1,Xi2,Xi3), i = 1,2, . . . , n, are i.i.d., we have F1,2,3(z) =
F(z) = P(‖(X1,X2,X3)‖ ≤ z) = F(z, z, z) and Fn(z) = P(maxi=1,2,...,n ‖(Xi1,Xi2,Xi3)‖
≤ z) = Fn(z, z, z). Moreover, F1,2(z) = P(‖(X1,X2)‖ ≤ z) = F1,2(z, z) (this is a univariate
DF) and Fn

1,2(z) = P(maxi=1,2,...,n ‖(Xi1,Xi2)‖ ≤ z) = Fn
1,2(z, z). Now, we can suggest a

simple technique to investigate the asymptotic behavior of Fn(z) by applying Theorem 3.1
twice as follows:

1. Since F1(a
(1)
1,nz + b

(1)
1,n) ∈ D(H1,β1), F2(a

(2)
1,nz + b

(2)
1,n) ∈ D(H1,β2) and β1 < β2, then

F1,2(a
(1)
1,nz + b

(1)
1,n) ∈ D(H1,β1).

2. Since F1,2(a
(1)
1,nz + b

(1)
1,n) ∈ D(H1,β1), F3(a

(3)
1,nz + b

(3)
1,n) ∈ D(H1,β3) and β1 < β3, then

F(a
(1)
1,nz + b

(1)
1,n) ∈ D(H1,β1).

As another example for the application of this technique, let F1(a
(1)
1,nz + b

(1)
1,n) ∈ D(H2,β1),

F2(a
(2)
2,nz + b

(2)
2,n) ∈ D(H2,β2), F3(a

(3)
2,nz + b

(3)
2,n) ∈ D(H2,β3) and x0

1 > max(x0
2 , x0

3). Then, by

applying the suggested technique, we get F(a
(1)
1,nz + b

(1)
1,n) ∈ D(H2,β1). Clearly, by using this

technique, Theorem 3.1 will be applied (m − 1) times for the m-dimensional case.

3.3 The case of the two marginals of H(x,y) are asymptotic dependent

In this subsection, we study the asymptotic behavior of the DF Fn:n(z), under the condition
U(x, y) �= 0, i.e., under the condition that the two marginal of H(x,y) are asymptotic de-
pendent. The next theorem surprisingly reveals that the possible non-degenerate types (max-
stable types) of the suitably normalized DF Fn:n, when U(x, y) �= 0, exactly the same as
those types given in Theorem 3.1, under the same conditions given in Theorem 3.1. In other
words, Theorem 3.1 will be valid when U(x, y) �= 0.

The starting point of our study in this subsection will be Theorem 3.1, besides the fact that
the normalized DF Fn:n can not converge weakly to any non-degenerate DF, unless one of the
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max-stable DFs. Thus, if there are suitable normalizing constants Cn > 0 and Dn, for which
the DF Fn:n(Cnz + Dn) weakly converges to a non-degenerate limit, then, in view of (2.2),
we have

n
[
1 −F(Cnz + Dn)

] −→
n

ui,β�(cz + d), c > 0, d ∈ R, i ∈ {1,2,3}. (3.3)

On the other hand, by using Lemma 2.3, we get

n
[
1 −F(Cnz + Dn)

]
∼ n

[
1 − F(Cnz + Dn,Cnz + Dn)

]
= nG1(Cnz + Dn) + nG2(Cnz + Dn) − nG(Cnz + Dn,Cnz + Dn). (3.4)

Now, let Cn > 0 and Dn be the normalizing constants used in Fn:n, to get the standard max-
stable laws given in Theorem 3.1 (this is clearly possible due to the Khinchin’s type theorem).
Meanwhile, assume that these normalizing constants still give a non-degenerate limit in (3.3).
Moreover, assume that the conditions of the weak convergence in each case of Theorem 3.1
are satisfied for these normalizing constants (note that some of the limit max-stable laws
defined in Theorem 3.1 have location or scale parameters. Thus, we can easily verify that all
the sufficient conditions given in Theorem 3.1 will be satisfied for these modified normalizing
constants). Therefore, under these assumptions and in view of the Khinchin’s type theorem,
we get

nG1(Cnz + Dn) + nG2(Cnz + Dn) −→
n

uj,β(z), i ∈ {1,2,3}, (3.5)

where uj,β(z) is defined in each cases of Theorem 3.1. On the other hand, in view of the
extremal types theorem (Theorem 2.1), the assumption that Fn(Cnz + Dn) = Fn(Cnz + Dn,

Cnz+Dn) weakly converges to a non-degenerate DF (see, (3.3)) and Theorem 2.2 (Equations
(2.4) and (2.6)), we get

nG(Cnz + Dn,Cnz + Dn) −→
n

U(z, z), (3.6)

where U(z, z) is defined by (2.6) (Part (3)). However, G(Cnz + Dn,Cnz + Dn) is a survival
function of the univariate DF, then

nG(Cnz + Dn,Cnz + Dn) −→
n

ut,β��(az + b), t ∈ {1,2,3}, (3.7)

where a > 0 and b are some scale and location constants, respectively. Thus, (3.6) and (3.7)
yield that

U(z, z) = ut,β��(az + b), t ∈ {1,2,3}. (3.8)

Combining now (3.3)–(3.5) and (3.8), we get

ui,β�(cz + d) = uj,β(z) − ut,β��(az + b), i, t, j ∈ {1,2,3}. (3.9)

Now, by using an interesting fact, which is revealed by Lemma 2.2 and Theorem 2.1, that
any normalizing constants (Cn,Dn) in (2.1), that is, in the extremal types theorem, determine
uniquely (up to location and scale changes) the max-stable types. This, means that if, we have
the two DFs 
1(·) and 
2(·) of different types, such that 
n

1 (Cnx + Dn)
w−→
n

Hi,β(x), i ∈
{1,2,3} (remember that H3 = H3,β ) and 
n

2 (Cnx + Dn
w−→
n

H(x), where H(x) is any non-

degenerate limit DF, then H(x) = Hi,β(ax + b), where a > 0 and b some scale and location
parameters. Thus, due to this fact, in order to get a non-degenerate limit of Fn:n(Cnz + Dn),
we clearly in (3.9) should have t = j = i and β�� = β� = β . we now in a suitable position to
state the following theorem.
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Theorem 3.2. Let Cn > 0 and Dn be the normalizing constants used in Fn:n, to get the
standard max-stable laws given in Theorem 3.1. Then,

Fn:n(Cnz + Dn)
w−→
n

Hj,β(cz + d), (3.10)

where Hj,β(z) is the same limits max-stable DF of Fn:n, defined in each case (6 cases) of
Theorem 3.1 and the convergence (3.10) occurs in each case under the same conditions given
in Theorem 3.1. Moreover, the constants a, c > 0 and b, d in the equation (3.9) (in which
j = t = i and β�� = β� = β) are determined in each case of Theorem 3.1, respectively, as
follows:

1. b = d = 0, and a−β + c−β = 1.
2. b = d = 0, and aβ + cβ = 1.
3. a = c = 1 and e−b + e−d = 1 (the last relation confirms that we must have b > 0 and

d > 0).
4. b = d = 0, and a−β + c−β = 1.
5. b = d = 0, and a−β + c−β = 1, if j = 1. Moreover, a = c = 1, if j = 3.
6. b = d = 0, and aβ + cβ = 1, if j = 2. Moreover, a = c = 1, if j = 3.

Proof. The proof of the part (1) starts with the relation u1,β(az + b) = u1,β1(z) − u1,β(cz +
d), which leads to

(az + b)−β1 = z−β1 − (cz + d)−β1, min(z, az + b, cz + d) ≥ 0.

Now divide the equation by z−β1 , to obtain(
az + b

z

)−β1 = 1 −
(

cz + d

z

)−β1

.

Equivalently (
a + b

z

)−β1 +
(
c + d

z

)−β1 = 1.

This has to be valid for all z. Therefore, the conclusion is that we must have b = d = 0.
Immediately, we obtain a−β + c−β = 1. The proofs of the remaining parts are similar. This
completes the proof of Theorem 3.2. �

Corollary 3.2. We have (1 −G(Cnz +Dn,Cnz +Dn))
n w−→

n
Hj,β(az + b). Clearly, the uni-

variate DFs 1 − G(z, z) and F(z) are related to the survival function G(x,y) and the DF
F(x, y), respectively, but clearly, G(z, z) �= 1 − F(z, z).

Example 3.1. In the problem of bombing on and around a target point by a fighter aircraft,
consider a two dimensional space (xy-plane), where the target point is the origin point of
this plane. Let (X,Y ) be the x-axis and y-axis of the incident point. Clearly, X and Y are
two RVs. Let the random vector (X,Y ) have the standard bivariate normal distribution. Then,
Theorem 3.1 and Remark 2.1 imply that the DF of the maximum distance between the target
and the incidence points, in terms of sup-norm, weakly converges to H3.

Example 3.2. In this example, we consider the extremes of a real bivariate data for air pol-
lution from the London Air Quality Network (LAQN). Namely, data was taken from site
Barking Dagenham at Rush Green square, that monitors sulphur dioxide (SO2) (stands for
the marginal Xi) and Nitrogen oxides (NO) (stands for the marginal Yi) every hour in the
period from 1-1-2010 to 31-12-2015. This data can be downloaded by any researcher in the
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Table 1 MLE’s for GEV (3.11)

The MLEs of the parameters of Gγ (x;μ,σ)

SO2 NO sup-norm

γ μ σ γ μ σ γ μ σ

MLE’s 0.221 3.36 1.655 0.978 6.98 8.119 0.952 8.02 7.97
95% C.I. (0.21, 0.31) (3.21, 3.51) (1.54, 1.78) (0.97, 1.08) (6.59, 7.38) (7.59, 8.68) (0.91, 0.98) (7.81, 8.87) (7.78, 8.57)

form of a report every half hour, every hour or every day according to the type of study from
the following site www.londonair.org.uk/london/asp/datadownload.asp. The daily maximum
observations of these data sets (exactly 1949 daily maximum observations for each pollu-
tants) are used to apply the block maxima method on the general extreme value DF (GEV)
(see, Barakat, Nigm and Khaled, 2019, Khaled and Kamal, 2018)

Gγ (x;μ,σ) = exp
{
−

[
1 + γ

(
x − μ

σ

)]− 1
γ
}

(3.11)

defined on {x : 1 + γ (x − μ)/σ > 0}, where with γ = 0, γ = 1
β

> 0 and γ = − 1
β

< 0, the
GEV Gγ (x;μ,σ) corresponds to the Gumbel, max-Weibull, and Fréchet types, respectively
(defined in (2.3)). On the other hand, the same method is applied on the sup-norm ‖Zi‖ =
‖(Xi, Yi)‖. The maximum likelihood estimates (MLEs) and the 95% asymptotic confidence
intervals (95% C.I.) are obtained for the parameters μ, σ and γ , by using the MATLAB
Version 7.11.0.584(R2010b). Table 1 gives the result of this study, which reveals that the
limit DFs of both Xn:n and Yn:n, where n = 1949, are max-Weibull with β = 4.53 and β =
1.022, respectively. On the other hand, the limit DF of ‖Z‖n:n is also a max-Weibull DF with
β = 1.05. This means that according to Theorem 3.1-Part (2), or Theorem 3.2 (it is assumed
that the interrelation between the two pollutants is unknown for us), the limit DF of ‖Z‖n:n is
the same as the limit DF of the marginal with smaller β (i.e., Yn:n) with the nearly the same
location and scale parameters.

4 Discussion and concluding remarks

Theorem 3.1, gives sufficient conditions for the weak convergence of ‖Z‖n:n in terms of the
weak convergence of the two marginals Fn

1 and Fn
2 . Meanwhile, this theorem reveals the

concealed interrelation between the R-ordering and M-ordering principles, when we use the
sup-norm. Moreover, the weak convergence of ‖Z‖n:n sheds some light on the convergence
of the two marginals Fn

1 and Fn
2 . Namely, if F(·) ∈ D(Hj,β), j ∈ {1,2,3} then at least one

of the marginals Fn
1 and Fn

2 belongs to the domain of attraction of Hj,β(·). Furthermore, if
j = 2 the other marginal belongs to the domain of attraction of H2,β(·), or H3,β(·). Finally,
Theorems 3.1 and 3.2 reveal that the weak limits of the DF of ‖Z‖n:n are the same (up to
location and scale changes), regardless the asymptotic independence of the two marginals
Fn

1 and Fn
2 . It is worth mentioning that all the obtained results in this study can be easily

switched for the minimum ‖Z‖1:n, as well as for the extremes ‖Z‖k:n, where k is constant
with respect to n.
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