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Abstract. We provide a general result for finding Stein operators for the
product of two independent random variables whose Stein operators satisfy
a certain assumption, extending a recent result of (Journal of Mathematical
Analysis and Applications 469 (2019) 260-279). This framework applies to
non-centered normal and non-centered gamma random variables, as well as
a general sub-family of the variance-gamma distributions. Curiously, there is
an increase in complexity in the Stein operators for products of independent
normals as one moves, for example, from centered to non-centered normals.
As applications, we give a simple derivation of the characteristic function of
the product of independent normals, and provide insight into why the prob-
ability density function of this distribution is much more complicated in the
non-centered case than the centered case.

1 Introduction

Stein (1972) introduced a powerful technique for deriving explicit bounds in normal approxi-
mations. Shortly after, Chen (1975) adapted the method to the Poisson distribution, and since
then Stein’s method has been extended to a wide variety of distributional approximations.
For a given target distribution p, the first step in the general procedure is to find a suitable
operator A acting on a class of functions F such that E[Af (X)] =0 for all f € F, where
the random variable X has distribution p. The operator A is called the Stein operator, and
for continuous distributions is typically a differential operator; for the N (i, o) distribution,
the classical operator is Af(x) = o2 f'(x) — (x — ) f(x). This leads to the Stein equa-
tion

Afn(x) =h(x) — Er(X), (1.1)

where & is a real-valued function. If A is well chosen then, for a given #, the Stein equa-
tion (1.1) can be solved for fj, and the problem of estimating the proximity of the dis-
tribution of a random variable W of interest to the distribution of the target random vari-
able X, as measured by |EA(W) — Eh(X)|, reduces to one of bounding |E[Af,(W)]].
For a detailed account of the method, we refer the reader to the monograph Stein
(1986).

In addition to the normal and Poisson distributions, Stein’s method has been adapted to
many classical distributions, such as the exponential in Chatterjee, Fulman and Rollin (2011),
gamma in Luk (1994) and Laplace in Pike and Ren (2014), as well as quite general families of
distributions, such as the Pearson family (Schoutens (2001)), variance-gamma distributions
(Gaunt (2014)) and a wide class of distributions satisfying a certain diffusive assumption
(Dobler (2015), Kusuoka and Tudor (2012)); for an overview see Ley, Reinert and Swan
(2017). As such, over the years, a number of techniques have been developed for finding
Stein operators for a variety of distributions. These include the density method (Stein (1986),

Key words and phrases. Stein’s method, Stein operators, product distributions, product of independent normal
random variables.
Received August 2019; accepted October 2019.

795


https://imstat.org/journals-and-publications/brazilian-journal-of-probability-and-statistics/
https://doi.org/10.1214/19-BJPS460
http://www.redeabe.org.br/

796 R. E. Gaunt, G. Mijoule and Y. Swan

Ley, Reinert and Swan (2017), Ley and Swan (2016), Mijoule, Reinert and Swan (2018)), the
generator method (Barbour (1990), Gotze (1991)), the differential equation duality approach
(Gaunt (2017b), Ley, Reinert and Swan (2017)), and probability generating function and char-
acteristic function based approaches of Upadhye, Cekanavi¢ius and Vellaisamy (2017) and
Arras et al. (2019b). The corpus of literature concerning Stein operators and their applica-
tions is now vast, and it continues growing at a steady pace. Stein operators provide handles
on target distributions which are in some sense just as important and natural characteristics
of a probability distribution as its moments, its moment generating function, its p.d.f., c.d.f.
or even its characteristic function. Finding tractable Stein operators is thus, naturally, an im-
portant question.

In this paper, we pursue the work begun in Gaunt (2017a) and Gaunt (2018) concern-
ing the following question: “given two independent random variables X and Y with Stein
operators Ax and Ay, can one find a Stein operator for Z = XY ?” More specifically, the
present paper is a complement (sequel) to our paper Gaunt, Mijoule and Swan (2019) where
we developed an algebraic technique for finding Stein operators for products of indepen-
dent random variables with polynomial Stein operators satisfying a technical condition. Let
M(f) = (x+ xf(x)), D(f) = (x = f/'(x)) and I be the identity operator. We say that
the absolutely continuous variates X and Y have polynomial Stein operators if they allow
Stein operators of the form A = Zi’ j aij M D/ for a; j some real numbers. The highest value
of j such that g;; # 0 is called the order of the operator. In Gaunt, Mijoule and Swan
(2019), we provided a method for deriving operators under the technical assumption that
#{j —ila;j # 0} <2 (see Assumption 3 and Lemma 2.6 of Gaunt, Mijoule and Swan (2019)
for more details on this condition). For such random variables, Proposition 2.12 of Gaunt,
Mijoule and Swan (2019) gives a polynomial Stein operator for the product XY. A number
of classical random variables have Stein operators which satisfy this assumption, such as the
N (0, 02) distribution with Stein operator 02D — M, with others including the gamma, beta,
and even some more exotic distributions such as the zero-mean symmetric variance-gamma
distribution and PRR distribution of Pekdz, Rollin and Ross (2013). However, some very
natural densities do not satisfy the assumption. In fact, even the non-centered normal distri-
bution does not satisfy this assumption, as its Stein operator 0> D + I — M instead satisfies
#{j —ila;j # 0} = 3. In Proposition 2.1, we shall address the natural problem of extending
the result of Gaunt, Mijoule and Swan (2019) to treat the product of two independent random
variables satisfying this new assumption. Here we have only added one level of complexity
in the operator; nevertheless, as we will see later on, it is sufficient to include the classical
cases of non-centered normal and non-centered gamma, and a more general sub-family of the
variance-gamma distributions. Also, as noted in Remark 2.3, the proof technique is novel and
seems to be a useful addition to the toolkit for finding Stein operators.

The Stein operators for the products of independent normal random variables are particu-
larly theoretically interesting, and we devote Section 3 to exploring some of their properties.
For the case of two independent centered normals a second order Stein operator was obtained
by Gaunt (2017a), whereas, rather curiously, we find a third order operator for the product
of two i.i.d. normals, and a fourth order operator for the product of two independent general
normals; see Table 1. It is an important and natural question to ask whether our operators
have minimal order amongst all Stein operators with polynomial coefficients. We believe this
is the case but are unable to prove it. However, in Section 3.1, we are able to provide a brute
force approach for verifying this assertion for polynomial coefficients up to a particular order.
This brute force approach is very general and in principle can be applied to any polynomial
Stein operators. In Section 3.2, we prove that our Stein operators for products of indepen-
dent normals characterise the distribution. We do this by appealing to a more general result,
Proposition 3.2, which treats distributions that are determined by their moments.
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Table 1  Stein operators for products of normal random variables

Product P Stein operator A p f(x) (here we set o :=oyoy)

N(0,0%) x N(0,09) o (xf"(x) + xf (x)) — xf (x)

N, 0%) x N(u, o) o3xfP )+ 020 —x) f(x) =0 (x + (0 + 1) f(x)
+(x = u?) f(x)

N(ux.o%) x N(uy,o}) oxopxf@ @) +otop fO ) —ogod@x+ puxuy) f(x)

— (0302 +u%0f +udo) /() + (x — uxpy) f(x)

For the Stein operator of Gaunt (2017a) for the product of two independent standard nor-
mal random variables, it was possible to solve the corresponding Stein equation and bound the
derivatives of the solution. As a result, Gaunt (2017a) was able to derive explicit bounds for
product normal approximations. However, it seems to be beyond the scope of existing tech-
niques in the Stein’s method literature to solve and then bound the derivatives of the solution
to our more complicated third and fourth order Stein equations for products of non-centered
normals. It should be noted, though, that there is still great utility to Stein equations even
when it is not possible to obtain bounds for the solution. For example, as has been demon-
strated in several papers such as Nourdin, Peccati and Swan (2014), Arras et al. (2019a) and
Arras et al. (2019b), Stein operators can be used for comparison of probability distributions
directly without solving Stein equations. We also stress that Stein operators are also of use
in applications beyond proving approximation theorems; for example, in obtaining distribu-
tional properties (Gaunt (2017a), Gaunt (2018), Gaunt, Mijoule and Swan (2019)). Indeed,
in Section 3.3, we use our Stein operators to obtain a simple derivation of the characteris-
tic function of two independent normals, and also provide valuable insight into why there
is a dramatic increase in complexity in the probability density function from the centered to
non-centered case.

2 New Stein operators for product distributions

2.1 A general result

Throughout this paper, we shall make the following assumptions, which were also made in
Gaunt, Mijoule and Swan (2019); we refer the reader to that paper for some remarks on these
assumptions.

Assumption. (1) X admits a smooth density p with respect to the Lebesgue measure on R;
this density is defined and non-vanishing on some (possibly unbounded) interval J C R. (2)
X admits an operator A acting on F which contains the set of smooth functions with compact
support C3°(R).

Let P be a real polynomial. Then it is easily proved (by checking it when P is a monomial,
then by linearity) that

P(MDM=MPMD+1), and DPMD)=PMD+1)D 2.1

(recall the notations M (f) = (x = xf(x)), D(f) = (x = f’(x)) and I the identity operator
from the Introduction). Now, for a € R\ {0}, let t,(f) = (x — f(ax)). Simple computations
show that (see Gaunt, Mijoule and Swan (2019), Lemma 2.5) t,M = aM+t, and D7, =
at, D. This implies that for any real polynomial P,

1, P(MD) = P(MD)1,.
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Proposition 2.1. Let X and Y be i.i.d. with common Stein operator of the form
A=M— Q(MD)— P(MD)D
for P, Q two real polynomials. Then, a Stein operator for Z = XY is
Az =Ri{(MD)D*+ Ry(MD)D + R3y(MD) + MRy(MD),
where, for U =MD,
Ri(U) = (P(U))*P(U + 1)U + D QU +21),
Ry(U) = —(P(U))* QW)U + 1) — QU + D P(U) Q*(U),
Ry(U)=—UQW)PU —I) — QU — I)(QW))?,
Ry(U)=0W - D).
Proof. Let Z = XY and f € F. Denote U = M D. We have
E[Xf(Z)] = E[Mzy f(X)]
E[Q(W)ty f(X) + P(U)Dry f(X)]
E[ty Q(U) f(X) + Y1y P(U)Df (X)],
E[QU) f(Z)+YPU)Df(2)].

E[Xf(2)]

Similarly,
E[Yf(2)]=E[QU)f(Z) + XP(U)Df(2)).

Replace f with P(U)Df in (2.4) and add up to (2.3) to get

E[X(I = P(U)DPU)D) f(2)] =E[(QWU) + QWU)PU)D) f(2)],
which is also, using (2.1),

E[X(I - P(U+ HPWU)D*) ()] =E[(QW) + Q) P(U)D) f (2)].

Now using (2.4) and conditioning, we can compute

E[Zf(2)]=E[XE[Yf(2)|X]]=E[XQU)f(Z)+ XZP(U)Df(Z)].

We also have

E[M?*ty f(X)]

E[X*f(2)] =E[
E[Q(U)Mry f(X)+ P(U)DMrty f(X)]
E[
[

Mty QU + D f(X) + v PU)YU + D) f(X)],
E[XQWU +Df(Z2)+PWU)U + D f(2D)].

E[X*f(Z)]
Thus, we obtain by (2.6)

E[(M — P(U)PWU)(U + 1)D) £(2)] =E[X(QW) + QU + I)PU)D) £(2)].

Apply (2.7) to P(U)Df and add up to (2.5) applied to Q(U — I) f to obtain
E[X(QU)PWU)D + QU - 1)) f(2)]
=E[(UPWU — 1) — (P())*P(U + (U + I)D*
+(QW) + Q) PWU)D)QU — D)) f(2)].

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)
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Apply the preceding equation to Q(U) f and subtract to (2.7) applied to Q(U — I) f to get
the result. ]

The case that P and Q are polynomials of degree one is important, as it is applica-
ble to non-centered normal and non-centered gamma random variables, as well as a gen-
eral sub-family of the variance-gamma distributions. To this end, let us define the opera-
tor T, := M D + rI. We note that the limit of 7, as r — oo is ill-defined, but we do have
lim, oo 7~ T, = I (see Gaunt, Mijoule and Swan (2019), Remark 2.3).

Corollary 2.2. Let o, B € R and a,b € RU {0} (if either a or b are set to +00, then we
proceed as described above). Let X, Y be i.i.d. with common Stein operator

A=M —aoT, — BTpD.
Then, a Stein operator for Z = XY is
Az = (M —a®T? — B*T2T\ D) (T, — BTpTys1 D) — 20> BT Ty T, 41 D. (2.8)

Proof. Set Q(U) =a(U +a) and P(U) = B(U + b) in (2.2). A calculation then verifies that
(2.8) and (2.2) are equivalent operators in this case (up to a factor «). ]

Remark 2.3. The proof of Proposition 2.1 involves applying certain equations to test func-
tions of the form Lf, where L is a linear differential operator. This allowed us to cancel terms
to obtain (2.2). We consider this technique to be a useful addition to the toolkit for finding
Stein operators. Indeed, this approach was recently used by Gaunt (2019) to find Stein oper-
ators for the H3(Z) and H4(Z), where H,, is the n-th Hermite polynomial and Z ~ N (0, 1).
In Section 2.2.4, we also use the technique to derive a Stein operator for the product of inde-
pendent non-centered normals with different means.

Remark 2.4. We attempted to generalise Proposition 2.1 so that X and Y are no longer
identically distributed, for which X and Y have Stein operators of the form Ay = M —
Ox(MD) — Px(MD)D and Ay = M — Qy(MD) — Py(MD)D. We were only able
to find a Stein operator for the product XY under the very restrictive condition that
Pr(U)Ox(U)Qx(U +1)=Px(U)Qy(U)Qy (U + I). This Stein operator had the unusual
feature of not being symmetric in X and Y. In certain simple cases, we can, however, ap-
ply the proof technique of Proposition 2.1 to derive a Stein operator for the product of two
non-identically distributed random variables; see Section 2.2.4.

Remark 2.5. Note that, whilst the Stein operator for X and Y in Proposition 2.1 satisfies the
condition #{j —i|a;; # 0} = 3, the Stein operator (2.2) for their product satisfies #{j —i|a;; #
0} = 4. Thus, it is not possible to iterate Proposition 2.1 to find a Stein operator for product
of three i.i.d. random variables. This is in contrast to the work of Gaunt, Mijoule and Swan
(2019) which was carried out under the assumption #{j — i|a;; # 0} = 2.

2.2 Examples

2.2.1 Product of non-centered normals. Assume X and Y are independent standard normal
random variables. A Stein operator for X +u (or Y +p)is A= D — M + pl. Applying
Corollary 2.2 with « = u, § =1 and a = b = oo gives the following Stein operator for
Z=X+wuw +pun):

Az = (M —p*I —=TiD)(I — D) —2u*D
=MD+ (I —M)D*> — (M + (1 +p>)[)D+ M — p°1I. (2.9)
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(Here, and for the rest of this paper, we consider the unit variance case; the extension to
general case follows from a straightforward rescaling and the resulting Stein operator for the
product is given in Table 1.) Note that when © = 0 the operator becomes

Azf(x)=M(D* - D?* —D+1)f(x) +(D* — D) f(x)
=x(fOw) = f@)) + (f" @) = /) +x(f () = fx).

Taking g(x) = f'(x) — f(x) then yields Azf(x) = Azg(x) = xg"(x) + g'(x) — xg(x),
which we recognise as the product normal Stein operator that was obtained by Gaunt (2017a).

2.2.2 Product of non-centered gammas. Assume X and Y are distributed as a ['(r, 1), with
p.df. p(x) = %r)x’_le_x, x >0, and let u € R. A Stein operator for X 4+ wu (or Y + ) is
A=T,y, —nuD — M. Corollary 2.2 applied witha =1, B = —u,a =r + u, b =00 yields

the following fourth-order Stein operator for Z = (X + w)(Y + w):
Az=(M -T2, — W2T1D)(Trppy—1 + uTryps1 D) + 20T Trppi1 D.

Note also that when p = 0, this operator reduces to (M — T,Z)Tr_l, which is the product
gamma Stein operator of Gaunt (2018) applied to 7,_1 f instead of f.

2.2.3 Product of variance-gamma random variables. The variance-gamma distribution
with parameters r > 0,60 € R, 0 > 0, 1 € R has p.d.f.

(2.10)

0 _ r=1 92 2
F) = _2(“”( I — k| ) Kr;(i”“u—m),

1
I — - -
aﬁ[‘(%) 2462 + o2 o2

x € R, where K,,(x) = [y e™ cosh(®) cosh(vr) dr, x > 0, is the modified Bessel function of the
second kind. If a random variable W has density (2.10) then we write W ~ VG(r, 0, o, ). A
VG(r, 6, o, 0) Stein operator is given by 27, D + 20T, /2 — M (see Gaunt (2014)). Applying
Corollary 2.2 with « =20, B =02, a =r/2, b =r, we get the following Stein operator for
the product of two independent VG(r, 6, o, 0) random variables:

A= (M —46°T ) — o*T?T\ D) (T, /21 — 0* T, Tr 211 D) — 80%6° T,y T, Ty 041 D.
Note that when 6 = 0 we have
Af(x)=(M —o*T? T\ D)(Ty 121 — 0T, T 241 D) f (x).
Defining g : R — R by xg(x) = —(T/2—1 — 04TrTr/2+1D)f(x) gives
Ag(x) = (04Tr2T1 D—M)Mg(x)= 04Tr2T12g(x) — M?g(x),

which is in agreement with the product variance-gamma Stein operator given in Section 3.2
of Gaunt, Mijoule and Swan (2019). Lastly, we note that the VG(r, 8, o, n) Stein operator of
Gaunt (2014), as given by

o?(M — u)D* + (ro® +20(M — ))D + (r6 — (M — )1,

satisfies #{j —i|a;; # 0} = 4 when p # 0, and therefore one cannot apply Proposition 2.1 or
Corollary 2.2 to find a Stein operator for the product of two such variates.
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2.2.4 Product of non-identically distributed non-central normals. By working on a case-by-
case basis it is possible to use the proof technique of Proposition 2.1 to find Stein operators
for the product of two non-identically distributed random variables, whose Stein operators
satisfy the assumptions of the proposition. We find that a Stein operator for the product of
independent normals N (uyx, 1) and N(uy, 1) is

MD*+ D? — @M + uxpy)D* — (1 + u% + u3)D + M — puxuyl. (2.11)

Let us now provide a derivation of this Stein operator. Let X and Y be independent standard
normal random variables and define Z = (X + ux) (Y + ny). We will use repeatedly the fact
that E[Wg(W)] =E[g'(W)] for W ~ N(0, 1), as well as conditioning arguments, and we let
Ew/[] stand for the expectation conditioned on W. Let f : R — R be four times differentiable
and such that E|Zf®(Z)| < oo fori =0,1,...,4 and E| f(Z)| < o0 fori =0,1,2,3,
where f(© = f. Then

E[Zf(Z2)] =E[(X + ux)(Y + puy) f((X + px) (Y + py))]
=E[(Y + up)Ey[Xf (X + pnx) (Y + uy)]] + nxE[Y + uy) f(2)]
=E[(Y + u)2 ()] + uxE[(Y + uy) £ (2)]
=E[Y (Y + uy) f'(2)] + uxE[(Y + ny) f(D)] + nyE(Y + uy) f'(2)]
=E[f (D] +E[(X + ux)Y + uy) f(D)] + uxE[(Y + uy) f(Z)]
+ uyE[(Y + pny) f(2)]
= (14 1})E[f (D] + E[Zf"(D)] + nx v E[f ()] + uxE[Y £ (2)]
+ wyE[Y £ (2)]. (2.12)
By again applying a conditioning argument, we obtain
E[Yf(Z)] =E[(X + ux) f'(2)]
= uxBLf" (D] +E[Xf'(2)]
= uxE[f (D] +E[(Y + pny) f(2)]
(and the same applies to E[Y f/(Z)]). Hence,

E[Zf(2)]
= (1+ uy)E[f (D] + E[2f" (D)) + nxuyE[ £ (2)] + uxE[f'(Z)]
+uxwyE[f (D] + uxBE[Y (D] + nyuxELf"(2)] + iy B[ £ P (2)]
+ wyE[Y O (2)] + uyE[Y £ (2)]
= (1+ 1% + u})E[f (D] +E[21"(2)] + nxnyE[ £ (2)]
+2uxuyE[f"(2)] + nyE[ P (2)]
+uxE[Y ()] + uyE[Y fP(2)). (2.13)

Isolating the expressions depending on Y from (2.12) and (2.13), we obtain two different
equations:

uxE[Y ()] + wyE[Y (2] =E[(Z — pxpy) f(Z)
— (1 + % +u3)f(2)
—(Z+2uxpy) f(2) — 13 FO(2)] (2.14)
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and
WXE[Y (D)) + wyB[Y fOD] =E[(Z — uxpn) f(Z) = (1 + 1y) fP(2)
- Zf92)). (2.15)
Subtract (2.15) to (2.14) to get
E[ZfP(Z)+ fO(2) — QZ+ pxpy) f(2) — (1 + u% +13) f1(2)
+(Z —uxpy) f(Z2)]=0,
from which we deduce that (2.11) is a Stein operator for Z.
Lastly, we note that applying the operator (2.9) to f(x) = g’(x) + g(x) yields
xg W) + 80 () — (2x + 1?)g" (¥) — (14 24%)g'(x) + (x — u?)g(x),

which we recognise as the Stein operator (2.11) in the special case ux = uy = u.

2.2.5 Sums of products of normals. Let us begin by noting a simple result, that has perhaps
surprisingly not previously been stated explicitly in the literature. Suppose X, X1, ..., X, are
i.i.d., with Stein operator Ax f(x) = Y7 (axx + bx) f ¥ (x), where m > 1 and the a; and
by, are real-valued constants. Let W = 27:1 X ;. Then, by conditioning,

E[(aoW + nbo) f (W)]

=Y E[E[(a0X; + bo) fWIX1, ..., Xj—1, Xjs1, ... Xn]]
j=1

= _ ZE[E[Z(aka +b) fOW) X, ..., X, XjH,...,XnH
j=1

k=1

- _E[Z(akw + nbk)f“‘)(W)}.

k=1

Thus, a Stein operator for W is given by

Aw f() =Y (axx +nbi) f©(x). (2.16)
k=0

Remark 2.6. Identity (2.16) actually generalises similar observations for score functions and
Stein kernels, for which such an additive stability is well-known, see Nourdin, Peccati and
Swan (2014).

Since the coefficients in the Stein operators (2.9) and (2.11) are linear, we can use (2.16)
to write down a Stein operator for the sum W = Y""_, X;Y;, where (X;)i<i<r ~ N(ux, 1)
and (Y;)1<i<r ~ N(uy, 1) are independent. When ux = ny = u, we have

Aw=MD*+ 1 —M)D* = (M +r(1 +u*))D+ M —rp’l, (2.17)
and when px and py are not necessarily equal, we have
Aw=MD*+ D> — QM +rpuxuyDD* —r(1 + u% +u3)D+ M —ruxpyl. (2.18)

When puy = puy = 0, the random variable W follows the VG(r, 0, 1, 0) distribution (see
Gaunt (2014), Proposition 1.3). Taking g = f' — f in (2.17) gives Ay g(x) = xg"(x) +
rg’(x) — xg(x), which we recognise as the VG(r, 0, 1, 0) Stein operator that was obtained in
Gaunt (2014).
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3 Some results concerning the Stein operators for products of independent
normal random variables

3.1 On the minimality of the operators

The operator (2.8) is at most a seventh order differential operator. However, for particular
cases, such as the product of two i.i.d. non-centered normals, the operator reduces to one
of lower order, see Section 2.2.1. Whilst we believe that the third order operator (2.9) is a
minimal order polynomial operator, we have no proof of this claim (nor do we have much
intuition as to whether the seventh order operator (2.8) is of minimal order). We believe this
question of minimality to be important.

Conjecture 3.1. There exists no second order Stein operator (acting on smooth functions
with compact support) with polynomial coefficients for the product of two independent non-
centered normal random variables.

One can use a brute force approach to verify the conjecture for polynomials of fixed order
(if the conjecture holds). Such results would be worthwhile in practice, because a third order
Stein operator with linear coefficients may be easier to use in applications than one of second
order with polynomial coefficients of degree greater than one.

Let us now us the brute force approach to prove that there is no second order Stein oper-
ator with linear coefficients for the product of two independent non-centered normals (gen-
eralisations are obvious). Let X and Y be independent N (1, 1) random variables and let
Z = XY . Suppose that there was such a Stein operator for Z, then it would be of the form
Azf(x) = Z?:O(QO,]' + al’jx)f(f)(x), where (@ = f. Now, if Az was a Stein operator
for Z, we would have E[Az f(Z)] =0 for all f in some class F that contains the mono-
mials {x* : k > 1}. Taking f(x) = x*, k =0,1,...,5, we obtain six equations for six un-
knowns. Letting ;. denote EZ*, we have m1=1,u>=4, u3 =16, uqg = 100, s = 676 and
e = 5776. This leads to the system of equations

aio+aoo=0

ai,1+ao,1 +4ai0+ao0=0

2a12 +2a02 + 8ay 1 + 2ap.1 + 16a; o + 4ago =0

24a1 2 + 6ap2 +48ay.1 + 12a0,1 + 100a;,0 + 16ag o =0

192a1 2 4+ 48ap.2 +400ay,1 + 48ap,1 + 676a1,0 + 100ag.o =0
200041 2 + 320ap 2 + 3380ay,1 + 500ap,1 + 5776a1,0 + 67640 = 0.

We used Mathematica to compute that the determinant of the matrix corresponding to this
system of equations is 783,360 # 0. Therefore, there is a unique solution, which is clearly
a2 =---=ap,o = 0. Thus, there does not exist a second order Stein operator with linear
coefficients for Z.

Similarly, one can show that there is no third order Stein operator with linear coeffi-
cients for the product of two independent normals with different means. Here we took X ~
N(1,1) and Y ~ N(2, 1), and sought a Stein operator of the form Az f(x) = Zizo(ao,j +
alvjx)f(j)(x). We then used the monomials f(x) = x* k=0,1,...,7, to generate eight
linear equations in eight unknowns, and found the determinate of the matrix corresponding
to this system of equations to be 10,157,222,707,200 # 0.
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3.2 Characterisation by the operators

We begin with a simple general result, which perhaps surprisingly has not previously been
given in the literature. The proof technique has, however, appeared in the literature; see the
proof of Lemma 5.2 of Ross (2011) for case of the exponential distribution.

Proposition 3.2. Suppose that the law of the random variable X, supported on I C R, is
determined by its moments. Let the operator Ax =Y 7_, 2?21 a,"ij D', where aj €R,
act on a class of functions F which contains all polynomial functions. Suppose Ax is a Stein
operator for X: that is, for all f € F,

E[Ax f(X)] =0. (3.1)

Now, let m = max; j(j — i) —min; j(j — i) — 1, where the maxima and minima are taken
over all i, j such that a; j # 0. Suppose that the first m moments of Y are equal to those of
X and that

E[Ax f(¥)]=0 (3.2)

forall f € F.ThenY has the same law as X.

Proof. We prove that all moments of Y are equal to those of X. As the moments of X deter-
mine its law, verifying this proves the proposition. The monomials {x¥ : k > 1} are contained
in the class F, so applying f(x) = x¥, k > m, to (3.2) yields the recurrence

> ai jGEY* T =0, k=m, (3.3)
iJ

where C, =k(k —1)---(k—i+1)if k—i+ 1> 0 and C; = 0 otherwise. We have that
EY? =1 and we are given that EYX = EX¥ for k = 1,...,m. We can then use forward
substitution in (3.3) to (uniquely) obtain all moments of Y. Due to (3.1), E[Ax f(X)] = O for
all f € F, and so it follows by the above reasoning that

Za,-,jCkEXkH_i:O, k>m.
i,j

But this is same recurrence relation as (3.3) and, since EY* =EX* for k=1,...,m, it
follows that EY* = EX* for all kK > m as well. O

If we have obtained a Stein operator Ax for a random variable X, then Proposition 3.2
tells us that the operator characterises the law of X if X is determined by its moments. This
characterisation is weaker than those typically found in Stein’s method literature, as it in-
volves moment conditions on the random variable Y. This is perhaps not surprising, because
the characterisations given in the literature have mostly been found on a case-by-case basis,
whereas ours applies to a wide class of distributions.

The distribution of the product of two independent normal distributions is determined by
its moments, which can be seen from the existence of its moment generating function M (s)
for all |s| < 1; see Section 3.3.1. The following full characterisation of the distribution is thus
immediate from Proposition 3.2.
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Proposition 3.3.

(1) Let W be a real-valued random variable whose first three moments are equal to that of
the random variable Z = XY, where X ~ N(ux, 1) and Y ~ N(uy, 1) are independent.
Then W is equal in law to Z if and only if

E[WfD W)+ fOW) — QW + uxpy) f" (W)
— (L4 ux + 1y) £/ W) + (W — uxpuy) f(W)] =0 (34)

for all functions f € C*(R) such that E|Zf ) (Z)| < oo for0 < j <4,and E| f®(Z)| <
oo for 0 < k <3, where f(o) =f.

(i) Now suppose that ;ux = y = W, and that the first two moments of W are equal to those
of Z. Then W is equal in law to Z if and only if

E[WFS W)+ (1 — W) f" (W) — (W + 1+ 12 (W) + (W — 1i2) fF(W)] =0

for all f € C3(R) such that B|ZfW(Z)| < 0o, 0 < j <3, and E|f®(Z)| < oo,
0<k<2.

Proposition 3.2 can be used to prove that some other Stein operators given in the litera-
ture fully characterise the distribution. For example, the Stein operator for the product of n
independent Beta random variables of Gaunt (2018) is characterising, since this product is
supported on (0, 1) and thus the distribution is determined by its moments.

3.3 Applications of the operators

3.3.1 Characteristic function. As the Stein operator (2.11) has linear coefficients, it turns
out to be straightforward to use the characterising equation (3.4) to find a formula for the char-
acteristic function of the random variable Z = XY, where X ~ N(ux, 1) and Y ~ N(uy, 1)
are independent.

On taking f(x) = el in the characterising equation (3.4) and setting ¢ () = E[e'4], we
deduce that ¢ (¢) satisfies the differential equation

(" +202 + 1)g' () + (=it + pxpyt® — (1+ px + 1y)it — uxpy)p(®) =0. (3.5

It should be noted that f(x) = e is a complex-valued function; here we have applied the
characterising equation to the real and imaginary parts of f, which are themselves real-valued
functions. Solving (3.5) subject to the condition that ¢ (0) = 1 then gives that

(1) =

—t (Uit + 3t — 2iMX,uY)) (3.6)

1
Ve eXp( 201+ 22)

Setting s = it yields a formula for the moment generating function M (s) = E[e* 21, which is
well-defined for |s| < 1. We doubt these formulas are new, but it is interesting to note that we
were able to obtain such a simple proof via the Stein characterisation.

3.3.2 Probability density function. Let X ~ N(ux,1) and Y ~ N(uy, 1) be independent,
and let Z = XY . For ux = pny =0, it is a well known and easy to prove result that the p.d.f.
is given by pz(x) = %K0(|x|), x € R. However, in general, the p.d.f. takes a much more
complicated form (see Cui et al. (2016)): for x € R,

! —(uk+u)/2 X & x2n—m|x|m—n 2n\ o on—m
pr(r) = Le Ui ZZW(’”>MXMY Kn-a(ix). 3.7

n=0m=0
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It is possible to use the Stein operators for the product Z to gain insight into why there is
such a dramatic increase in complexity from the zero mean case to non-zero mean case. To
see this, we recall a duality result given in Remark 2.7 of Gaunt, Mijoule and Swan (2019)
(see also Section 4 of that paper for further details). If V' admits a smooth density p, which
solves the differential equation Bp =0 with B=3_; ; bijM /D', then a Stein operator for V
isgivenby A=3%; ;(— Dib; j DM/, and similarly given a Stein operator for V one can write
down a differential equation satisfied by p. In this manner, we can write down differential
equations satisfied by the density pw of the random variable W = }"7_, X;Y;, where the X;
and Y; are independent copies of X and Y respectively, using the Stein operators (2.17) and
(2.18) for this distribution. When puy = iy = u, we have

xpP )+ (x +3=r)ply ) — (x +r(1+ 12) = 2) ply (x)
— (x+1=rp?)pwx) =0, (3.8)

and in general

xpi () +3p%) (x) — @x + ruxy) ply (x)

+(r(1 4 1%+ 13) = 4) ply () + (x — ruxpey) pw (x) = 0. (3.9)

In the special case ux = uy = 0, the density of Z satisfies the modified Bessel differential
equation xp’ (x) + p’,(x) —xpz(x) =0.

From Section 3.1 and the duality result of Gaunt, Mijoule and Swan (2019), we know
there do not exist differential equations for pz with linear coefficients with a lower de-
gree than (3.8) and (3.9). Moreover, we were unable to transform (3.8) or (3.9) into a well-
understood class, such as the Meijer G-function differential equation. Therefore, the increase
in complexity in the p.d.f. pz of Z from the zero mean to non-zero mean case can be un-
derstood from the increase in complexity of the differential equation satisfied by pz. Also,
due to the above reasoning, it seems plausible that formula (3.7) cannot be simplified fur-
ther.

Finally, we note that there is not a severe increase in complexity in the differential equa-
tions satisfied by W from the r = 1 case to the general case. To the best of our knowledge, a
formula for general r > 1 has not been obtained in the literature, and even if the differential
equations (3.8) and (3.9) are not ultimately used to derive such a formula, they do indicate
that the formula should be at a similar level of complexity to that of (3.7), and thus provide
motivation for obtaining such a formula. We note that such a result would be of interest due to
the occurrence of such random variables in, for example, electrical engineering applications,
see Ware and Lad (2013).
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