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Abstract. We consider multiple imputation (MI) for unbalanced ranked set
samples (URSS) by considering them as data sets with missing values. We
replace each missing value with a set of plausible values drawn from a pre-
dictive distribution that represents the uncertainty about the appropriate value
to impute. Using the structure of the MI dataset, we develop algorithms that
imitate the structure of URSS to carry out the desired statistical inference. We
provide results for the convergence of the empirical distribution functions of
imputed samples to the population distribution function, under both URSS
and simple random sampling (SRS). We obtain the variances of the imputed
URSS, and the expected values of the variance estimators. We also study the
problem of quantile estimation using an imputed URSS and propose a hybrid
method based on the bootstrap and imputation of URSS data. We apply our
results to estimate the mean and quantiles of the mercury in contaminated fish
under perfect and imperfect URSS.

1 Introduction

Ranked set sampling is a data collection technique for situations where measuring the vari-
able of interest is difficult and/or costly but (imperfect) ranking of sampling units can be
done cheaply. Introduced by McIntyre (1952), the study of ranked set sampling has resulted
in a substantial literature. Ranked set sampling has found applications in agriculture, reliabil-
ity (Mahdizadeh and Zamanzade (2016)), biometrics (Samawi and Al-Sagheer (2001)), and
medical studies (Hatefi and Jafari Jozani (2017)), among others. Given the rank information,
it is well known that the usual estimator of the population mean using a ranked set sample
(RSS) is more efficient than its counterpart under simple random sampling (SRS). Theoret-
ical work has been undertaken on RSS designs including information theory (Jafari Jozani
and Ahmadi (2014)), finite population inference (Ozturk and Jafari Jozani (2014)) and tests
of perfect judgment ranking Amiri, Modarres and Zwanzig (2016), to name a few. We refer
the reader to a monograph in RSS by Chen, Bai and Sinha (2004) that provides invaluable
information on ranked set sampling, its many variants and applications. For a recent review
of the current developments on RSS, see Wolfe (2012).

To collect a RSS of size k from a population with corresponding population cumulative
distribution function (CDF) F(·), one randomly identifies new k2 units in the population and
randomly divides them into k groups (sets) of size k. Units in each set are ordered using any
means other than the actual measurement of the variable of interest. Now, one selects the j th
smallest unit from set j , j = 1, . . . , k for further inspection and taking the final measurement.
This constructs one cycle of the ranked set sampling procedure. To increase the sample size
to nk, one can repeat this process n times with new samples from the population. The ranked
set sampling procedure for one cycle is presented in Table 1, where X is the definitive mea-
surement and sampling units are ordered in each set. According to this procedure one needs
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Table 1 Display of k2 observations in k ranked sets of k

units with RSS sample asterisked

X∗
(11)

X(12) · · · X(1(k−1)) X(1k)

X(21) X∗
(22)

· · · X(2(k−1)) X(2k)

...
...

...
...

X(k1) X(k2) · · · X(k(k−1)) X∗
(kk)

to select the diagonal elements {X∗
(11),X

∗
(22), . . . ,X

∗
(kk)}. It should be noted that we use the

round parentheses instead the square parentheses because the ranking is often imperfect and
X∗

(jj) might not necessarily be the j th order statistic in its corresponding set. For the sake of
simplicity, we represent the sample as {X(1),X(2), . . . ,X(k)}. The procedure is then repeated
until n cycles of k observations are obtained. It is noteworthy that the resulting measurements
are independently, but not identically distributed from F(·).

For an unbalanced ranked set sample (URSS) the number of observations with rank r ,
r = 1, . . . , k, are not necessarily equal, and the resulting sample is denoted by XURSS =
{Xr , r = 1, . . . , k}, where Xr = {X(r)j ; j = 1, . . . , nr} are the actual observations in a random
sample from F(r), the CDF of the r th order statistic in a set of size k from F(·). The empirical
distribution function (EDF) of XURSS is defined by

F̂qn(t) = 1

n

k∑
r=1

nr∑
j=1

I (X(r)j ≤ t) =
k∑

r=1

qnr F̂(r)(t), (1.1)

where F̂(r)(t) = 1
nr

∑nr

j=1 I (X(r)j ≤ t), when nr ≥ 1, n = ∑k
r=1 nr and qnr = nr/n. An esti-

mate of the population mean using (1.1) is the pooled sample mean defined by

X̄qn(t) = 1

n

k∑
r=1

nr∑
j=1

X(r)j . (1.2)

Most statistical procedures that are designed for simple random samples (SRS) can be
extended to the balanced ranked set sampling design provided that ranked mechanism is
consistent, that is, F(t) = 1

k

∑k
r=1 F(r)(t). In contrast, unbalanced ranked set sampling is a

more complex sampling process which does not satisfy the fundamental consistency property.
For this design, statistical inference is mostly based on large-sample theory. However, the
asymptotic distribution of many URSS estimators can not be readily used as the sample size
is usually small. In addition, as discussed in Amiri, Jafari Jozani and Modarres (2014), the
EDF of a URSS does not converge to the CDF and the algorithms developed for bootstrapping
balanced RSS can not be applied for URSS situation. In other words, as nr tends to infinity,
F̂(r)(t)

a.s.−→ F(r)(t) and provided that qnr −→ qr , for r = 1, . . . , n, we have

F̂qn(t) − Fq(t)
L−→ 0 as nr −→ ∞, (1.3)

where L stands for convergence in law and F̂q(t) = ∑k
r=1 qrF(r)(x) �= F(x) unless qr = 1

k
,

for r = 1, . . . , k.
To side-step this difficulty, one can transform the URSS data to a balanced RSS. This trans-

formation allows one to apply standard techniques of bootstrap, estimation and testing that
are available for balanced RSS data to the completed dataset, which contains both observed
and imputed values. In this direction, Amiri, Jafari Jozani and Modarres (2014) explored
different bootstrapping methods.
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In this paper, we take another approach for transforming an URSS to a balanced RSS using
multiple imputation (MI) techniques and by treating URSS as a dataset with missing values.
Instead of filling in a single value for each missing data item, we replace each missing value
with a set of plausible values drawn from the appropriate conditional predictive distribution,
which represents the uncertainty about the right value to impute. This results in multiple
imputed data sets where standard statistical analysis can be carried out on each imputed
data set to produce multiple analysis results. These results are then combined to obtain one
overall analysis. MI accounts for missing data by restoring not only the natural variability in
the missing data, but also by incorporating the uncertainty caused by estimating missing data.
Uncertainty is accounted for by creating different versions of the missing data and observing
the variability between imputed data sets.

We also study a hybrid approach based on MI and bootstrap. We argue that the data ob-
tained from an URSS design with n = ∑k

r=1 nr can be modelled as a missing data prob-
lem in the context of a balanced RSS design where the r-th smallest unit in a set of size
k, r = 1, . . . , k, was to be observed m times instead of nr times, and m = max{n1, . . . , nk}.
While MI was developed for SRS with i.i.d. structure, we develop MI Algorithms for URSS
and overcome this problem. Furthermore, we consider estimating the mean and the quan-
tiles under URSS. Statistical inference for quantiles under RSS is difficult and we develop an
algorithmic approaches via MI to circumvent this difficulty.

Rubin (1987) proposed MI as a method of handling missing values (nonresponse) in sur-
vey sampling to retain the main advantages of single imputation, and avoid its drawbacks by
replacing each missing datum with two or more values representing a distribution of likely
values. Since Rubin (1987), the theory and application of MI have been advanced in med-
ical studies, high dimensional data analysis, cross-sectional and longitudinal data analysis,
survival analysis, among others. In a recent book, Carpenter and Kenward (2012) show MI
produces unbiased parameter estimates, is robust to departures from the normality assump-
tion and provides reasonable results when the sample size is small or there is a high rate of
missing data. In addition, MI is easily be applied in increasingly complex data structures and
is computationally simpler than other methods for imputing missing data such as the max-
imum likelihood estimation. For more information, the reader is referred to Rubin (1996),
Rubin (1987), Rubin and Schenker (1986), Schafer and Olsen (1998), Li, Stuart and Allison
(2015).

In Section 2, we discuss MI for SRS, prove convergence of the EDF of the imputed sample
to the population CDF. We obtain the variance of the imputed URSS, and the expected value
of the variance estimator. Section 3 examines MI for URSS, shows the convergence of the
EDF under MI, obtains the variance of the imputed mean, and the expected value of the
variance estimator. In Section 4, we consider the problem of quantile estimation using URSS
data and show how MI can be used to make inference about population quantiles using the
transformed data. Section 5.1 describes a real data application to examine the performance of
our proposed methods for estimating of mean and quantiles. Concluding remarks are given in
Section 6. Finally, the Appendix is devoted to the proofs and some of the necessary technical
results.

2 Multiple imputation

Suppose we obtain an i.i.d. sample {X1, . . . ,XN } of size N from a distribution F(·) with
mean μ and variance σ 2 < ∞. Suppose N − n of the observations are missing and we are
interested in estimating the population mean μ. Missing data are assumed to be ignorable,
hence the observed sample X = {X1, . . . ,Xn} is a completely random sample. To estimate
μ, using the MI technique, we proceed via the MI Algorithm, as discussed below:
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MI Algorithm.

1. Sample r = (N − n) values independently with replacement from the observed sample
X = {X1, . . . ,Xn}. These provide the imputed values X �

m = {X�
1,m, . . . ,X�

r,m}.
2. Estimate μ by μ̂m = 1

N
(
∑n

i=1 Xi,m + ∑r
i=1 X�

i,m) and the within-imputation variance by

Um = V̂ar(μ̂m) = 1

N(N − 1)

{
n∑

i=1

(Xi,m − μ̂m)2 +
r∑

i=1

(
X�

i,m − μ̂m

)2

}
,

where N = n + r.
3. Repeat Steps 1–2, for m = 1, . . . ,M to obtain M imputed datasets, and M estimates μ̂m

and Um = V̂ar(μ̂m) for m = 1, . . . ,M .
4. Let Ŵ = 1

M

∑M
m=1 Um be the average within-imputation variance and B̂ = 1

M−1 ×∑M
m=1(μ̂m − μ̂)2, be the between-imputation variance. The MI estimator of μ is then

defined as

μ̂ = 1

M

M∑
m=1

μ̂m, (2.1)

with its corresponding variance estimator

V̂ = Ŵ +
(

M + 1

M

)
B̂. (2.2)

Rubin and Schenker (1986) present a nonparametric MI method, called the approximate
Bayesian bootstrap imputation (ABBI), which involves a two-stage sampling procedure to
generate proper imputations with minimal distributional assumptions. To obtain ABBI, one
should proceed as in the MI Algorithm except that its step 1 is modified as follows: Sample
n observations with replacement from the observed X = {X1, . . . ,Xn}. Denote this sample
by X ∗

m = {X∗
1,m, . . . ,X∗

n,m}. Select the r = N − n missing Xi ’s with replacement from X ∗
m.

These provide the imputed values X �
m = {X�

1,m, . . . ,X�
r,m}. Rubin (1987) showed that ABBI

(double impute) provides an asymptotically unbiased estimate of μ as both N and M tend to
infinity.

The following proposition shows that the EDF of the completed SRS sample, using MI,
converges to the population cumulative distribution function F(·).
Proposition 1. Consider the MI of a SRS and let X �

m = {X�
1,m, . . . ,X�

r,m} be an i.i.d. sample
randomly taken from F̂n(x) in Step 1 of the MI Algorithm, where F̂n(x) is the EDF of X =
{X1, . . . ,Xn}. Let N = n + r. If F̂ �

N(t) is the EDF of the completed sample {X ,X �
m}, then∥∥F̂ �

N(t) − F(t)
∥∥∞ = sup

t∈R

∣∣F̂ �
N(t) − F(t)

∣∣ −→ 0.

The following proposition shows that the EDF of the completed SRS sample, using ABBI
also converges to the population cumulative distribution function (CDF).

Proposition 2. Consider the approximate Bayesian bootstrap imputation and let X �
m =

{X�
1,m, . . . ,X�

r,m} be an iid sample randomly taken from F̂n(x) in Step 1 of the MI Algo-
rithm using the ABBI method, where F̂n(x) is the EDF of X = {X1, . . . ,Xn}. If F̂ �

N(t), with
N = n + r, is the EDF of the complete sample {X ,X �

m}, then∥∥F̂ �
N(t) − F(t)

∥∥∞ = sup
t∈R

∣∣F̂ �
N(t) − F(t)

∣∣ −→ 0.
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The following proposition obtains expressions for the variance of the imputed mean,
Var(μ̂), and the expected value of the variance estimator E(V̂ ) under MI.

Proposition 3. The variance of the imputed mean (2.1) and the expected value of the variance
estimator (2.2) are, respectively,

Var(μ̂) = σ 2

n
+ 1

M

(
N − n − 1

N2

)
σ 2, (2.3)

and

E(V̂ ) = 1

N − 1

(
1 − 1

n
− N − n − 1

N2

)
+ M + 1

M

N − n − 1

N2 σ 2. (2.4)

From (2.4) one can easily observe that the estimator of the variance of the imputed mean is
biased. Under the ABBI method, Kim (2002) derived an expression for the Var(μ̂) as follows,

Var(μ̂) = 1

N2

(
N2

n
+ N − n

M

(
N − 1

n
− N

n2

))
σ 2, (2.5)

and showed that the ABBI variance estimator is also biased as

E(V̂ ) = 1

N2

(
N2

n
− (N − n)N

n

(
3

N
+ 1

n

)
+ N − n

M

(
N − 1

n
− N

n2

))
σ 2. (2.6)

In order to reduce the bias, Kim (2002) suggests to select d observations from X in Step 1
of the ABBI Algorithm, where d = (n−1)(N−n−1)(N−2)

(N−1)(N−n+1)+N+n+1 . Parzen, Lipsitz and Fitzmaurice

(2005) suggests a bias corrected version of ABBI method using a new estimator V̂ � = f V̂ ,
where f = Var(μ̂)

E(V̂ )
provided that f (·) does not depend on any unknown parameters. One can

use similar methods to reduce the bias of the variance estimator (2.2). One can also derive an
unbiased estimator of the variance by directly working with (2.2) and modifying the bias.

3 Imputing URSS

In this section, we use the MI technique to transform URSS data to a balanced RSS. This
transformation allows one to apply standard techniques of bootstrap, estimation and test-
ing that are available for balanced ranked set sampling to the completed dataset. To ac-
complish this, we let N = max{ni, i = 1, . . . , k} and using the MI Algorithm, for each
m = 1, . . . ,M , we obtain N − nr observations from Xr = {X(r)1, . . . ,X(r)nr } to add to the
r th stratum in order to fill in the values that are needed to construct the balanced RSS. This
results in a balanced imputed RSS data X � = {X �

1 , . . . ,X �
M}, where X �

m = {X �
1,m, . . . ,X �

k,m},
m = 1, . . . ,M , and

X �
r,m = {

X�
(r)1,m,X�

(r)2,m, . . . ,X�
(r)nr ,m

,X�
(r)nr+1,m, . . . ,X�

(r)N,m

}
. (3.1)

Here, X�
(r)j,m = X(r)j , r = 1, . . . , k, j = 1, . . . , nr is the observation from the rth stratum.

Now, estimates of the mean and its variance can be obtained according to the MI and ABBI
methods. Let

μ̂m = 1

Nk

k∑
r=1

N∑
j=1

X�
(r)j,m, (3.2)

Um = 1

k2

k∑
r=1

1

N(N − 1)

N∑
j=1

(
X�

(r)j,m − μ̂(r),m

)2
, (3.3)

where μ̂(r),m = 1
N

∑N
j=1 X�

(r)j,m and Um = V̂ar(μ̂m).
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Proposition 4. Suppose X = {X(i)j , i = 1, . . . , k, j = 1, . . . , ni} is an URSS from a popula-
tion with CDF F(·) and X � = {X �

1 , . . . ,X �
M} is the imputed RSS (IRSS) using the MI tech-

nique, where X �
m = {X �

1,m, . . . ,X �
k,m} with X �

r,m defined in (3.1). The variance of the mean

estimator μ̂ = 1
M

∑M
m=1 μ̂m, where μ̂m as in (3.2), is given by

Var(μ̂) = 1

k2

k∑
r=1

(
1

nr

+ 1

M

(
rr − 1

N2

))
σ 2

(r), (3.4)

where σ 2
(r) = ∫

(x − μ(i))
2 dF(i)(x), μ(r) = ∫

x dF(i)(x), and the expected value of the MI
variance estimator is given by,

E(V̂ ) = 1

k2

k∑
r=1

(
1

N − 1

(
1 − 1

nr

− rr − 1

N2

)
+ M + 1

M

rr − 1

N2

)
σ 2

(r), (3.5)

where V̂ is defined in Step 4 of the MI Algorithm.

Following the proof of Proposition 4, one can also prove the following proposition for the
ABBI Algorithm.

Proposition 5. Suppose X = {X(i)j , i = 1, . . . , k, j = 1, . . . , ni} is an URSS of size n =∑k
r=1 nr from a population with CDF F(·) and corresponding population mean μ and vari-

ance σ 2 < ∞. Suppose also that X � = {X �
1 , . . . ,X �

M} is the imputed RSS (IRSS) using the
ABBI in the MI technique, where X �

m = {X �
1,m, . . . ,X �

k,m} with X �
r,m begin defined as in (3.1).

Then, the variance of the mean estimator is given by

Var(μ̂) = 1

k2N2

k∑
r=1

(
N2

nr

+ N − nr

M

(
N − 1

nr

− N

n2
r

))
σ 2

(r), (3.6)

with the expected value of the ABBI MI estimator of the variance as,

E(V̂ ) = 1

k2N2

k∑
r=1

(
N2

nr

− (N − nr)N

n

(
3

N
+ 1

nr

)
+ N − nr

M

(
N − 1

nr

− N

n2
r

))
σ 2

(r). (3.7)

Propositions 4 and 5 show that the variance estimators are biased. To reduce the bias one
can use the method proposed by Parzen, Lipsitz and Fitzmaurice (2005). Under the ranked
set sampling setting, f = Var(μ̂)

E(V̂ )
is a function of σ 2

(r) that need to be estimated from the sam-
ple. Demirtas et al. (2007) warns that this modification may be inferior to the approximate
Bayesian bootstrap and should be used with caution under SRS. Our experience with simu-
lated RSS data shows that this modification makes minimal difference.

4 Quantile estimation using URSS data

In this section, we show how the MI Algorithm can be used to make inference about the
population quantile using URSS data. This is an important problem as there are many cases
in which one is interested in making inference about the quantiles of a distribution. For a
literature review of quantile estimation under ranked set type sampling designs see Chen
(2000), Nourmohammadi, Jafari Jozani and Johnson (2014) and references therein.

Let X = {X1, . . . ,Xn} represent a SRS of size n from a population with continuous distri-
bution function F(·) and density function f (·). The p-th quantile of the population is defined
as

ζp = inf
{
x : F(x) ≥ p

}
,
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where F(ζp) = p. Let X(1) ≤ · · · ≤ X(n) be the order statistics of X . Note that a simple
method of estimating the p-th quantile uses

ζ̂p,SRS =
{
X(np) if np is an integer,

X(
np�+1) if np is not an integer.

For 0 < p < 1, suppose F(·) is absolutely continuous at ζp . The asymptotic distribution of a
central order statistic is given by (Serfling (2009))

√
nf

(
F−1(p)

)(X(
np�+1) − F−1(p)√
p(1 − p)

)
L−→ N(0,1), as n −→ ∞,

and |ζ̃p,SRS − ζp| ≤ 2
√

logn

f (ζp)
√

n
.

To find the quantile estimate under RSS sample, one can order the entire RSS set of obser-
vations {X(r)j , r = 1, . . . , k, j = 1, . . . ,m} to obtain X∗

(1) ≤ · · · ≤ X∗
(n) with n = mk. Using

(1.1), the EDF of the RSS sample, for multi-cycle RSS data with n = mk, is given by

F̂ (x) = 1

mk

k∑
r=1

m∑
j=1

I (X(r)j ≤ x) = 1

n

n∑
i=1

I
(
X∗

(i) ≤ x
)
,

and the RSS estimator of the p-th quantile is now defined by ζ̂p,RSS = inf{x : F̂ (x) ≥ p}.
Chen (2000) studied the estimation of the population quantiles using balanced RSS data
when n = mk. The sample pth quantile based on balanced RSS data can be expressed as

ζ̂p,RSS =
{
X∗

(np) if np is integer,

X∗
(
np�+1) if np is not integer.

Let the density function f (·) be positive in a neighborhood of ζp and continuous at ζp . Then,
the convergence of the estimate ζ̂p,RSS to ζp , for sufficiently large n, is guaranteed as

P

(
|̂ζp,RSS − ζp| < 2

√
logn

f (ζp)
√

n

)
= 1.

Also, the asymptotic distribution of ζ̂p,RSS is

√
n(ζ̂p,RSS − ζp)

L−→ N

(
0,

σ 2
n,p

f 2(ζp)

)
,

where σ 2
n,p = 1

n

∑n
r=1 B(p, r, n + r − 1)(1 − B(p, r, n + r − 1)), and B(x, r, s) denotes the

distribution function of a beta random variable with parameters r and s. Since B(p, r, n +
r − 1) = F(r)(ζp), the variance does not depend on the unknown parameter and

√
n(ζ̂p,RSS −

ζp)/
σ̂n,p

f (ζ̂p,RSS)
provides an asymptotic pivotal quantity and a test statistic. This statistic can be

used to build confidence intervals and perform test of hypothesis on the population quantiles.
As we explained in Section 1, under URSS the empirical distribution does not converge

to F(x) and so the asymptotic properties mentioned for balanced RSS do not hold for
URSS. The problem can be overcame by using MI to construct the imputed balanced RSS
sample X � = {X�

1 , . . . ,X�
k } where X �

r = {X�
(r)1,X

�
(r)2, . . . ,X

�
(r)nr

,X�
(r)nr+1, . . . ,X

�
(r)N }, for

r = 1, . . . , k, is obtained following the Step 1 of the MI Algorithm for URSS data. To find
the quantile estimate under the imputed RSS sample, one can order {X�

(r)j , r = 1, . . . , k, j =
1, . . . ,N} by ordering the entire RSS set of observation, denoted by {X�∗

(1) ≤ · · · ≤ X�∗
(n�)} with

n� = kN . The EDF of the imputed RSS sample, for multi-cycle RSS is given by

F̂ �(x) = 1

Nk

k∑
r=1

N∑
j=1

I
(
X�

(r)j ≤ x
) = 1

n�
n∑

i=1

I
(
X�∗

(i) ≤ x
)
.



Multiple imputation 759

The p-th imputed RSS quantile is defined by ζ̂ �
p,RSS = inf{x : F̂ �(x) ≥ p}, hence the infer-

ence of quantile can be used on the imputed URSS similar to the one based on the balanced
RSS design.

4.1 Methods of URSS estimation

In this section, we propose the following methods for quantile and estimation based on URSS
data: Following Amiri, Jafari Jozani and Modarres (2014), the algorithm Boot resamples from
each stratum to provide a balanced RSS and estimate the parameter of interest. The algorithm
MI imputes the URSS data to form a balanced RSS and MI-Boots is a hybrid of imputation
and bootstrap method. Other algorithms include MI, and Boot-Boot that are explained below.

Algorithm MI (Calculate MI estimate of ζp).

1. Impute each stratum, X �
i , i = 1, . . . , k.

2. Combine all strata X �.
3. Calculate the quantile for given p, ζ̂p(X �)
4. Repeat the Steps 1–3 for M times. ζ̂m,p(X �), m = 1, . . . ,M .
5. Consider the average of repeated estimate as the final estimate, ζ̂BM,p = 1

M
×∑M

m=1 ζ̂m,p(X �).

Algorithm ABBI (Calculate ABBI estimate of ζp).

1. Double Impute each stratum, X �
i , i = 1, . . . , k.

2. Combine all strata X �.
3. Calculate the quantile for given p, ζ̂p(X �)
4. Repeat the Steps 1–3 for M times. ζ̂m,p(X �), m = 1, . . . ,M .
5. Consider the average of repeated estimate as the final estimate, ζ̂BM,p = 1

M
×∑M

m=1 ζ̂m,p(X �).

Algorithm MI-Boot (Calculate estimate of ζp using a hybrid of MI and Boot).

1. Impute each stratum, X �
i , i = 1, . . . , k.

2. Combine all strata X �, then resample from X � and denote as X �∗.
3. Calculate the quantile for given p, ζ̂p(X �∗)
4. Repeat the Steps 1–3 for M times. ζ̂m,p(X �∗), m = 1, . . . ,M .
5. Consider the average of repeated estimate as the final estimate, ζ̂BM,p = 1

M
×∑M

m=1 ζ̂m,p(X �∗).

Algorithm Boot (Calculate bootstrap estimate of ζp).

1. Resample from each stratum Xr = {X(r)j ; j = 1, . . . , nr} with maximum size,
max{nr}kr=1. Denote them as X ∗

i , i = 1, . . . , k.
2. Combine all strata and calculate the quantile for p, ζ̂p(X ∗)
3. Repeat the Steps 1–2 for B times, ζ̂p,b(X ∗), b = 1, . . . ,B .
4. Consider the average of repeated estimate as the final estimate, ζ̂B,p = 1

B
×∑B

b=1 ζ̂b,p(X ∗).

Algorithm Boot-Boot (Calculate bootstrap estimate of ζp).

1. Resample from each stratum Xr = {X(r)j ; j = 1, . . . , nr} with maximum size,
max{nr}kr=1. Denote them as X ∗

i , i = 1, . . . , k.
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2. Combine all strata and resample from X ∗ and denote as X ∗∗. Calculate the quantile for
p, ζ̂p(X ∗∗)

3. Repeat the Steps 1–2 for B times, ζ̂p,b(X ∗∗), b = 1, . . . ,B .
4. Consider the average of repeated estimate as the final estimate, ζ̂B,p = 1

B

∑B
b=1 ζ̂b,p(X ∗∗).

5 Real data study and numerical evaluations

In this section, we evaluate the performance of our proposed MI Algorithms for estimating
the population mean and quantiles using both real and simulated URSS data. To this end, we
first use a Fishery dataset studied in Nourmohammadi, Jafari Jozani and Johnson (2015) for
estimating the mean and quantiles of the mercury levels in fish using perfect and imperfect
URSS designs. Also, we perform simulation studies using data generated from symmetric
and asymmetric populations. We generate URSS observations following four URSS designs
denoted by D = (n1, n2, . . . , nk) with different sample sizes n = nD = ∑k

r=1 nr when k = 5,

D1 = (4,7,5,6,7) with nD1 = 29,

D2 = (7,4,5,7,6) with nD2 = 29,

D3 = (5,3,6,7,4) with nD3 = 25,

D4 = (6,7,4,5,4) with nD4 = 26.

In order to obtain Di , we first generate a balanced RSS, DO = (7,7,7,7,7), and then delete
observations from the strata randomly. Clearly, under D1 and D4, the strata with large sample
sizes are on the left or the right, but D2 is somewhat symmetric and the strata with large sizes
are settled in the central strata in D3.

We calculate the mean square of the difference (MSD) between estimators and the true
values of the parameters in the population using

∑3000
�=1 (θ̂Alg,� − θ)2 where � is the replication

number and θ̂Alg,� is the estimate of the parameter θ with different algorithms (Alg) discussed
in Section 4.1. To compare the proposed methods, we defined the relative efficiencies (RE)
as the ratio of the MSD of proposed methods under URSS to the MSD of the mean estimate
under (1.2),

∑3000
�=1 (θ̂Alg,� − θ)2/

∑3000
�=1 (θ̂SRS,� − θ)2 where θ̂SRS,� is the estimate under SRS.

Hence, RE is not simply a ratio of variances, but a ratio of mean squared errors. We note that
values smaller than 1 show the better performance of estimation based on RSS relative to its
counterpart, the pooled sample mean. We used M = 400 imputations and the replicated the
experiment 3000 times.

5.1 Mercury level in fish

We evaluate the performance of MI Algorithm for estimating the population mean and quan-
tiles based on URSS data generated from a Fishery dataset studied in Nourmohammadi, Jafari
Jozani and Johnson (2015). This dataset contains mercury contamination levels along with
the weights and lengths of 3033 of Walleye fish. Sander vitreus (Walleye) fish caught in Min-
nesota is a freshwater perciform fish native to most of Canada and to the Northern United
States.

Information on fish intake rates is included in the Exposure Factors Handbook U.S. EPA
(2011) and is often utilized in multiplicative risk models to provide estimates of risk to human
health as a result of exposure to chemicals. Christophi and Modarres (2005) considered the
distribution of a hazard index for a specified chemical in consumed fish. This index requires
estimates of the mean and quantiles of the concentration of a chemical contaminant such
as mercury in fish along with estimates of ingestion rate of fish and the chemical-specific
reference dose.
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Table 2 The relative efficiencies of proposed methods under URSS for estimating the average mercury in fish
body compared with the pooled sample mean with SRS

RE RE

Design Method Perfect Imperfect Design Perfect Imperfect

D1 MI 0.379 0.896 D2 0.386 0.803
ABBI 0.379 0.893 0.386 0.806
MI-Boot 0.381 0.897 0.390 0.806
Boot 0.380 0.894 0.386 0.805
Boot-Boot 0.383 0.902 0.384 0.811

D3 MI 0.352 0.839 D4 0.375 0.891
ABBI 0.352 0.841 0.375 0.891
MI-Boot 0.354 0.843 0.375 0.895
Boot 0.352 0.842 0.376 0.891
Boot-Boot 0.353 0.842 0.381 0.895

Note that values less than 1 are desirable.

We use the fish dataset to study the performance of the the proposed methods for estimat-
ing the quantiles of the mercury levels. As explained in Nourmohammadi, Jafari Jozani and
Johnson (2015), measuring the mercury level in fish body is a costly and time consuming
process. To obtain better samples from the fish population one can use a RSS design using
length or weight of fish to rank.

To generate an URSS, we treat the 3033 records as our population and compute the true
mean and quantiles to use in the MSD. We consider both perfect and imperfect rankings.
Under perfect ranking, we use mercury levels to perform the ranking which the consistency,
F(t) = 1

k

∑k
r=1 F(r)(t), is held. We note that imperfect ranking is only provided for com-

parison purpose. For imperfect ranking, rankings is performed using the fish weight. The
correlation coefficient between the mercury level and the fish weight is about 0.4. The Ta-
ble 2 displays the REs for estimating the mean mercury level in fish body. The proposed
methods outperform the pooled sample mean under the proposed designs.

Next, we compare the estimated quantiles URSS quantiles with the true quantiles of the
population. The quantiles are calculated for different values of p. We report their relative
efficiencies (RE), which are the ratios of the MSD of our proposed methods under RSS to the
MSD of quantile estimate under SRS. The upper panel of Tables 3 displays the REs under
perfect ranking and the last column shows the average of REs. The estimated REs that are less
than 1 indicate that the URSS based estimators are more accurate than their SRS counterparts.
We observe that the REs of RSS based estimators are less than 1 and stay stable over all the
value of p. The average of REs shows that MI-Boot and Boot-Boot have a better performance
and are about 20 percent lower than other estimators. The second panel of Table 3 presents
the performance of the methods under imperfect ranking. The results show that the proposed
method under RSS behave better than SRS and Boot-Boot provides more accurate estimates.

5.2 Simulated data

To perform simulation studies, we generate SRS, perfect and imperfect URSS data from
N(0,1) (symmetric) and Exp(1) (skewed) distributions using designs D1, . . . ,D4. We then
implement our proposed approaches and obtain corresponding estimators under each method.
The results appear in Tables 4 and 5. One can easily observe that the proposed methods in this
paper outperform SRS and Boot-IMP provides more accurate estimates. We also considered
the performance under the imperfect ranking. There are several techniques of generating im-
perfect RSS, see Frey, Ozturk and Deshpande (2007), Vock and Balakrishnan (2011), among
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Table 3 The relative efficiencies of proposed methods under perfect URSS for estimating quantiles of the mercury
level in fish body compared with their corresponding SRS estimators

Quantile

Design Method 10 20 30 40 50 60 70 80 90 Avg.

Perfect Ranking
D1 MI 0.794 0.593 0.595 0.447 0.460 0.468 0.501 0.499 0.612 0.552

ABBI 0.782 0.583 0.591 0.444 0.456 0.466 0.500 0.499 0.612 0.548
MI-Boot 0.755 0.473 0.441 0.361 0.350 0.362 0.397 0.402 0.539 0.453
Boot 0.766 0.524 0.507 0.408 0.407 0.420 0.446 0.439 0.528 0.493
Boot-Boot 0.768 0.458 0.419 0.346 0.338 0.352 0.389 0.376 0.521 0.440

D2 MI 0.617 0.599 0.575 0.507 0.512 0.494 0.481 0.566 0.608 0.551
ABBI 0.619 0.593 0.561 0.502 0.505 0.490 0.479 0.566 0.609 0.547
MI-Boot 0.576 0.473 0.436 0.412 0.393 0.378 0.384 0.442 0.523 0.446
Boot 0.545 0.536 0.525 0.474 0.466 0.440 0.423 0.484 0.534 0.491
Boot-Boot 0.559 0.451 0.422 0.397 0.385 0.363 0.366 0.422 0.505 0.430

D3 MI 0.622 0.643 0.594 0.509 0.475 0.452 0.522 0.544 0.710 0.563
ABBI 0.614 0.632 0.573 0.504 0.468 0.448 0.517 0.538 0.688 0.553
MI-Boot 0.597 0.512 0.458 0.407 0.366 0.349 0.400 0.436 0.642 0.463
Boot 0.597 0.605 0.553 0.474 0.420 0.398 0.451 0.485 0.677 0.517
Boot-Boot 0.600 0.495 0.448 0.394 0.350 0.335 0.390 0.425 0.647 0.453

D4 MI 0.526 0.503 0.492 0.470 0.506 0.513 0.563 0.605 0.743 0.546
ABBI 0.528 0.503 0.489 0.465 0.498 0.508 0.551 0.598 0.718 0.539
MI-Boot 0.514 0.406 0.360 0.382 0.414 0.408 0.441 0.498 0.658 0.453
Boot 0.509 0.438 0.414 0.436 0.472 0.480 0.513 0.564 0.705 0.503
Boot-Boot 0.520 0.387 0.342 0.372 0.404 0.400 0.433 0.486 0.653 0.444

Imperfect Ranking
D1 MI 1.059 0.891 0.646 0.529 0.536 0.567 0.614 0.697 0.936 0.719

ABBI 1.054 0.872 0.640 0.525 0.530 0.565 0.613 0.697 0.936 0.719
MI-Boot 1.066 0.791 0.542 0.458 0.436 0.486 0.551 0.628 0.873 0.647
Boot 1.033 0.816 0.579 0.492 0.481 0.517 0.558 0.630 0.839 0.660
Boot-Boot 1.076 0.765 0.523 0.449 0.427 0.469 0.529 0.608 0.865 0.634

D2 MI 1.0061 0.827 0.698 0.650 0.537 0.594 0.643 0.767 0.989 0.745
ABBI 1.010 0.814 0.687 0.648 0.532 0.590 0.640 0.769 0.987 0.741
MI-Boot 1.008 0.734 0.579 0.564 0.449 0.501 0.555 0.691 0.925 0.667
Boot 0.960 0.747 0.632 0.613 0.492 0.539 0.572 0.688 0.896 0.682
Boot-Boot 1.007 0.701 0.561 0.552 0.437 0.485 0.528 0.660 0.922 0.650

D3 MI 1.184 0.916 0.692 0.619 0.550 0.511 0.588 0.723 0.887 0741
ABBI 1.184 0.906 0.674 0.612 0.534 0.507 0.581 0.715 0.872 0.731
MI-Boot 1.171 0.821 0.582 0.532 0.449 0.428 0.507 0.656 0.850 0.662
Boot 1.150 0.864 0.641 0.579 0.490 0.463 0.531 0.669 0.841 0.692
Boot-Boot 1.171 0.801 0.561 0.523 0.430 0.413 0.490 0.635 0.856 0.653

D4 MI 0.888 0.693 0.593 0.546 0.597 0.633 0.667 0.776 1.045 0.715
ABBI 0.892 0.693 0.588 0.543 0.590 0.622 0.657 0.762 1.021 0.707
MI-Boot 0.891 0.606 0.486 0.485 0.503 0.530 0.599 0.699 1.001 0.644
Boot 0.851 0.606 0.519 0.519 0.551 0.590 0.635 0.733 1.001 0.667
Boot-Boot 0.906 0.578 0.457 0.468 0.491 0.519 0.588 0.690 1.001 0.633

Note that values less than 1 are desirable.

others. Here, we considered a variant of the fraction of neighbors method, Vock and Balakr-
ishnan (2011). Let F[i] be the distribution of imperfect RSS, which is the mixture F(i), F(i−1)

and F(i+1), F[i] = λ
2F(i−1) + (1 − λ)F(i) + λ

2F(i+1), where λ is the fraction of incorrectly
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Table 4 The relative efficiencies of proposed methods under perfect URSS for estimating quantiles of N(0,1)

compared with their corresponding SRS estimators

Quantile

Design Method 10 20 30 40 50 60 70 80 90 Avg.

Perfect Ranking
D1 MI 0.765 0.682 0.528 0.485 0.501 0.464 0.494 0.516 0.556 0.554

ABBI 0.748 0.674 0.523 0.483 0.498 0.461 0.493 0.516 0.556 0.550
MI-Boot 0.663 0.539 0.420 0.393 0.394 0.363 0.398 0.407 0.446 0.44
Boot 0.719 0.603 0.458 0.443 0.456 0.420 0.442 0.453 0.462 0.495
Boot-Boot 0.664 0.522 0.401 0.381 0.378 0.355 0.388 0.389 0.420 0.433

D2 MI 0.734 0.624 0.571 0.534 0.503 0.508 0.526 0.584 0.594 0.575
ABBI 0.735 0.614 0.560 0.526 0.496 0.505 0.526 0.584 0.594 0.571
MI-Boot 0.596 0.494 0.469 0.416 0.396 0.390 0.414 0.464 0.514 0.461
Boot 0.610 0.565 0.528 0.490 0.460 0.458 0.460 0.511 0.534 0.512
Boot-Boot 0.559 0.465 0.459 0.411 0.383 0.378 0.393 0.440 0.502 0.443

D3 MI 0.711 0.708 0.600 0.524 0.455 0.448 0.502 0.574 0.768 0.587
ABBI 0.701 0.704 0.581 0.517 0.446 0.444 0.498 0.572 0.747 0.578
MI-Boot 0.625 0.583 0.483 0.417 0.345 0.360 0.386 0.471 0.668 0.482
Boot 0.660 0.682 0.565 0.483 0.399 0.398 0.433 0.516 0.729 0.540
Boot-Boot 0.609 0.565 0.470 0.403 0.334 0.348 0.373 0.459 0.662 0.469

D4 MI 0.556 0.495 0.467 0.438 0.504 0.477 0.520 0.627 0.730 0.534
ABBI 0.556 0.494 0.465 0.430 0.496 0.472 0.509 0.620 0.712 0.528
MI-Boot 0.470 0.386 0.367 0.347 0.397 0.385 0.423 0.521 0.650 0.438
Boot 0.500 0.422 0.406 0.401 0.462 0.449 0.482 0.583 0.692 0.488
Boot-Boot 0.461 0.365 0.349 0.335 0.386 0.377 0.419 0.505 0.644 0.426

Imperfect Ranking
D1 MI 1.042 0.848 0.691 0.598 0.522 0.542 0.633 0.739 0.841 0.717

ABBI 1.016 0.832 0.684 0.593 0.520 0.540 0.628 0.739 0.841 0.710
MI-Boot 0.969 0.737 0.595 0.521 0.444 0.466 0.532 0.644 0.762 0.630
Boot 0.977 0.777 0.635 0.554 0.480 0.496 0.562 0.655 0.753 0.654
Boot-Boot 0.954 0.723 0.575 0.501 0.428 0.448 0.510 0.608 0.752 0.611

D2 MI 1.038 0.912 0.685 0.627 0.561 0.589 0.630 0.725 0.919 0.742
ABBI 1.032 0.902 0.677 0.617 0.553 0.585 0.627 0.726 0.918 0.737
MI-Boot 0.957 0.825 0.608 0.522 0.464 0.494 0.536 0.642 0.824 0.652
Boot 0.947 0.846 0.640 0.572 0.506 0.531 0.561 0.652 0.812 0.674
Boot-Boot 0.923 0.806 0.585 0.505 0.448 0.475 0.508 0.616 0.801 0.629

D3 MI 1.005 0.829 0.699 0.607 0.515 0.555 0.606 0.706 0.924 0.716
ABBI 0.995 0.811 0.692 0.597 0.507 0.548 0.598 0.698 0.907 0.705
MI-Boot 0.952 0.744 0.630 0.524 0.426 0.469 0.507 0.629 0.866 0.638
Boot 0.950 0.781 0.668 0.569 0.471 0.504 0.541 0.649 0.868 0.666
Boot-Boot 0.942 0.730 0.620 0.509 0.414 0.452 0.487 0.609 0.850 0.666

D4 MI 0.889 0.624 0.603 0.531 0.520 0.556 0.686 0.724 1.051 0.687
ABBI 0.892 0.623 0.600 0.525 0.511 0.548 0.672 0.708 1.021 0.677
MI-Boot 0.810 0.556 0.514 0.446 0.439 0.480 0.600 0.646 0.975 0.607
Boot 0.799 0.558 0.539 0.485 0.482 0.525 0.647 0.687 0.997 0.635
Boot-Boot 0.788 0.531 0.485 0.426 0.426 0.466 0.592 0.631 0.974 0.591

Note that values less than 1 are desirable.

chosen statistics and F(0) := F(1) and F(k+1) := F(k). For a more realistic model, Amiri,
Modarres and Zwanzig (2016) suggested λ to depend on i, in which case the probability
of incorrect ranking varies with the order. It would be reasonable to assume that it is more
likely to be make more error the middle rankings than the extreme ones. Hence, we define
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Table 5 The relative efficiencies of proposed methods under perfect URSS for estimating quantiles of Exp(1)

compared with their corresponding SRS estimators

Quantile

Design Method 10 20 30 40 50 60 70 80 90 Avg.

Perfect Ranking
D1 MI 0.758 0.665 0.515 0.463 0.465 0.511 0.493 0.511 0.591 0.552

ABBI 0.738 0.657 0.511 0.460 0.460 0.509 0.493 0.511 0.591 0.547
MI-Boot 0.881 0.619 0.421 0.383 0.363 0.418 0.390 0.410 0.492 0.486
Boot 0.780 0.625 0.450 0.416 0.416 0.473 0.440 0.460 0.514 0.508
Boot-Boot 0.971 0.650 0.424 0.385 0.358 0.411 0.382 0.396 0.476 0.494

D2 MI 0.617 0.631 0.576 0.555 0.482 0.497 0.491 0.547 0.612 0.556
ABBI 0.625 0.634 0.565 0.548 0.475 0.492 0.491 0.547 0.611 0.554
MI-Boot 0.727 0.621 0.501 0.464 0.386 0.394 0.378 0.448 0.490 0.489
Boot 0.578 0.607 0.545 0.523 0.442 0.450 0.429 0.487 0.533 0.510
Boot-Boot 0.796 0.631 0.505 0.470 0.387 0.386 0.370 0.431 0.480 0.495

D3 MI 0.666 0.633 0.565 0.547 0.439 0.435 0.484 0.552 0.714 0.559
ABBI 0.670 0.633 0.551 0.537 0.436 0.430 0.480 0.551 0.705 0.554
MI-Boot 0.789 0.592 0.493 0.441 0.343 0.355 0.376 0.484 0.629 0.500
Boot 0.657 0.621 0.543 0.509 0.392 0.395 0.415 0.497 0.678 0.523
Boot-Boot 0.836 0.606 0.502 0.440 0.342 0.351 0.365 0.472 0.631 0.505

D4 MI 0.522 0.410 0.479 0.489 0.536 0.510 0.548 0.587 0.828 0.545
ABBI 0.521 0.411 0.480 0.486 0.524 0.506 0.535 0.580 0.814 0.539
MI-Boot 0.644 0.404 0.437 0.421 0.449 0.427 0.448 0.505 0.736 0.496
Boot 0.542 0.377 0.438 0.451 0.496 0.479 0.500 0.545 0.796 0.513
Boot-Boot 0.741 0.417 0.435 0.418 0.452 0.421 0.444 0.496 0.731 0.506

Imperfect Ranking
D1 MI 1.282 1.022 0.706 0.563 0.497 0.543 0.583 0.664 0.896 0.750

ABBI 1.289 1.010 0.698 0.558 0.492 0.540 0.581 0.663 0.898 0.747
MI-Boot 1.560 1.080 0.680 0.516 0.434 0.463 0.482 0.565 0.762 0.726
Boot 1.390 1.009 0.668 0.530 0.464 0.498 0.514 0.584 0.772 0.714
Boot-Boot 1.749 1.151 0.697 0.524 0.428 0.449 0.456 0.527 0.700 0.742

D2 MI 1.187 0.958 0.684 0.641 0.572 0.581 0.602 0.699 0.919 0.760
ABBI 1.206 0.956 0.677 0.633 0.562 0.576 0.599 0.698 0.921 0.758
MI-Boot 1.433 1.040 0.668 0.592 0.495 0.485 0.497 0.600 0.792 0.733
Boot 1.245 0.947 0.654 0.615 0.533 0.528 0.530 0.619 0.806 0.719
Boot-Boot 1.600 1.096 0.678 0.599 0.499 0.473 0.468 0.555 0.753 0.746

D3 MI 1.249 0.930 0.709 0.588 0.595 0.510 0.628 0.651 0.893 0.750
ABBI 1.270 0.931 0.696 0.581 0.586 0.503 0.622 0.639 0.873 0.744
MI-Boot 1.510 0.986 0.679 0.513 0.507 0.429 0.534 0.566 0.806 0.725
Boot 1.308 0.940 0.686 0.555 0.548 0.464 0.567 0.588 0.829 0.720
Boot-Boot 1.632 1.024 0.694 0.518 0.495 0.419 0.503 0.537 0.783 0.733

D4 MI 0.913 0.769 0.725 0.571 0.556 0.573 0.647 0.756 0.960 0.718
ABBI 0.919 0.771 0.725 0.569 0.549 0.566 0.637 0.746 0.935 0.713
MI-Boot 1.117 0.801 0.728 0.529 0.478 0.498 0.560 0.679 0.874 0.696
Boot 0.972 0.727 0.678 0.534 0.514 0.542 0.608 0.723 0.906 0.689
Boot-Boot 1.270 0.834 0.739 0.526 0.470 0.487 0.543 0.654 0.860 0.709

Note that values less than 1 are desirable.

F[i] = λ1iF(i−1) + λ2iF(i) + λ3iF(i+1) and consider the following weights, respectively.

(λ11, λ21, λ31) = (0,1/2,1/2),

(λ12, λ22, λ32) = (1/4,1/2,1/4),



Multiple imputation 765

(λ13, λ23, λ33) = (1/3,1/3,1/3), (5.1)

(λ14, λ24, λ34) = (1/4,1/2,1/4),

(λ15, λ25, λ35) = (1/2,1/2,0).

The results are presented in Tables 4 and 5 where we treat both perfect and imperfect rank-
ings. The results support the discussion in the previous section, that is, MI-Boot and Boot-
Boot provide the best performance.

6 Conclusion

This article draws on the imputation literature with minimal distributional assumptions in
order to transform URSS data to a balanced RSS. This transformation allows one to apply
standard techniques of bootstrap, estimation and testing that are available for balanced ranked
set samples to the completed dataset. To this end, we first study MI of a SRS, prove that its
EDF converges to the population CDF under MI, obtain the variance of the imputed mean,
and the expected value of the variance estimator. We extend these results to MI for URSS
data and provide different methods for estimating the population quantiles. We use a real
data application and study the performance of our proposed methods in estimating the mean
and the quantiles of the mercury level in a fish population using both perfect and imperfect
unbalanced ranked set sampling designs. We consider a hybrid method based on the bootstrap
and imputing URSS. The overall recommendations are the hybrid estimates based on impu-
tation and bootstrap (MI-Boot) and Boot-Boot. To evaluate the performance of our proposed
quantile estimators, we used numerical studies. In practice, one might want to estimate the
variance of these estimators and compare the performance of difference variance estimators
using multiple imputation for URSS data. This is an interesting topic for future research in
this direction.

Appendix

A.1 Proof of Proposition 1

For the ease in notation, we drop the index m from X�
i,m and simply work with X�

i . Also
for convenience, we represent X �

i as X �
i = {X�

n+1,i , . . . ,X
�
N,i} instead X �

i = {X�
1,i , . . . ,X

�
r,i}

which was defined in Proposition 1. Using the Glivenko–Cantelli Theorem, we have∥∥F̂n(t) − F(t)
∥∥∞ = 0. (A.1)

Using the imputed observations, we can show that
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As limr−→∞ 1
r

∑N
i=n+1 I (X� ≤ t) = F̂n(t), it follows that limr−→∞ |F̂ �

N(t) − F̂n(t)| =
|F̂n(t) − F̂n(t)| = 0. The result follows uisng the inequality |F̂ �

N(t) − F(t)| ≤ |F̂ �
N(t) −

F̂n(t)| + |F̂n(t) − F(t)|.
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A.2 Proof of Proposition 2

Similar to the proof of Proposition 1, we drop the index m from X�
i,m and simply work with

X�
i . Using the Glivenko–Cantelli Theorem, equation (A.1), and the imputed observations, we

can show that∣∣F̂ �
n+r(t) − F̂n(t)

∣∣
=

∣∣∣∣∣ 1

n + r

(
n∑

i=1

I (Xi ≤ t) +
n+r∑

i=n+1

I
(
X�

i ≤ t
)) − 1

n

n∑
i=1

I (Xi ≤ t)

∣∣∣∣∣
=

∣∣∣∣∣
(

n

N
− 1

)
1

n

n∑
i=1

I (Xi ≤ t) +
(

1 − n

N

)
1

r

n+r∑
i=n+1

I
(
X�

i ≤ t
) ±

(
1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)∣∣∣∣∣

=
∣∣∣∣∣
(

n

N
− 1

)
1

n

n∑
i=1

I (Xi ≤ t) +
(

1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)

+
(

1 − n

N

)
1

r

n+r∑
i=n+1

I
(
X�

i ≤ t
) −

(
1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)∣∣∣∣∣

≤
∣∣∣∣∣
(

n

N
− 1

)
1

n

n∑
i=1

I (Xi ≤ t) +
(

1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)∣∣∣∣∣

+
∣∣∣∣∣
(

1 − n

N

)
1

r

n+r∑
i=n+1

I
(
X�

i ≤ t
) −

(
1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)∣∣∣∣∣

= A + B.

It follows that

lim
n→∞(A) =

∣∣∣∣∣
(

n

N
− 1

)
1

n

n∑
i=1

I (Xi ≤ t) +
(

1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)∣∣∣∣∣

= lim
n→∞

(
1 − n

N

)
lim

n→∞
(−F̂n(x) + F̂ ∗

n (x)
) = 0, (A.2)

and

lim
r→∞B = lim

r→∞

∣∣∣∣∣
(

1 − n

N

)
1

r

n+r∑
i=n+1

I
(
X�

i ≤ t
) −

(
1 − n

N

)
1

n

n∑
i=1

I
(
X∗

i ≤ t
)∣∣∣∣∣

=
(

1 − n

N

)
lim
r→∞

(
F̂ �
r (x) − F̂ ∗

n (x)
) = 0. (A.3)

Using (A.2) and (A.3), limn→∞ limr→∞ |F̂ �
N(t) − F̂n(t)| = 0 and by considering (A.1), the

results follow by a similar argument as in the proof of Proposition 1.

A.3 Proof of Proposition 3

Since the M imputed estimators {μ̂m}m=1,...,M are identically distributed, one can easily show
that

Var(μ̂) = 1

M
Var(μ̂m) +

(
1 − 1

M

)
Cov(μ̂m, μ̂m′), (A.4)
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where m ≤ m′. Define X = {X1, . . . ,Xn}, hence

Var(μ̂m) = Var
(
E

(
nX̄ + rX̄�

N

∣∣∣X))
+ E

(
Var

(
nX̄ + rX̄�

N

∣∣∣X))

= Var(X̄) + E

(
r2

N2 Var
(
X̄�))

= σ 2

n
+ r2

N2 E

(
r− 1

r

S2

r

)

= σ 2

n
+ r− 1

N2 σ 2, (A.5)

Cov(μ̂m, μ̂m′) = Cov
(

nX̄ + rX̄�
m

N
,
nX̄ + rX̄�

m′
N

)
= 1

N2

(
Cov(nX̄, nX̄) + 2 Cov

(
nX̄, rX̄�

m

) + Cov
(
rX�

m, rX∗
m′

))
= 1

N2

(
n2 σ 2

n
+ 2nr

σ 2

n
+ r2 σ 2

n

)

= σ 2

n
. (A.6)

By substituting (A.5) and (A.6) in (A.4), one obtains (2.3). In order to prove (2.4), note that

Ûm = 1

N(N − 1)

(
n∑

i=1

X2
i +

N∑
i=n+1

X2�
i,m − Nμ̂2

m

)
.

It follows that

E(Ûm) = 1

N(N − 1)

(
E

(
n∑

i=1

X2
i

)
+ E

(
N∑

i=n+1

X2�
i,m

)
− NE

(
μ̂2

m

))

= 1

N(N − 1)

(
NE

(
X2

i

) − N
(
Var(μ̂m) + E(μ̂m)2))

= 1

N − 1

(
E

(
X2

i

) − μ2 − Var(μ̂m)
)

= 1

N − 1

(
σ 2 − σ 2

n
− r− 1

N2 σ 2
)

= 1

N − 1

(
1 − 1

n
− r− 1

N2

)
σ 2. (A.7)

Since B̂ = (M − 1)−1(
∑M

m=1 μ̂m − Mμ̂2) it follows that

E(B̂) = 1

M − 1

(
M∑

m=1

E(μ̂m) − ME
(
μ̂2))

= M

M − 1

(
Var(μ̂m) + E(μ̂m)2 − (

Var(μ̂) + E(μ̂)2))
= M

M − 1

(
Var(μ̂m) − Var(μ̂)

)
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= M

M − 1

(
σ 2

n
+ r− 1

N2 σ 2 − σ 2

n
− 1

M

(
r− 1

N2 σ 2
))

= M

M − 1

(
r− 1

N2 σ 2 − 1

M

(
r− 1

N2 σ 2
))

= r− 1

N2 σ 2, (A.8)

by substituting (A.7) and (A.8) in (2.2) can establish (2.4).

A.4 Proof of Proposition 4

Consider the imputed URSS, and note that μ̂m = 1
k

∑k
r=1 μ̂(r),m and

Var(μ̂m) = 1

k2

k∑
r=1

Var(μ̂(r),m) (A.9)

where Var(μ̂(r)m) is given in Proposition 3. One can readily obtain (3.4). In order to prove
(3.5), using (3.3)

E(Um) = 1

k2

k∑
r=1

1

N − 1

(
1 − 1

nr

− rr − 1

N2

)
.

We also have

E(B̂) = M

M − 1

(
Var(μm) − Var(μ̂)

)
,

where Var(μ̂m) is given in (A.9) and Var(μ̂) is given in (3.5).
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