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Proper Bayes minimax estimation of parameters of Poisson
distributions in the presence of unbalanced sample sizes

Yasuyuki Hamura and Tatsuya Kubokawa
University of Tokyo

Abstract. In this paper, we consider the problem of simultaneously estimat-
ing parameters of independent Poisson distributions in the presence of possi-
bly unbalanced sample sizes under weighted standardized squared error loss.
A class of heterogeneous Bayesian shrinkage estimators that utilize the un-
balanced nature of sample sizes is proposed. To provide a theoretical justi-
fication, we first derive a necessary and sufficient condition for an estimator
in the class to be proper Bayes and hence admissible and then obtain suf-
ficient conditions for minimaxity that are compatible with the admissibility
condition. Heterogeneous and homogeneous shrinkage estimators are com-
pared by simulation. Several estimation methods are applied to data relating
to the standardized mortality ratio.

1 Introduction

Since the work of Clevenson and Zidek (1975), simultaneous estimation of parameters of
independent Poisson distributions has been studied by many authors including Tsui (1979),
Tsui and Press (1982), Hwang (1982), and Chang and Shinozaki (2018). However, most of the
existing work either concerns with the case of balanced sample sizes or deals with estimators
in the unbalanced case which do not utilize the fact that the sample sizes are unbalanced. In
this paper, we consider the estimation problem in the case of unbalanced sample sizes and
construct shrinkage estimators whose shrinkage factors reflect the fact that the sample sizes
are unbalanced.

Suppose that X1, ..., X,, are mutually independent Poisson random variables with means
NiAL, ..., Ay, respectively, and that A = (Aq, ..., ;) € (0, 00)™ is the unknown parame-
ter while ny, ..., n,, are positive known constants. This situation arises, for example, when
for each i = 1, ..., m, the observation X; is the sum of n;(€ N) random sample from the
Poisson distribution with mean ;. An example where n1, ..., n, are positive (possibly non-
integer) real numbers is given in Komaki (2015). We treat the problem of estimating A on the
basis of X = (X1,..., X»).

In the balanced case with n| = --- = n,, = 1, the model becomes equivalent to that con-
sidered by Clevenson and Zidek (1975). When ny = --- = n,,, = 1, for the avoidance of con-
fusion, we use the different notation Y; = Xy, ..., Y, = X,,. Then, they showed that the
estimator

Bo+m—1 )
1-— Yi,....Y, 1.1
( ST o =) ) (1.1)

is admissible for 1 < B¢ and minimax for m > 2 and 0 < By < m — 1 relative to the loss
function /L, (d; — A2 A
Using their result, we can readily verify that the estimator
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dominates the ML estimator (X1/ny,..., X;/ny,) if m > 2 and 0 < By < m — 1 under the
loss

m

S 2 d -2 (1.3)

g
However, the estimator given by (1.2) is not necessarily a natural shrinkage estimator from a
practical point of view because the shrinkage factor 1 — (8o +m —1)/(Q_iL; Xi +Bo+m —1)
is common to all the samples irrespective of n = (ny, ..., n,). In many applications, one of
the purposes of using shrinkage estimators is to reduce the instability of ML estimators. In
the present setting, for all i, j = 1,..., m such that n; < n;, the ML estimator X;/n; tends
to be more unstable than X ;/n; since the variance of X;/n; is approximately n;/n; times
the variance of X ;/n; if A; ~ A;. In addition, for each i =1, ..., m, the sample size n; can
be interpreted as representing the amount of information the observation X; contains about
the unknown parameter A;. Thus, it seems reasonable to use a shrinkage estimator such that
it shrinks the ML estimator X; /n; more toward the origin than X ;/n; foralli, j=1,...,m
such that n; < n;. Furthermore, it turns out in Section 2 that the estimator given by (1.2)
with m > 2 and Bp > 0 is the Bayes estimator with respect to a perhaps unnatural shrinkage
prior which depends on r and puts less weight on the smaller values of A; than on the smaller
values of A forall i, j=1,...,m such thatn; <n;.

Thus, in the present paper, we consider the class of heterogeneous shrinkage estimators

X1 X
({1—¢1<X)}—,...,{1—¢m<X>}—’"), (1.4)
ni Nm
where the functions ¢1, ..., ¢, : {0,1,2,...}" — [0, 1] satisfy that ¢;(x) > ¢;(x) for all
x=(x1,...,xy) €{0,1,2,...}" and i, j = 1,...,m such that x;,x; > 1 and n; <n;. We
evaluate estimators under the general loss function given by

m
Ci
Le(d,}) =3 = (d; = %)%, (1.5)
i=1"
where ¢ = (c1,...,cm) € (0,00)™ is a vector of weights possibly different form n and
d=(d,...,d,) denotes a m-dimensional vector. For a discussion of the estimation of nor-

mal means in the presence of unequal weights as well as unequal variances, see Morris
(1983).

Hamura and Kubokawa (2019) constructed shrinkage estimators of the form (1.4) by us-
ing a class of improper priors introduced by Komaki (2015). However, they did not prove the
admissibility of the estimators. In this paper, we introduce a class of priors which includes
both the proper priors of Clevenson and Zidek (1975) and the improper priors of Komaki
(2015), construct proper Bayes estimators of the form (1.4), and derive sufficient conditions
for the estimators to be minimax. The results for proper prior distributions are not straight-
forward generalizations of those for improper prior distributions. The main contribution of
this paper is to construct Bayes estimators of the form (1.4) which are both admissible and
minimax.

In Section 2, we introduce the class of priors mentioned above, derive a necessary and
sufficient condition for a prior in the class to be proper, and express the corresponding Bayes
estimators explicitly. In Section 3, we derive sufficient conditions for minimaxity. In Sec-
tion 4, some Monte Carlo evidence is presented. In Section 5, we treat real data. All the
proofs of the lemmas in Sections 2 and 3 are given in the Appendix.
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2 A class of Bayes estimators

We begin by providing a class of priors which includes the priors of both Clevenson and
Zidek (1975) and Komaki (2015). Let

;'n 1)\iﬂi ! o ol u
Tar By oy () = 2= / e~ du @.1)
wB.viforo Ol Ay Jo /v + X0 di/vi)Po

fora >0,8=(B1,...,Pm) € 0,00)", vy =W1,...,¥Ym) € (0,00)", Bo >0, and yg > 0. By
making the change of variables u’ = u/(}_7_ | A;/y;), we can write (2.1) as

a—14+pPo

m e} u m
oy o) = [ [T 2H ! / e R M Y 22
w.B.y:fo.r0(A) (11:[1 ! ) 0o (1+u/yp)bo 22)

The class of priors of Clevenson and Zidek (1975) is expressed as
00 um—2+pFo

1 —Uu
(i A 1/0 (u+2;":1)tl.)ﬁoe du, (2.3)

Tm—1,j,j:po,1 (M) =

where j = (1,...,1) € R", when m > 2 or 8y > 0. The prior (2.3) is proper if By > 1, as
shown by Clevenson and Zidek (1975). On the other hand, the class of priors of Komaki
(2015) is described by

Tagy01(d) T A P!
Tl I ai/n)e

This prior is improper for all values of «, 8, and y, which can be verified by, for example,
Lemma 2.1 below.

The following lemma gives a necessary and sufficient condition for the prior 7y g »: o,
to be proper.

Lemma 2.1. The prior 7ty 8. y. .y, Satisfies

f. . / T[(Y,ﬂ»}’;,BO,VO()") dA < o0
(0,00)™
ifand only ifa < Y7L, Bi <o+ Po.

Next, we derive an explicit form of the Bayes estimator against the prior 7wy g »:gy.y,- TO
this end, we define

ue—1 " 1

(1 +u/yo)fo 1:[1 (1 +u/y)s a

K()’,E,a;)/o,ﬁo)Z/O

for & = (&1,...,&,) €[0, 00)™ such that By + > 7L, & > «. This function is a generalization
of the functlon given by Komaki (2015) which generalizes the beta function. Indeed, when
Yo=Yl =""*= Vm, We have

K(y.§ a;v0. o) = "B, o+ & — ) (2.4)

for & =", &. The function K satisfies the following properties. Let e; denote the ith unit
vector in R, namely the ith row of the m x m identity matrix, fori =1, ..., m.
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Lemma 2.2. The following relations hold.
(@)
Po

m
S
+Y K. E+eia+ 150, po). (2.5)
i=1"t
(1) Fori=1,...,m,
K(y,&+ei,a+1;y,Po)

=yi{KWy. & a;y0, Bo) — K(y.E+ei,a; 0, Po)}. (2.6)

For the case of Bg = 0, the relations (2.5) and (2.6) are given in Lemma 5 of Komaki
(2015).

The following lemma gives some more properties of the function K and is crucial in Sec-
tion 3 when we prove the existence of a heterogeneous shrinkage estimator which is both
admissible and minimax.

Lemma 2.3. Suppose that o < o+ Y 1" & — 1. Then the following inequalities hold.

(1) Fori=1,...,m,
K(y,& a+1;y, Bo) - K(y,&+ei,a+1;yo, o)

K(y.&—ei,a;v,P0) ~ K(y.§&, a; vo, o) @7
Similarly,
K@y.§&at+1v.60) K(}’,E,a+1;)/0,ﬂo+1). 2.8)
K(y.&a;v0.0—1) ~  K(.& ;0. o)
(i) Fori=1,...,m,
K(y.,&+ei,a+2;y,Po)
K(y.§, a; v0, o)
K. & o+ 1y, Bo) Ky, & +eiat1; v, Bo) 2.9)
~ K(y.§ o570, Po) K(y,§,a; v, Bo)
Similarly,
K(y.§,a+2;y,B0+ 1
K(y.§, a; v0, o)
- K(}’,E,Ol-i-l;)/o,ﬁo)K()’,E,Ot-i-l;)/o,ﬂo-i-l). (2.10)
K(y.&, a; v0, o) K(y.§&, a; vo, Bo)
Forv=(vy,...,vy) € R"and v = (v1, ..., Uy) € R™, we write vo ¥ = (V1 V1, ..., Unln).

LetNg={0,1,2,...}.Forx = (x1,...,xn) € Ng™ and i =1, ..., m, we define
¢i(0hﬂ,}':/30,7/0)(x)

I Kmoy,x+B,a+ Bo+ 1; 0. Po)
niy; Kmoy,x+ B —mei,a+ﬁo;yo,ﬂo)

ifx; 4+ g >1and ) (xj+Bj) >a+1
j=1

1 otherwise.

The following lemma gives an explicit form of the Bayes estimator based on 7y g y: 5,0
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Lemma 2.4. Suppose o <Y /", B;. Then the estimator R (B-vibov) defined by

. X —1 ) X —1
<{1_¢§a,ﬂ,y,ﬁ0,yo)(x)} 1+,31 7---’{1_¢y(navﬂ’y’ﬁ07y0)(x)} m+,3m

ni Ny

) 2.11)

is the unique Bayes estimator of A on the basis of X against the prior 1wy g y:g,.y, under the
loss function L. given by (1.5).

It is worth noting that the Bayes estimator 2@B-7:Po10) i¢ robust in the sense that it does
not depend on ¢. We remark that the estimator with § = j shrinks the ML estimator toward
the origin.

Letv=(1/ny,...,1/n,) be the vector whose elements are the reciprocals of the sample
sizes, so that n o v = j. Suppose that m > 2. Then the Bayes estimator with « =m — 1,
B=j,y=v,andy=1,namely A" /"D teduces to (1.2) by (2.4). Thus, (1.2) is the
Bayes estimator against the prior

00 uMm—2+Bo
u

1
e “du
o nia)m! /0 (u+ X" nixy)bo

In the context of shrinkage estimation, however, this choice of prior may be inappropriate
since it depends on n and puts less weight on the smaller values of A; than on the smaller
values of A; for all i, j =1,...,m such that n; < n;. Indeed, the shrinkage factor of the
resulting Bayes estimator (1.2) fails to reflect the fact that the sample size n is unbalanced.

Finally, we propose an estimator of the form (1.4) which shrinks the ML estimator X; /n;
more toward the origin than X ; /n; forall i, j =1, ..., m such that n; < n;. We consider the
case where =y = jand @ <m for j = (1,...,1) € R™. Then the prior is

1 00 ue—1+ho Y
Tajojifon ) = | ¢
@, j,J:B0:0 QL A Jo (u/yo+ X0y Ai)Po

which is a shrinkage prior symmetric in A1, ..., A;,. The resulting estimator can be expressed
as

nm—l,j,v;ﬁo,l()”) ==

JO . X . X
)\(a,J,J,ﬁo,)/o) _ ({1 _ ¢§a,171,/30,)/0)(X)}n_11’ . {1 _ ¢’51a,J,J,ﬂovyo)(X)}n_m>, (2.12)

m
where
1 K(n,x+j,a+pBo+ 1:v0,B0) .
@ diBov) g _ ) — ) ifx; > 1
b; (x)=1{ni K(n,x + j —ei,a+ Po; o, Bo) (2.13)
1 ifx; =0
for x = (x1,...,x,) € Ng™ and i = 1, ..., m. This shrinkage estimator has the following
heterogeneity properties.
Lemma 2.5. Let x = (x1,...,Xy) € No™ and suppose o < m.
(1) Letie€{l,...,m}. Then
0 < ¢ @I TH () <1 (2.14)

Equality holds if and only if x; = 0.
(i1) Leti, j€{l,...,m} and suppose x;,x; > 1. Then

B @I () > @I T P () ifand only if ni <nj. (2.15)
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(iii) Leti €{1,...,m} and suppose x; > 1. Suppose further that « < m — 2. Then
nlgnoo(ﬁl(anlu]’/go’yo)(x) =0. (216)

In the case where n = j and « + 1 =m > 2 and yp = 1, both of the estimators (1.2) and
(2.12) coincide with the estimator (1.1) given by Clevenson and Zidek (1975). However, we
propose the latter as an important generalization of (1.1) which satisfies the heterogeneity
properties (2.14), (2.15), and (2.16).

3 Sufficient conditions for minimaxity

In this section, we derive sufficient conditions for the estimator R (h.v:Fo-v0) given by (2.11)
to be minimax under the loss function L. given by (1.5). Since it can be shown that the ML

. ~ML . . .. . .
estimator A = (X{/n1,..., X;m/nn,) is the constant risk minimax estimator, it suffices to

.. L : . ~ML . .
find conditions under which X(a’ﬂ ¥:Fo.y0) dominates A . Hereafter, we restrict our attention
to the case of « < m and B = j and consider the shrinkage estimator

iy . X L X
)‘(a,J,V,ﬁo,Vo) _ <{1 . ¢§a71577ﬁ07Vo)(X)}n_11’ o {1 _ ¢I$1a,1,7,ﬁo,yo)(x)}n_m>, (3.1)

m
where
1 K(moy,x+j,a+pBo+1v.p0) .
(], ¥:Bosv0) p oy ) - - if x; >1
b; x)=niyi Kmoy,x + j—e;i,a+ Bo; vo, o)
1 ifx; =0
forx =(x1,...,xp) eNg"andi =1, ..., m.

The following result, due to Hudson (1978), is used in the proof of Theorem 3.1 below.

Lemma 3.1. Let h: Ng"™ — R and suppose that Ey[|h(X)|] < co. Thenforalli=1,...,m,

if h(x) =0 forall x = (x1, ..., xp) € Nog™ such that x; =0, we have
h(X h(X i
Ex[ ( )}zEx[ ( +ez)].
nik Xi+1

For simplicity of notation, we let a; = n;y; and C; = (¢;/n;)(1/a;) =_ci/(n,-2y,-) for i =
1,...,m and let @ = min| <<y a;, @ = MaxXj<j<m a;, C = min|<;<;y C;, C = maxj<j<m Ci,
and C. = )", C;. The following theorem, which will be proved later in this section, gives

two sufficient conditions for the minimaxity of A */¥*#0-10),

Theorem 3.1. Assume that @ < m and that vy < a.

a+ﬁ05§(%—1>(%+1). (3.2)

(i) Suppose that

Then the estimator X(‘” ¥:Fo.y0) is minimax under the loss L.

(i) Let p ={C(a + o+ 1) — C.}/{C(a + Bo)}. Suppose that 0 < p <1 — (1/2)(a/a)
and that

C C.
2p(ﬂo+m+%) < Z(@+2Bo+1) — —+2% 1. (3.3)
a/ — C C a

x(a,j,y;ﬂo,yo)

Then the estimator is minimax under the loss L.
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Part (i) of the above theorem is a generalization of Theorem 3 of Hamura and Kubokawa
(2019). They consider the case of g = 0. In this case, the prior is improper by Lemma 2.1 but
whenever m > 2, there is always a value of o > 0 that satisfies the sufficient condition (3.2)
for the minimaxity of the estimator A @YD O the other hand, when the prior is proper,
assumption (3.2) implies m < (2/3)(C./C — 1)(Bo/m + 1) <2(C./C — 1). Therefore, there
exist Cq, ..., Cy, such that the condition (3.2) is violated for any choice of a proper prior.

Let n = minj<;<;, n; and 7 = max<;<m ;. Let C;" = c,-/ni2 fori =1,...,m and define
C*, 6*, and C* analogously. Combining Lemmas 2.1, 2.4, and 2.5 and Theorem 3.1, we
obtain the following theorem.

Theorem 3.2. Suppose that « < m < « + Bo and that yy < n. Suppose further that one of
the following two conditions holds:

(1)
2/C* Bo
a+/30_§(c——1>(m —I—l).
(ii)
C'a+po+1)—C*
C*(a + Po)
_ { 17 (C /C*)(a+2,30+1)—C*/C*+2n/n—1}
<min{l —
2n’ 2(Bo+m +n/n)

Then the estimator X *JJ:Fo-10) given by (2.12) is admissible and minimax under the loss
L. Furthermore, for all x = (x1, ..., xn) € Ng" and i, j € {1, ..., m} such that x;, x; > 1,
it satisfies (2.14), (2.15), and, if ¢ <m — 2, (2.16).

It can be seen that there exists an admissible minimax shrinkage estimator that satisfies
(2.14), (2.15), and (2.16) by, for example, applying part (i) of Theorem 3.2 to the case where
(o, Bo, y0) = (1, m, n) and m is sufficiently large and C* /6* is sufficiently close to 1. Fur-
thermore, though the details are omitted here, it can be shown from part (i) of Theorem 3.2
that there exists « > 0, Bo > 0, and yp > O such that the conclusion of Theorem 3.2 holds if
2<m< (4/3)(C,”‘/E>X< — 1). This condition reduces to

4 (& nk
=
with k = 1 when ¢; = n; and with k =2 when ¢; = 1. o
In the particular case of n = ¢ =y = j and yp = 1, the condition for R @I T Bo0) o pe
admissible and minimax given in part (i) of Theorem 3.2 is

a<m<o+ Py and a+(1—§m—>,30< —(m —1), (3.4)
m

whereas that given in part (ii) of Theorem 3.2 is

1— 280 — 2
w<m<atfo<2m—1) and 2TPoTITm _at2hommF2 g
o+ fo 2B0+m+1)
Conditions (3.4) and (3.5) correspond to (3.2) and (3.3), respectively. The condition given by
Clevenson and Zidek (1975) is

a=m—1 and 1<pfp<m—1.
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When m > 2 and @ = m — 1, condition (3.4) is not satisfied for any values of Sy but condition
(3.5) becomes

l<pfo<(m—1)/3.

Thus, although the result of Clevenson and Zidek (1975) is not completely included, Theo-
rem 3.1 or 3.2, which was derived for estimating A when #n is unbalanced, gives the sufficient
condition which is close to that of Clevenson and Zidek (1975) even in the case of balanced
sample sizes.

Proof of Theorem 3.1. Let A = Ey[LA*7 7P 3y B (LGN, 1)]. From (3.1),

LN D¢ Xi (@i 2 (X 2
A=E, [Z[;—{— =i St d TR en ) (20 )
1

P RN n; n

" rnici T X . 2 X\ 2 .
= El|:2< 11 |:{_l¢i(aa]v}'vﬂ()a7/0)(x)} _2(n_l) ¢i(0l,],}',ﬂ0,y0)(x):|
i=1

niii LU n; i
X; .
+ 2Ci n_f(bl.(anls}h/gow)’o) (X)):| ,
1

which is, by application of Lemma 3.1,

" 2
Z n;c; Xi+ 1 (jyipor }
A=E \ sJs Vs ) X .

nj

_2( i )d)l_(a,J,}',ﬂoyyo)(X_‘_ei)]_|_2Cl.n_f¢l§a,1,7,ﬂoyy())(x))i|‘
1

Therefore, we can write the risk difference as A = E3 [[1(X) — 21,(X) 4+ 215(X)], where

o Ci I K(moy,x+j+e,a+po+ 110, Po) )2
Il(x)=Z—’(x,'+1){ (noy Jtei Bo Yo ,30)} ’
o niyi K(noy,x+ j,a+ po; yo, Po)
~cixit1K@moy,x+j+ei,a+Bo+ 1Ly, Bo)

o i K(noy,x+ j,a+ Bo; v, Po)

h(x)=

0 ifx=0
Lx)={x~¢ Xi Kmoy,x+j,a+po+ Ly, Bo)
oniniyi K(moy,x +j —ei,a+ Bo; v0, Po)
for x = (x1, ..., xn) € No". We have 11(0) — 215(0) + 213(0) < O since
I K(noy,j+e,a+po+1;y,Bo)
n;yi K(moy,j,a+ Bo;yo, Po)

Thus, it is sufficient to show that 11 (x) — 21 (x) + 213(x) <0 for all x € Ny \ {0}.
Fixx = (x1, ..., xm) € No™ \ {0}. Hereafter, for simplicity, we use the abbreviated notation

I =1(x), I = L(x), I3 = I3(x),
I=1 -2+ 213,
He) = K("O)’,x+j,?l+,30+c; Y0, Bo)
Kmoy,x+ j,o+ Bo; vo. Po)
Kmoy,x+j,a+Bo+c;v,Bo+ 1)
K(noy,x+ j,a+ Bo; vo. Po)

otherwise,

e [0, 1].

H(@,c) =
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and
Kmoy,x+ j=Ee,a+ Bo+c; v, Po)
K(noy,x+ j,a+ Bo; v, Bo)

forc=0,1,2andi =1, ..., m when well defined.
For part (i), we have

H(+i,c) =

I < CH(I)Z

i=1 ai

H(l 1).

By part (ii) of Lemma 2.2, we obtain

c,x,—i—l

ai;

L=

H(l) —ZC, H(z 2)

i=1 i=1 di

and

ﬁﬁ[H(l)—{H(l)_%”

LEHA) - ———4H(1).

n; a; n; a; a; H(—1i,0)

m
Z
"Ci X cixi 1 H()
; i=1

Then, from part (i) of Lemma 2.3,
I3 <Z——H(1)—Z———H(z DH(1) (3.6)

i xl+1lH(z 1)H(1)+CZ SH( DH(O).

i=1 i 11

<Zﬁx_lH(1)_

1 i di

Therefore,

I<CH(1)Z H(z 1) —2C.H(1)

i—1

+2ch

H(z 2) — H(i, 1) H(1)} +2CZ H(z DH(1)

ai i= 1

<CH() Z Mgy —2cH)
i—1 Y

— H(, 1)H(1) —I-ZCZ ! H(l DH(1),
i—1 4 i=14

where the second inequality follows since H(i,2) — H(i, 1)H(1) >0 foralli =1,...,m by
part (ii) of Lemma 2.3. By applying part (i) of Lemma 2.2, we obtain

< CH(l){a + By — @H(o 1)} —2C.H(1)+2C)_ %H(z’, DH (1)
i=1"1

+2C{(ot+,30+1)H(1)—@H(0 2) - (a+ﬁo)H(1)+ﬂ0H(0 l)H(l)}
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<CH(1) a+ﬂo—zﬁ0/

. a;
i=1 !

H@,1); —2C.H(1)

+2CZ “HG, 1)H(1)+2CH(1)
i=19

={Cl@+po+2)—2CJH1)+C>_ ZﬂH(i, DH(1),

i=1 !
where the second inequality follows from the assumption that yp < a and part (i) of
Lemma 2.3. Since

a+ﬂo=Z{%H(z‘,1>+’3°y/0mH<0,1>} >R

i=1 ! i=1

by part (i) of Lemma 2.2 and the assumption that yy < g and since assumption (3.2) implies
2 — Bo/m > 0, we conclude that

2—fo/m
1+ Bo/m
where the second inequality follows from assumption (3.2). This completes the proof of part
®.

For part (ii), let i € {1, ..., m} be an index such that a; = a. Then we have

I/H(1) <C(a+Bp+2)—2C.+C (o + Bo) <0,

—2125{111(;,1)—2}12. (3.7)
a

Note that, by part (ii) and part (i) of Lemma 2.2,

L=Y Ci(xi+DH1) =) Ci(x; + 1)%}1(1', 2)
i=1 i=1 !
=) Cilxi+ 1>H(1>—CZ<x,+1)—H<z 2)

i=1 i=1

B

{ZC(x, 1)—C(a+,30+1)}H(1)+C " H(0,2). (3.8)

Since (1/a)H (i, 1) <1, it follows from (3.7) and (3.8) that
L.
2= {oHa ) -2
a

B

x“Za«x, 1)—C(a+ﬂo+1)}H(1)+C =2H (O, 2)}

{2— Yha, 1)}Zc,x,H(1)— {2— —H, 1)}C’BOH(O 2)

i=1

+{2—2H(£, 1)}{6(a+ﬂo+1)—C.}H(1)- (3:9)
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Combining (3.6) and (3.9) gives

B

I< lH(z I)ZCle(l)—{Z——H( 1)}c 2 H(0,2)

i=1

+ {2— éH(L 1)}{E(a +Bo+1)—C.JH() —ZZCiﬁH(i, DH(T).

i=1 !

Note that

Zc H(z 1)>——H(z I)ZCxl

i=1 i=1
and that

Zc H(z 1)>CZ Xt H(, 1)—CZ H(z 1)

i—1

B

_ 0 B 1.
=C(a+ Po) — C H(O 1) CgaiH(z,l)

by part (i) of Lemma 2.2. Then we have

I<- H(z 1)2Cx,H(1)—{2——H( 1)}C'BOH(O 2)

i=1

+ {2 — 211(;, 1)}{€(a +Bo+1)—CJH(1)

—2(1—%f—p)2c —H(, 1)H(1)—2————H(z I)ZCx,H(l)

a i=1

B

—2p{g(a+ﬁo) C 0H(o 1)—CZ H, 1)}H(1)

11’

1 Bo |
{2——H(1 1)}C H(0,2) — {C(oz—l—ﬂo—l—l)—C.};H(z_, DH()

+2,0C'80H(O 1)H(1)—|—2,0CZ HG, DH()

lll

—2( —%c—l—p>ZC Y HG, HH

a

{ 1 Bo |
2——H( 1)}C H(,2) — {C(Ol+ﬂ0+l)—cl};H(l_,I)H(l)

+ 2,0C'BOH(O DH() + 2,0Cm ! HG, DH()

- 2(1 - %g - p>C——H(z DH(1)

(3.10)

(3.11)

since 0 < p <1 — (1/2)(a/a) by assumption and since x # 0. Now since (1/a)H(i,1) <1

and since

LH(O, 2)= iH(O, DH() = lH(L DH(1)
Yo Yo a
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by part (ii) of Lemma 2.3, it follows that

2= nanle®u0. 1202 n0 00D
a Y0 Yo

< —6@H(0, DH(D) +2,0Q@H(O, DH(1)
Yo 100]
< —(6—2/)9@}1@, DH(1), (3.12)
a

where we have used the fact that C —2pC > C(1 — 2p) > 0 by assumption. Thus,

I/EH(L, 1)H(1)} <—(C—2pC)Bo—{Cla+Po+1)—C}+2pCm

The right-hand side of the above inequality is not positive by assumption (3.3). This com-
pletes the proof of part (ii). O

Remark 3.1. The major difference of the setting considered above from that considered by
Hamura and Kubokawa (2019) is that now the parameter 8y may take on positive values in
(3.8), yielding the additional terms in (3.9). In the present setting, we need to evaluate the
factor (1/y0) H (0, 2) appropriately. Indeed, if (3.9) is replaced by

I —25 < —{2 — éH(g, 1)} > CixiH(1)

i=1
+ {2— éH(g, 1)}{€(a +po+ 1) —CH(),

then it leads to a sufficient condition that is incompatible with the condition for propriety
given in Lemma 2.1. Note also that the term C(a + Bo + 1) — C. is positive if the prior is
proper satisfying @« < m < o + By, while it is nonpositive in the case they consider. Since
(1/v0)H (0, 2) can be very small compared to H (1) in general, it is not straightforward to
extend their results to the case of proper priors. We evaluate the third term on the right side
of (3.10) by using (3.11), and then apply part (ii) of Lemma 2.3 to the second term in (3.10)
in order to evaluate the secondary terms deriving from the last two terms in (3.11). Thus,
Lemma 2.3 is important for the above proof of the existence of a heterogeneous shrinkage
estimator that is both admissible and minimax.

Remark 3.2. In theory, we can obtain a sufficient condition that generalizes part 4 of Theo-
rem 2.5 of Clevenson and Zidek (1975). By part (i) of Lemma 2.2, we have

"oy +1 |
a+%=Z}L—H@D+@H@Dzw+m+mbH@U
= W Yo a
" oxi+ 1 Bo 1
(@+po+DH() =Y “——H(@,2)+—H(0,2) < (x. + m + fo)—H(0,2),
= i Y0 Y0
where x. =)/ | x; and i €{l,...,m}is an index such that a; = a. Therefore, it follows that
Thay<@ ath _a_ath
a ax.+m+pBy " al+m+ Py
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and that
1 11 - 1 1
Lho.= 2P G paay = CTRTIN L g6 yaa),
Y0 a+pfy a a+pBo ay

Hence, (3.12) can be replaced by

_{2 _ lH(L, 1)}5@H(0, 2) +2pQ@H(0, 1H(1)
a Y0 Yo

< —[Z—min{l, EL50}}6@H(O, l)H(l)max{l, W@}
al+m+ Bo Y0 a+pfo a

+2pg@H(0, DHH()
Y0

= —([ZE—fmin{l, EL'BOHmax{l, w@} —2,0Q>

al+m+ o a+po a
« P 0. 1y HM
Y0
< —([26—6min{1, C—ZL'BOHmaX{I, W@} —2pg)
al+m+ o a+po a
Bo

x —H(@, DH(1),
a

which leads to a condition generalizing the sufficient condition of Clevenson and Zidek
(1975) for the balanced case.

Remark 3.3. We can also evaluate the risk of the Bayes estimator with respect to the prior
Ta,B,y:Bo.yo under the loss function

i d; d; i d;
T ] ] 1
Le(d,)) = ;C"’\"(fi —1—1log Z) = ;ci (di — X — A log ,\_)
which is the loss function considered by Ghosh and Yang (1988) for the balanced case and
by Hamura and Kubokawa (2019) for the unbalanced case. The Bayes estimator is given by

x(ﬂhﬂy}’;ﬂo,Vo) _ x(ﬂ) o (1 _ q;ia,ﬂ’)ﬁﬁm)/o)(x)’ . &;;M,ﬂ,y;ﬂo,yo)(X))

for o < > | Bi, where P (X1 + By)/nt, ..., Xm + Bm)/nm) is the Bayes estimator
against the improper prior 7g(A) = ]_[;-":1 A,ﬂf —! and where

1 K(noy,X+pB+ei,a+ Bo+1;y, Bo)
n;y; Kmoy,X + B,a+ Bo; vo, Bo)

determines the amount of shrinkage fori =1, ..., m. A calculation similar to that in the proof
of Theorem 3.1 shows that the risk difference between the two estimators is

E)‘[Zc(x(a,ﬂ,}’;ﬂo,)/o)’ )‘)] . Ex[LC(X(ﬂ), )‘)] _ Ex[ﬁ(a’ﬂ’y;ﬁo’VO)(X)],

where D@B:7:6010)(0) = — Y™ | CigiK(noy, B+ei,a+Bo+1; 0, Bo)/K(moy, B, a+
Bo; vo, Po) and

[)(Ol,ﬂ,}':ﬁoa)/o)(x) - _

d;l_(a,ﬁ,}’;ﬂov)’o) (X) —

ciXi+Bi K(moy,x+B+ei,a+po+ 15y, Bo)
Sini nivi K(noy,x+ B, o+ Bo: v, Bo)

" e 1 K(noy,x+B,a+Bo+1;w,
+Z—1Xi10g{1+ ( 4 :B Bo Yo ,30)}
i niyi K(moy,x+ B, o+ Bo: v, Bo)
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forx = (x1,...,x,) € Ng™ \ {0}. Using Lemma 2.2 to evaluate the first term on the right and

applying the inequality log(1 4+ &) < & for £ > 0 to the second term will lead to a sufficient

condition for X *A-¥:Fo10) improve on % that is similar to the condition of Theorem 1 of

Hamura and Kubokawa (2019) and incompatible with the condition for propriety. In contrast,
applying the sharper inequality log(1 +&) <& —&2/{2(1 +£)} for & > 0 will lead to a result
applicable to proper Bayes estimators. This shaper inequality is similar to the inequality of
Lemma 3.1 of Dey, Ghosh and Srinivasan (1987), which is used by Ghosh and Yang (1988).

Remark 3.4. The class of proper Bayes minimax estimators will be broadened by replacing
the factor u® =110 /(14 u/y0)P0 in (2.2) with u? v (), where 8. = > | Bi and ¥ is a proper
density on (0, co). This class of priors is considered by Ghosh and Parsian (1981) for the
balanced case with 8 = y = j. One choice for v is the exponential density v (1) = e =%/
for u > 0. The details are omitted.

4 Simulation study

In this section, we investigate through simulation the numerical performance of the risk func-
tions of the Bayes estimators given in Section 2 under the loss function L, given by (1.5) with
¢ =n or ¢ = j. For the case of ¢ = n, the estimators which we compare are the following
five:

ML: the ML estimator A"~ = (X1 /%1, .-+, X /fm),

PB1: the proper Bayes estimator APBl g mmtjviah)

~given by (1.2) with o =2,
GBI1: the generalized Bayes estimator OB = ﬁmfu ¥i0.0) given by (1.2) with Sy =0,
PB2: the proper Bayes estimator AB2 _j =gz given by (2.12) with («, Bo, y0) =
(m—1,2,n),
. . =GB
GB2: the generalized Bayes estimator A

(@, Bo, vo) = (m —1,0,n).

For the case of ¢ = j, the estimators which we compare are the above five estimators and
the following two:

2o QLT given by (2.12) with

PB3: the proper Bayes estimator AT Rimm i vevi2A/m given by (2.11) with 8 = j,

y:vo",and(a’ﬂO»VO):(m_]’2,1/5), X _
GB3: the generalized Bayes estimator AOB3 R Um b vevi0.1/m)

Jj,y=vov,and (o, Bo, yo) = (m — 1,0, 1/n).

given by (2.11) with 8 =

The imbalanced cases in @ = (n1y1, ..., 0mYm) and C = (cl/(nlzyl), ...,cm/(nmzym))

. . . ~PB B ..
are summarized in Table 1. We consider the two estimators &' >~ and A°"" for ¢ = J in order
to include the case where C = j.

Table 1 Imbalanced cases in a and C

c y a C
n v J J
n Jm n v
Jm v J v
Jm Jm n vovw
Jm vov v J
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When ¢ = n, the homogeneous proper Bayes estimator AP s always admissible and,
by part (ii) of Theorem 3.1, minimax. On the other hand, the heterogeneous proper Bayes
estimator &' 7 is admissible, but the minimaxity is not clear, because Theorem 3.1 cannot
always be applied when n is unbalanced. However, the conditions for the minimaxity of

]

PB2" . . - . .
A given in Theorem 3.1 are somewhat restrictive especially when the sample sizes are
. . L ~PB2 .
unbalanced, and it is worth investigating the performance of L' . The generalized Bayes

. Bl B2 B o . :
estimators A , XG , and 2" are similar to the corresponding proper Bayes estimators
~PB1 PB2 . . D
) and X' but whether or not the generalized Bayes estimators are admissible is
not clear.

We set m = 30 and (n;, A;) = (n, AV) for i = 1,...,15 and (n;, %;) = (7, A?) for
i =16,...,30 and we generate random numbers of X for (n n) =(1,1),(0.5,2), (0.1, 10)
and (A(l) A(Z)) (1,1),(3,3), (1,3), (3, 1). For each estimator A, we obtain approximated
values of the risk function E A[Lc(x, A)] by simulation with 100,000 replications. The inte-
grals are calculated via the Monte Carlo simulation with 100,000 replications. The percentage

relative improvement in average loss (PRIAL) of an estimator % over AV is defined by

PRIAL = 100{E;[Lc(X" ", 4) [Le(R M}/ E[Le(RM, 1)

For the case of ¢ = n, Table 2 reports values of the risks of the estimators with values of

PRIAL given in parentheses. When (n, 7) = (1, 1), the risk values of XPBI and XPBZ are the
~PBl _ =~PB2
=A

same because A . When (n,n) = (0.5, 2), the risk values of B are smaller than
those of A " except when (A(D, 2@y = (3, 1). When (1, 7) = (0.1, 10), all risk the values
of "2 are much smaller than those of XPBI, and the improvement of B s significant. In

addition, when (n, ) = (0.1, 10), A" > has the largest values of PRIAL while X °" has the
smallest values of PRIAL. These results suggest that the heterogeneous shrinkage estimators
can enjoy substantial improvement over the homogeneous shrinkage estimators in the more
unbalanced cases. The risk values of the proper Bayes estimators are almost the same as the
corresponding risk values of their generalized Bayes counterparts.

For the case of ¢ = j, Table 3 reports values of the risks of the estimators with values of

PRIAL given in parentheses. The performance of the five estimators XML XPBI, XGBI, XPBZ,

~GB2 . . . . ~PB ~GB3 _ ..
and A~ is almost the same as in the previous case. The estimators A and & , which sat-

isfy the condition C| = - - - = Cy,, have the largest risk values for (n,n) = (0.5, 2), (0.1, 10).

Table 2  Risks of the estimators ML, PB1, GB1, PB2, and GB2 for ¢ = n. (Values of PRIAL of PB1, GB1, PG2,
and GB2 are given in parentheses)

(n,7) AW, 1@ ML PBI GBI PB2 GB2
€ € 30.01 15.35 (48.83) 15.37 (48.77) 15.35 (48.83) 15.37 (48.77)
(3.3) 2999  22.83(23.89)  22.82(2391)  22.83(23.89)  22.82(23.92)
(1,3) 30.00  20.38(32.09)  20.38(32.09)  20.38(32.08)  20.38(32.08)
(3. 1) 30.03  2037(32.16) 2037 (32.15) 2037 (32.16)  20.37 (32.15)
(0.5,2) (1,1 30.00  17.03 (43.21) 17.05 (43.17) 15.34 (48.88) 15.35 (48.83)
(3.3) 30.00  23.99(20.03)  23.98(20.06)  22.16(26.14)  22.16 (26.13)
(1,3) 2998 2324 (2247)  23.24(22.49) 19.16 (36.09) 19.21 (35.93)
(3.1 30.00  19.47 (35.10) 19.47 (35.09) 2053 (31.57)  20.50 (31.66)
(0.1,10) ) 30.11 2537(15.73)  25.36 (15.75) 15.18 (49.56) 15.19 (49.56)
(3.3) 30.00  28.25(5.85) 28.24 (5.87) 18.05 (39.85) 18.05 (39.84)
(1,3) 2996  28.22(5.80) 28.21 (5.83) 16.23 (45.82) 16.25 (45.77)

3,1 29.99 25.37 (15.42) 25.36 (15.45) 17.54 (41.53) 17.53 (41.54)




Table 3  Risks of the estimators ML, PB1, GB1, PB2, GB2, PB3, and GB3 for ¢ = j. (Values of PRIAL of PB1, GB1, PG2, GB2, PB3, and GB3 are given in parentheses)

(n,7) M, 1@ ML PB1 GBI PB2 GB2 PB3 GB3
(1,1 (1,1) 30.01 15.37 (48.79) 15.39 (48.73) 15.37 (48.79) 15.38 (48.74) 15.37 (48.79) 15.38 (48.74)
(3,3) 30.03 22.86 (23.89) 22.85(23.91) 22.86 (23.88) 22.85 (23.90) 22.86 (23.88) 22.85 (23.90)
(1,3) 30.04 20.38 (32.13) 20.38 (32.13) 20.38 (32.14) 20.38 (32.14) 20.38 (32.14) 20.38 (32.14)
(3,1) 30.04 20.38 (32.16) 20.38 (32.16) 20.38 (32.17) 20.38 (32.16) 20.38 (32.17) 20.38 (32.16)
(0.5,2) (1,1) 37.52 17.76 (52.66) 18.01 (51.98) 15.30 (59.21) 15.32 (59.16) 24.55 (34.57) 24.82 (33.84)
(3,3) 37.57 27.54 (26.70) 27.77 (26.08) 24.79 (34.00) 24.81 (33.96) 32.99 (12.18) 33.07 (11.98)
(1,3) 37.61 25.35 (32.60) 25.69 (31.68) 18.44 (50.98) 18.63 (50.46) 32.73 (12.98) 32.82 (12.73)
(3, 1) 37.54 23.55 (37.25) 23.62 (37.07) 25.10 (33.13) 24.91 (33.65) 26.86 (28.44) 27.03 (27.98)
(0.1, 10) (1,1 151.49 105.39 (30.43) 107.62 (28.96) 15.06 (90.06) 15.07 (90.05) 150.85 (0.43) 150.86 (0.42)
(3,3) 151.62 133.27 (12.10) 134.32 (11.41) 36.35 (76.02) 36.40 (75.99) 151.42 (0.13) 151.42 (0.13)
(1,3) 152.12 133.46 (12.27) 134.54 (11.56) 17.90 (88.23) 18.09 (88.11) 151.93 (0.13) 151.93 (0.13)
C)) 151.37 106.84 (29.42) 108.95 (28.02) 38.55 (74.53) 38.47 (74.59) 150.72 (0.43) 150.74 (0.42)

SuONNQLISIP UOSSIOJ JO s1ojoweled Jo uonewInSH

evL
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In particular, when (n, n) = (0.1, 10), these estimators have the values of PRIAL almost equal
to zero.

5 Application

In this section, several estimation methods considered in the previous sections are applied
to data relating to the standardized mortality ratio (SMR). (For the SMR, see, for example,
Clayton and Kaldor (1987).) More specifically, the data consist of actual and expected num-
bers of deaths of females from a specific cause in m = 72 districts in a prefecture in Japan

during the 5 years from 2008 to 2012. For i =1, ..., m, the actual and expected numbers
of deaths in the ith district are denoted by x; and n;, respectively. Each component of an
estimator A = (A1, ..., A;) is a measure of relative risk in a district calculated from the data.

L N N +PBI N
= oM ME AT = BB

LI )

. . ~M
We here consider only the three estimators A

APB 1, and )‘PB2 ()A\};Bz, cees )A\,IZBZ) given in Section 4. Integrals are calculated via the Monte
Carlo simulation with 100,000 replications. The data and the estimates for all the m = 72
districts are given in Tables 4 and 5.

The values of the ratio )ALfBz /)A\fBl foralli =1,...,m are plotted in Figure 1. For i =

1,..., m, the heterogeneous estimator 5\?32 shrinks the ML estimator )A\%\/IL toward the origin
more than the homogeneous estimator ):}.)Bl if n; é 50 and less than )AL})BI if n; % 50.

Appendix
All the proofs of the lemmas in Sections 2 and 3 are given here. For v = (vy, ..., v,) € R"
and v = (01, ..., Uy) € R™, we write the inner product v{v; + - - - + Uy, Uy, @S V - D.

Proof of Lemma 2.1. Let J = [+ [(¢ soym 7a.B.y: 0.0 (A) dA. From (2.2), it follows that

0 u®— 1+8o
:/ / / 1_[)\ Bi—1 _”Zl 1)L/Vld)~ du.
o | A+u/yo)f (0,00)"

By making the change of variables

m -1 m -1 m
61,....0m_1,A) = ( (Zx,-) ,...,,\m_1<2x,~> ,Zx,-),

i=1

we obtain
a—1+po
/ i(l—i-u/)/o)‘g0
m m
x// AP T 0 )= NI 0/% Am=1 4, . 46,y d A du
D x(0,00) i=1
o0 ua—H‘ﬂO
_fo (1 +u/yo)Po

Xf...fD<i:1m_[19,-ﬂi_l)F(ﬂ.)(uéei/)/i)

—B
d@l---deml}du, (A.1)
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Table 4 The data and the estimates of relative risk fori =1, ...,36
i X " AL jpB1 B2
1 49 49.65 0.99 0.97 0.97
2 64 66.60 0.96 0.94 0.95
3 69 63.83 1.08 1.06 1.07
4 79 87.49 0.90 0.89 0.89
5 47 48.60 0.97 0.95 0.95
6 35 42.58 0.82 0.81 0.80
7 66 76.12 0.87 0.85 0.86
8 75 72.67 1.03 1.01 1.02
9 49 55.24 0.89 0.87 0.87
10 54 64.75 0.83 0.82 0.82
11 192 182.16 1.05 1.04 1.05
12 349 269.71 1.29 1.27 1.29
13 48 40.54 1.18 1.16 1.16
14 47 45.94 1.02 1.00 1.00
15 62 54.53 1.14 1.12 1.12
16 38 32.79 1.16 1.14 1.13
17 31 31.41 0.99 0.97 0.96
18 81 78.79 1.03 1.01 1.02
19 57 52.49 1.09 1.07 1.07
20 62 57.09 1.09 1.07 1.07
21 21 23.03 091 0.90 0.88
22 83 67.53 1.23 1.21 1.21
23 116 111.32 1.04 1.02 1.03
24 51 41.87 1.22 1.20 1.19
25 41 36.28 1.13 1.11 1.10
26 21 17.72 1.19 1.16 1.13
27 59 47.77 1.24 1.21 1.21
28 13 9.42 1.38 1.36 1.26
29 20 11.98 1.67 1.64 1.55
30 22 23.76 0.93 091 0.89
31 14 15.09 0.93 0.91 0.87
32 23 13.38 1.72 1.69 1.61
33 14 9.72 1.44 1.42 1.31
34 5 3.28 1.53 1.50 1.19
35 52 52.79 0.99 0.97 0.97
36 6 7.03 0.85 0.84 0.75

where 6, denotes 1 — (01 +--- +6,,—1) and D = {(¢1, ..., &m—1) € (O, 1)'”*1 a4+

{m—1 < 1}. Let Y = maxj<;<m ¥; and y = minj<;<m ¥i. Then, from (A.1),
00 u®—1+pPo
P R
o | (1+u/y)fe

X /.../D(i:r[leiﬂi_l)r(ﬂ,)u_ﬂ'(7/29,-) d@l---dem_l}du

i=1

m 00 5,0—1+Bo—p.
Y (O A1) go, ... S
=T(B)7 {/ /D(l;[1 b >d91 4O }/0 T ufmm
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Table 5 The data and the estimates of relative risk fori =37, ...,72

i X " i Ll B2
37 7 9.78 0.72 0.70 0.65
38 7 7.05 0.99 0.98 0.88
39 10 12.32 0.81 0.80 0.75
40 41 54.59 0.75 0.74 0.74
41 15 9.24 1.62 1.59 1.47
42 11 9.67 1.14 1.12 1.04
43 15 17.81 0.84 0.83 0.80
44 119 124.74 0.95 0.94 0.95
45 103 89.18 1.16 1.13 1.14
46 25 24.95 1.00 0.98 0.97
47 61 5591 1.09 1.07 1.07
48 83 70.76 1.17 1.15 1.16
49 45 36.92 1.22 1.20 1.19
50 141 127.72 1.10 1.08 1.10
51 151 156.31 0.97 0.95 0.96
52 22 16.53 1.33 1.31 1.26
53 98 83.55 1.17 1.15 1.16
54 37 38.18 0.97 0.95 0.95
55 39 32.97 1.18 1.16 1.15
56 29 28.27 1.03 1.01 0.99
57 20 19.84 1.01 0.99 0.96
58 21 25.64 0.82 0.80 0.79
59 72 52.02 1.38 1.36 1.36
60 19 31.88 0.60 0.59 0.58
61 29 22.59 1.28 1.26 1.23
62 15 8.82 1.70 1.67 1.54
63 9 12.31 0.73 0.72 0.68
64 118 111.11 1.06 1.04 1.05
65 52 37.12 1.40 1.38 1.37
66 59 60.27 0.98 0.96 0.96
67 30 29.67 1.01 0.99 0.98
68 155 181.29 0.86 0.84 0.85
69 51 56.42 0.90 0.89 0.89
70 75 89.61 0.84 0.82 0.83
71 75 78.53 0.96 0.94 0.94
72 43 34.05 1.26 1.24 1.23

the right-hand side of which is finite if « < 8. < o + fo. Similarly,

m oo a—14+po—p
B. pi—1 A du=

if the condition o < 8. < a + By does not hold, and the proof is complete. U

Proof of Lemma 2.2. For part (i), we have by integration by parts that

K(y,&, a; v, Bo)

u® 1 n 1 *©
- [? (1+u/yp)fo [1 (1 +u/yl->&}

i=l1 0
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Bo/vo  ~~ —&ilvVi 1 & 1
_/0 (1+u/yo+Zl+u/yl>(1+u/yo)ﬂ°H(1+M/V,)5t

i=1 =1

=0+ — {iOK()' £ a+1;y, /30+1)+Z&K(" e at Ly folr
i=1

Part (ii) follows since

K(y,&+ei,a+1;y, Po)

00 u—1 m
:/0 (1+u/Vo)ﬁ°1+u/% 1:[ 1+M/VJ)5J
oy ! 1 - 1
=/0 (1+M/Vo)ﬁ°yi(1_1+u/Vi>jE[1(1+u/Vi)5f' du
=yi{K.,& a; v, Bo) — K(y, &+ ei,a; v, Bo)}
fori =1, ..., m. This completes the proof. U

Proof of Lemma 2.3. For part (i), let f(u) = u®*~'(1 + u/yo)~Fo "+ u/y;) "5 for

u>0and let Ak = Kp,& o+ 1;v,B0)0K¥,E a;y,B80) — K¥,&E a+ 1;v, B0 +
DK (y,&,a; v0, Bo — 1). Note that

Ag = /Ooouf(u)dufooof(u)du—/ooo . /yof(u)du/ ( +%>f(u)du

= /Ooouf(u)du/OOOf(u)du
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_ yofooo<1 _ ﬁ)f(u)du/ooo(l + 1>f(u)du

=_y0{/ooof(u)du}2+y0/0°ol+ /yof(u)du/ ( +%)f(u)du.

Then it follows from the Cauchy—Schwarz inequality that Ax > 0, which can be rewritten as
(2.8). The inequality (2.7) can be similarly shown. Next, we prove part (ii). From (2.8), we
have

_Kr.§atliy fo) K@.§atliy fotl)
SKo b arbo—1) K@ E @i by
By adding and subtracting K (y, &, o + 1; Y0, Bo)/ K (¥, &, o; y0, Bo), we obtain

<_K()’,’§,a+l;)/o,ﬁo)< _ K¥.& o570, Po) )
- K,§ a0, P0) K(y,& a;v0,B0—1)
1 K(.ga+2y0.f0+ 1)
vo  K@.,§ a5y, Po)
CK@.bat Ly o) | Kr.§ o+ 1y, )
K.& a;v0,.80) voK¥.& a;y0,0—1)
1K@y, §a+2p0,80+ 1)
o  K@,§ a9, B0
_K@y.§a+1iy.B0) 1 K(y.& a4+ 10,0+ 1)
T~ K& av.B0) v K¥.& a5y, Po)
1 K@y.8 a+2y0.po+1)
v  K©¥.§ oy, Po)

where the second inequality follows from (2.8), and thus (2.10) follows. The inequality (2.9)
can be similarly shown. The proof of Lemma 2.3 is complete. O

9

Proof of Lemma 2.4. Let x = (x,...,x,) € Ng”. For i = 1,...,m, the posterior
mean of 1/A; with respect to the observation X = x and the prior 7y g y.4,,y,, denoted
EMX[1/2;1X = x], is given by

ur— 1+Bg

fO (1+M/Vo)/30 f f(O o)™ {A, (I—[

a—1+p, _ )
fO (]u_i_u/y()oﬂof f(Ooo)’"{(H A j+Bi—1l, ”J)‘J)e ud A /Vf}dk du

J B Lgmn ki) Li=1 %7y dx] du

which can be rewritten as

u—1+ho m oo Xj+Bj—1=8ij ,—Aj(nj+u/y;)
- ? J J
Jo (14u/yp)Po 1o A e dijdu
M o0 X—Q—ﬂ— *)n(n+u/y) .
o G Wizt Jo~ A0 = et el di j du
foo o _ppm - DOyHA—8)
0 (1+”/V0)’30 j=1 (l’lj+u/yj)xj+ﬁj_§ij

) w10 m P(xj+8))

O (tu/y)Po 2=V qu sy it

[xi+Bi—1) K(moy,x+ B —e;,a+ Bo; o, Bo)
Lxi+Bi)  Kmoy,x+B,a+ Bo; v, Bo)

=nq

9
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where §;j =e; -ej for j=1,...,m, I'(t) =occ fort <0, and K(noy,0+ B —e¢;,a +
ﬂo;yo,ﬁo)=oofora22’}’:l,3j — 1. Similarly, we have

EMX[1X =x)

_ I TGi+g+ D) Kmoy,x+B+ei,a+ Po; yo. Po)
ni T'xi+p)  Kmoy,x+ B, a+ oy, Po)

which is finite. Hence, for alld = (dy, ..., d,;) € R™, we have
EMX[Lo(d, M|X = x]

S s snfa =]

1 2
AX _ L .
_gc’{E [ - ](d’ EXIX[L|X=x]) +A’}

+ Y ci(di® - 00— 2d; + EMX 3] X = x]),

ieS¢

where S ={i € {1,...,m}: EMX[1/1;|X =x] < oo} and A; = —(EMX[1/3|X =x))~ ' +
EMX[);1X =x]fori € S. Therefore, EMX[L.(d, 1)|X = x] is finite if and only if d; = 0 for
all i € S¢. Furthermore, in this case, it is minimized if and only if d; = (E’“'X[l/)\,- X =x]!
forall i € S. Thus, EMX[L.(d, )| X = x] is uniquely minimized at

d_zxi+,3i_1 Koy x+pB.a+poivo.fo)
=~ n  K@moy.x+pB—e.a+poyo o)

which can be expressed as

. —1 : —1
({1 _ pleByifom () M1 th-1 (1- W,ﬁ,y,ﬂo,yo)(x)}M)

ny Nm

by part (ii) of Lemma 2.2. Thus, the desired result is obtained. O

Proof of Lemma 2.5. For part (i), suppose x; > 1. Then

niKmn,x + j—e;,a+ Bo; vo, Po)

00 OH‘,BO 1
=/o (1+u/y>ﬁo( P )H<1+u/n S 4

0o a+pBo m 1
>/ du
0o (14u/y)bo o L+ u/n;)%it!
=K@, x+ j,a+ Bo+1; v, Bo). (A2)

This shows the desired result. Part (ii) follows immediately from (A.2). For part (iii), let
fiw) =1 4u/yy)~Po [Tj(+ u/nj)_(xf“) for u > 0 and let k =0, 1. Then we have that

0< u(x‘HgO*k 1

B ek fi t ™ fiw)
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as n; — oo for every u > 0. Since o < m — 2, it follows from the dominated convergence
theorem that

Kn,x+j—kej,a+ o+ 1—k; v, Bo)

> 1
= a—+Bo—k . d
/(; ’ (1+u/ni)xi+1—kfl(u) u

— /-oo uo"”go_kfi(u) du € (0, 00)
0

as n; — 00, and this completes the proof. g

Proof of Lemma 3.1. It can be seen that

p [h(X+ei):|
* Xi+1

h(x +e;) {~ (i) _, ;.
e Z 1_[ J7 e J)“J

.|
j=1 Xj:

he) 7 ADY , h(x) % (nph)% s
=Z 1—[ JhJ) T ik Z H]Jejkj

niA; x;!
h(X
=Ex[ ( )}’

xeNy",x-¢;=0 j=1
niki

which proves Lemma 3.1. (|
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