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Abstract. Conducting sequencing experiments with good statistical prop-
erties and low cost is a crucial challenge for both researchers and practi-
tioners. The main reason for this challenge is the combinatorial nature of
the problem and the possible conflicts among objectives. The problem was
addressed by proposing a mathematical programming formulation aimed at
generating minimum-cost run orders with the best statistical properties for 2k

full-factorial and fractional-factorial designs. The approach performance is
evaluated using designs of up to 64 experiments with different levels of reso-
lution. The results indicate that the approach can yield optimal or sub-optimal
solutions, depending on the objectives established for a given design matrix.

1 Introduction

Among the various techniques and tools for improving quality and productivity, factorial
Design of Experiments (DoE) has become particularly popular in companies’ practices. In-
troduced by Fisher (1926), it consists of a combination of sequences of runs performed to
describe an empirical relationship between a set of controlled variables (which are called fac-
tors) and one or more response variables (Bhowmik et al., 2015, Box, Hunter and Hunter,
2005, Fisher, 1926).

Textbooks about DoE report that the order of execution of factorial designs should be
random, no systematic, as randomization of run orders can avoid bias in the estimates of the
effects of interest. However, randomization can induce many changes in factors, which will
eventually increase the experimentation cost (Hilow, 2013).

The response from a factorial experiment carried out in a time sequence may be affected by
uncontrollable variables that are highly correlated with the time in which they occur. In such
a situation, a possibility is to randomize the run order of the experiment. Another possibility
is to use a systematic run order that is robust against time trends (Angelopoulos, Evangelaras
and Koukouvinos, 2009, Adekeye and Kunert, 2006). Hilow (2013) argues that systematic run
(i.e., non-randomized) experimentation presents two major problems: (1) Responses may be
adversely affected by highly correlated or aliased unrelated factors with order of experimen-
tation (i.e., time), where the conditions of experimental stages may not be uniform and where
successively generated responses may be contaminated by this time trend, thus influencing
effect estimates; (2) Certain sequences (i.e., run-time orders) of the factorial experiment can
be costly, especially if the level of change between steps involves factors with expensive or
levels difficult to vary.

Box, Hunter and Hunter (2005) point out the experimental error as one of the most im-
portant source of errors faced by an investigator. By using sound principles of experimental
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design, in particular, randomization, data can be generated and provide a better basis for
deducing causality.

Two main research questions concerning DoE can be identified: optimal experiments and
sequence run. Regarding optimal experiments, see Street and Burgess (2008), Aggarwal,
Veena and Lin (2003), Galil and Kiefer (1980), and Dykstra (1971). Concerning sequence
run, see Alonso et al. (2011) and Wilmut and Zhou (2011). Suen, Das and Midha (2013)
show details of its construction. With respect to experiment execution order, which affects
not only the cost of transition between runs, see Garroi, Goos and Sörensen (2009), Wang
and Chen (1998), Wang and Jan (1995), Wang (1991), Cheng and Jacroux (1988), Draper
and Stoneman (1968), and Daniel and Wilcoxon (1966). As for the design robustness, since
estimates of the main effects and interactions along the runs may be susceptible to the lack of
control, see Oprime, Pureza and Oliveira (2017), Bhowmik et al. (2017), Hilow (2013) and
Correa, Grima, Pere and Tort-Martorell (2009)

The problem of obtaining run orders of experiments that combine good statistical proper-
ties and low cost (here referred to as the Experiment Sequencing Problem—ESP) was first
studied by Draper and Stoneman (1968) and Dickinson (1974). These authors compute the
cost of an experimental design as the number of changes in factor levels (setup cost), which
increase when one experiment is followed by another. The quality of statistical properties is
assessed by measuring the effects of trends on selected factors. For example, the effects of
the linear time trend are strong when there is high correlation between the order in which
runs are performed and one or more factors.

Despite the theoretical development that followed in this field, difficulties in obtaining ex-
perimental designs with good statistical properties and low cost still persist. The reason is that
these two criteria may be conflicting. ESP is a combinatorial problem, which explains why
the computational effort required for the complete enumeration of the run orders of experi-
ments has severely limited the size of the problem that could be exactly solved in an exactly
manner (Tsao and Liu, 2008, Joiner and Campbell, 1976, Dickinson, 1974, Draper and Stone-
man, 1968, Daniel and Wilcoxon, 1966). Bhowmik et al. (2017) and Bhowmik et al. (2015)
have proposed a method for obtaining minimally changed run orders in symmetric factorial
experiments. For instance, the authors have shown that minimally changed run orders in fac-
torial experiments are not unique. Thus, they have developed an exhaustive search procedure
for generating all possible run orders in 2k−p fractional factorial design with minimum factor
change.

In this work, a mathematical method based on a mixed-integer 0–1 bi-objective optimiza-
tion model that describes the ESP has been proposed. The model is used to generate two-level
run orders of factorial experiments that are robust to the linear time trend with minimally
changed run orders. The number of runs that are conducted in this study varies from 8 to 64
with different levels of resolution. For a range of regular DoEs, the run orders are provided
in Table 2. In Table 3, systematic sequences of runs for irregular DoEs are shown, with ex-
ception of case 2, which is a regular matrix. These are examples of applications. The method
can be applied to other DoE types, considering replicate cases and factor change. Therefore,
in this paper, two-level factorial design with and without replication is considered.

This work was organized as follows: Section 2 describes the criteria used in sequencing
factorial designs and literature reviews. Section 3 presents the proposed optimization model
and the methodology used to solve it. Computational experiments are presented in Section 4,
followed by conclusions and next steps in Section 5.

2 Criteria for systematic sequence of two-level factorial design

In a 2k factorial design, the lower and upper levels of each factor are usually coded by minus
and plus signs, respectively. An example of a three-factor design matrix (denoted as a, b
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Figure 1 Design matrix for a 23 factorial experiment.

and c) is presented in columns 2–4 of Figure 1. For any collection of k columns of such a
matrix, each of the 2k row vectors appears equally often (that is, the matrix is orthogonal).
A more concise notation of each of the eight runs is shown in the fifth column, consisting of
run orders in which only factors in the upper levels are depicted. The final column shows the
values of the response variable (y) that result from each run i.

From these set runs, it is feasible to develop a mathematical model that can be used to infer
the response from a given combination of factor values. If x’s are quantities known for each
experimental run, such models with p parameters are generically represented by

y = β0 +
p∑

i=1

βixi +
p−1∑
i=1

p∑
j=i+1

βij xixj + ε, (2.1)

where the first term is the global mean; the second term represents the main effect of each
factor; the third term represents the effects of two-factor interactions; ε is a random error
component; and βi and βij are the coefficients to be estimated by the least squares method
(Alonso et al., 2011).

Literature provides criteria for selecting run orders that take into account the cost of con-
trolled variables (Bhowmik et al., 2017, Hilow, 2013, Wilmut and Zhou, 2011, Street and
Burgess, 2008, Tack and Vandebroek, 2004a, Fisher, 1926). Dickinson (1974), Draper and
Stoneman (1968) and Daniel and Wilcoxon (1966), for instance, use the number of factor
changes values (NFC). Although the transition cost may vary for each factor, we assume that
the larger the number of the factor changes, the more expensive the design. For a 2k factorial
design with (n > 1) runs, it is given by

NFC =
n−1∑
i=1

k∑
j=1

|μij − μ(i+1)j |, (2.2)

where μij is the level of factor j in ith experiment that is performed in the run order with
μij ∈ {−1,+1}. For the 23 factorial experiment shown in Figure 1, lexicographic run order
〈1a b ab c ac bc abc〉 (that is, experiment 1 followed by experiment 2, followed by experiment
3, and so on) has NFC = 11. The minimum NFC value is 7, which can be obtained with run
order 〈a ab b bc abc ac c 1〉.

In addition to cost considerations, one problem that is faced by the investigator while
designing experiments is ensuring their robustness, that is, avoiding the influence of linear
time trends (Hilow, 2013). Linear time trends arise in the presence of uncontrolled factors
and invalidate the premise of independence among the different response variable values
(the independence of control variables, on the other hand, is ensured by the orthogonality of
design matrices).
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Alonso et al. (2011) applied metaheuristic Simulated Annealing to orthogonal fractional-
factorial designs to obtain the minimum number of runs that result in uncorrelated main ef-
fects for symmetrical and asymmetrical factorials. Bhowmik et al. (2015) proposed a method
for obtaining minimally changed run orders in symmetric factorial experiments; the authors
developed an exhaustive search procedure for generating all possible minimally changed run
orders that are robust to time trends in factorial experiments. For an interesting discussion
on the rationale for using 2k and 2k−p designs that are robust to linear and quadratic trends,
the reader is referred to Mee and Romanova (2010). The authors also present an example to
demonstrate the analysis of trend-robust designs.

A good, although indirect, measure of trend effects of a given run order is provided by the
maximum bias absolute value (MBAV), which is also known as the maximum time count.
Proposed by Draper and Stoneman (1968) for the evaluation of linear time trend effects in
23, 24−1, 25−2, 26−3 and 27−3 factorial experiments with equal variable change costs and
extended by Dickinson (1974) for 24 and 25 factorial experiments, MBAV provides informa-
tion about the quality of the run order randomization and is also applicable to models with
nonlinear time trends. For 2k factorial design with n runs, it is given by

MBAV = max
j∈1,...,k

{∣∣∣∣∣
n∑

i=1

θi × μij

∣∣∣∣∣
}
, (2.3)

where θi is the order in which experiment i is performed and μij is the factor level in
experiment i (μij ∈ {−1,+1}). For the 23 factorial experiments shown in Figure 1, run
order 〈abc 1 c ab b ac a bc〉 has maxj∈1,...,k{|0|, |0|, |0|} = 0; that is, it provides the min-
imal maximum absolute bias value. In contrast, the minimal NFC run order, namely,
〈a ab b bc abc ac c a〉, has MBAV = maxj∈1,...,k {|−8|, |−8|, |−8|} = 8. As expected, these
two criteria may be conflicting for some designs.

To obtain the best trade-off between good statistical properties and low cost, various meth-
ods have been proposed (Bhowmik et al., 2015, Correa, Grima, Pere and Tort-Martorell,
2009, Tack and Vandebroek, 2004b, Coster and Cheng, 1988, Steinberg, 1988, Joiner and
Campbell, 1976). Draper and Stoneman (1968) and Dickinson (1974) performed a complete
enumeration of run orders and suggested selecting the run order based on the analysis of
MBAV and NFC values. This procedure is limited to relatively small design matrices, given
the computational effort required for the enumeration.

In Wang and Jan (1995), some properties of columns in orthogonal matrices are used
to define rules for constructing run orders in order to avoid time effects and reduce costs.
Cheng, Martin and Tang (1998) proposed a method for constructing designs with minimum
and maximum NFC among all designs of experiments with resolution ϕ, for ϕ = III and
ϕ = IV . Tsao and Liu (2008) presented an algorithm that sequences experimental designs for
which there are only m non-zero effects/interactions, so that only the first m run orders in the
sequence are required for estimating such effects. Jacroux (1994) proposes a technique that
constructs trend-resistant fractional designs with two or more factor levels. Other procedures
that take into account the trade-off between cost and time-trend effects in experimental design
have been reported in Bhowmik et al. (2015), Wang and Chen (1998), and Wang (1991),
among others.

Other methods explore efficiency concept to select the array and sequence of runs (Pinto
and de Leon, 2014, Alonso et al., 2011, Tack and Vandebroek, 2004a, Atkinson, Donev and
Tobias, 2007). The D-efficiency of an experimental design provides information about the
quality of coefficient βj estimators of the model (2.1) and is given by

Deff = |X′X|1/p

n
, (2.4)
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where X is the design matrix, n is number of experimental units, p is the number of parame-
ters in the model, and |X′X| = det(X′X). Note that the maximization of det(X′X) minimizes
the variance and covariance of minimum square estimators of coefficients βj (Atkinson,
Donev and Tobias, 2007). Therefore, the run order with maximum determinant provides the
best estimate of the response variable.

In Angelopoulos, Evangelaras and Koukouvinos (2009), a constructive method is proposed
for identifying the most D-efficient design with n runs, q columns, and linear and quadratic
trend effects with the minimum number of level changes. Designs are generated so that the
main effects are independent of linear and quadratic time trends.

The traditional DoE guidelines defend the random order since it generally leads to low
MBAV values. In general, these guidelines state that the nature of the application and the prac-
titioner’s experience are essential for deciding whether linear time trends should or should not
be considered when selecting and sequencing experimental units. Furthermore, robust esti-
mates against a linear time trend effect (MBVA = 0) may be associated with run orders with
many factor level changes. According to Tack and Vandebroek (2004a), these trend-free run
orders have low practical value, especially when the cost of changes exceeds the budget. The
uncertainty of the linear time trend effect and the cost of changing factor levels support the
search for budget-constrained run orders, which offer the best protection against a postulated
time trend and highly justify the study of the trade-off between NFC and MBAV, particularly
in industrial settings.

Finding the optimal experiment sequence according to NFC or MBAV criterion (or both)
is a combinatorial problem, which explains why the required computational effort severely
limits the size of the problem to be solved. The following sections show that this can be
overcome by applying operations research techniques, particularly using mathematical pro-
gramming models.

3 Optimization of experiment run orders

Experiment Sequencing Problem (ESP) can be described as follows: Given a complete graph
G(V,A) with n vertices, ESP consists of obtaining the best path that reaches each vertex
vi (vi ∈ V, |V | = n) exactly once. Each vertex corresponds to an experiment i and each edge
(i, j) represents the change of factor level when experiment i is followed by experiment j .
Therefore, a feasible solution consists of a permutation of π(1), π(2), . . . , π(n) vertices, in
which π(i) represents the ith reached vertex.

ESP is a bi-objective problem in which both the run order (path) cost and its maximum
absolute bias value are to be minimized. A ghost experiment was used (indexed by i = 0)
which defines the beginning and end of any path and transforms it into an Hamiltonian cycle;
edges (i,0) and (0, i) (i = 1, . . . , n) are of length zero.

The following notation is used for the description of model:

Parameters

n + 1 number of runs (i = 0 indexes the ghost experiment)
μij factor level j in experiment i (i = 1, . . . , n; j = 1, . . . , k)

cit transition cost from experiment i to t (cit = ∑k
j=1 |μij − μtj |, i, t = 1, . . . , n;0,

otherwise)
M is a large positive number
S is a small positive number
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Decision variables

xit =
{

1, if runs i directly precedes experiment t

0, otherwise (i, t = 0, . . . , n; i �= t)

yi auxiliary variables (yi ∈ R+, i = 1, . . . , n)

θi order in which experiment i is performed in the run order (θi ∈ Z+, i = 0, . . . , n)

Z1 number of changes to factor values (NFC)
Z2 maximum absolute bias value (MBAV)

The mono-objective version of the problem can be described by a mixed-integer 0–1 pro-
gramming model as follows:

minimize Z1 + S × Z2 or (3.1)

Z2 (3.2)

subject to
n∑

i=0

xit = 1, ∀t = 0, . . . , n, t �= i (3.3)

n∑
t=0

xij = 1, ∀i = 0, . . . , n, i �= t (3.4)

yi − yt + (n + 1) × xit ≤ n, ∀i = 0, . . . , n,∀t = 0, . . . , n, i �= t (3.5)

Z1 =
n∑

i=0

n∑
t=0

cit × xit , t �= i (3.6)

θ0 = 0 (3.7)

θt ≥ θi + 1 + M × (xit − 1), ∀i = 0, . . . , n,∀t = 1, . . . , n, i �= t (3.8)

θi ≤ n, ∀i = 1, . . . , n (3.9)

−Z2 ≤
n∑

i=1

θi × μit , ∀t = 1, . . . , k (3.10)

Z2 ≥
n∑

i=1

θi × μit , ∀t = 1, . . . , k (3.11)

xit ∈ {0,1}, ∀i = 0, . . . , n (3.12)

yi ∈ R+, ∀i = 0, . . . , n (3.13)

θi ∈ Z+, ∀i = 0, . . . , n (3.14)

The objective function (3.1) is used when the aim is to find a run order with minimum
NFC. In addition to NFC (which is fully described in equation (3.6), function (3.1) includes a
second term for computing MBAV (see the following paragraph). Parameter S is sufficiently
small so that Z1 greatly dominates Z2. Equations (3.3) and (3.4) respectively, ensure that only
one experiment can follow and precede each experiment, inequalities (3.5) eliminate subcy-
cles and constraints (3.12) and (3.13) define the domains of variables x and y, respectively.

Objective function (3.2) is applied when run orders with minimum MBAV are required.
The MBAV computation uses constraints (3.7)–(3.11). Specifically, equations (3.7)–(3.9)
compute the order θi in which each experiment i is performed (in equation (3.7), note that
the ghost experiment was performed first), while constraints (3.10)–(3.11) consist of the lin-
earization of Z2 = maxt∈1,...,k{|∑n

i=1 θi × μit |}. This set of constraints requires Z2 to be
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minimized, which is naturally performed in (3.2). Finally, constraint (3.14) defines the do-
main of variable θ .

A bi-objective version of the model can be obtained by maintaining either (3.1) or (3.2) as
the objective function and using the other objective as a constraint. For example,

minimize (3.1)

subject to: (3.3)–(3.14) (3.15)

Z2 ≤ ε2,

where ε2 is the maximum acceptable maximum absolute bias value.
Applying an exact method to solve the bi-objective model [(3.1); (3.3)–(3.14)] with ap-

propriate decreasing ε2 values allows the computation of one feasible solution for each point
of the Pareto front, which is the subset Z = (Z1,Z2) of the objective space associated with
all (Pareto) efficient solutions. A feasible solution x is efficient if there is no other feasible
solution x ′ so that Zg(x) ≤ Zg(x

′) for g = 1,2, with at least one strict inequality. Although
finding the Pareto front is usually a time-consuming process, it clearly reveals the trade-
off between the minimum cost and the maximum absolute bias value, thereby allowing the
decision-maker to choose the preferred solution from the set of generated solutions.

4 Computational experiments

Experiments were performed using microcomputer with Intel Core2 i7 2.67 GHz processor
and 12 GB of RAM. Modelling language GAMS 2.3 with CPLEX 11.0 solver was used
to solve models. CPLEX 11.0 uses a branch-and-cut method for mixed linear programming
models and supports parallel processing (Rosenthal, 2014). Default parameters of CPLEX,
null tolerance for the optimality gap, parallel processing (4 threads), and maximum runtime
of 36,000 seconds (10 hours) were used for each problem to be solved. Experiments involved
two sets of 10 examples each. The examples in Set A consist of orthogonal matrices with
8 to 64 runs and 3 to 6 factors. Set B was first approached in the work of Angelopoulos,
Evangelaras and Koukouvinos (2009); examples consist of matrices with 12 to 28 runs and
4 to 6 factors. Non-regular designs provide an alternative to the full factorial and regular
fractional factorial designs (Angelopoulos, Evangelaras and Koukouvinos, 2009). For non-
regular designs (12, 20, 24 and 28 runs), a statistical package was used to obtain designs with
D-optimal using Dykstra DETMAX algorithm to order them.

4.1 Minimizing NFC-Set A

Table 1 presents the results obtained for the 10 examples of Set A with the model [(3.1); (3.3)–
(3.14)], that is, with the objective of minimizing NFC. For each example, the second column
presents the number of factors of the design of experiments by k and f when there is experi-
ment fractionation, with resulting number of runs (2k−f ) and resolution type. The following
three columns show, for a given design, the run order that is returned by GAMS/CPLEX and
associated NFC and MBAV values. Time column presents the time required to obtain the first
feasible run order with optimal NFC value and the total runtime (in parentheses); both given
in seconds. For each example, the optimal run order value is identified by analysing the lower
bound in the GAMS output log at the time the run order is found. Run orders presented in
the table do not necessarily correspond to optimal run orders, since MBAV in the objective
function (3.1) is usually not able to prove that such solutions are optimal in terms of NFC.

Run orders with minimum NFC were obtained for Examples 1–8. In these cases, the times
required to obtain the first optimal run order are very short, usually less than one second. For
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Table 1 Computational results for the mono-objective problem (Set A)

Example Design Run Order NFC MBAV Time [s]

1 23 = 8
Type FULL

ab b bc c (1) ac abc 7 8 < 1 (< 1)

2 24−1 = 8
Type IV

abcd bd (1) ac ab ad cd bc 14 4 < 1 (< 1)

3 25−2 = 8
Type III

cd de be bc ace abcde abd a 15 16 < 1 (< 1)

4 24 = 16
Type FULL

abd bd bcd bc c ac a ad d (1) b ab
abc abcd acd cd

15 16 < 1 (32)

5 25−1 = 16
Type V

a e bde abd acd bcd bce ace cde
abcde abc c b abe ade d

30 0 < 1 (323)

6 26−2 = 16
Type IV

cef bef bde abd abf acf acd cde
abcdef adef df (1) ae abce bc
bcdf

31 16 7 (12)

7 25 = 32
Type FULL

de ade ad abd abcd bcd bcde cde
ce bce bc abc ab a ae e (1) b be
abe abce ace ac c cd acd acde
abcde abde bde bd d

31 0 < 1 (29,407)

8 26−1 = 32
Type VI

abcf acdf cf bcef abef abde be ab
ad acde de ce ac cd bcde bdef bd
bf bcdf cdef df adef abdf af ae
(1) ef acef abcdef abce bc abcd

62 6 < 1 (36,000)

9 27−2 = 32
Type IV

abcdf abd abdeg abcdefg cdefg
deg d cdf acf a aeg acefg bcefg
beg b bcf cg fg ef ce abce abcg
abfg abef bdef bcde bcdg bdfg
adfg adef acde acdg

63 0 7613 (36,000)

10 27−1 = 64
Type V

abdf abfg abeg abde abce abcefh
abdefh abefgh efgh eg ce ch gh
fg cdfg cf df dh cdgh cdeg de
defh cefh cdefgh abcdefgh
abcdeg abcdfg abcf abch abdh
abcdgh abgh acegh adegh adg
adfgh bdfgh bcfgh bcdfh acdfh
acd acdeh acdef bcdef bcdeh
bcegh bcefg bcg bcd bdg b a aeh
beh bef bfh afh acfgh acg acefg
aef adefg bdefg bdegh

127 20 33,996 (35,275)

the remaining two examples, the best lower bounds produced by GAMS/CPLEX are close to
those of the most feasible solutions; the gaps are smaller than 1.6%, which means that the cost
of the optimal solution (in terms of NFC) is one unit lower. For Example 10, GAMS/CPLEX
ran out of memory before the maximum allowed runtime had elapsed.

4.2 Minimizing NFC subject to MBAV—Set A

The bi-objective model [(3.1); (3.3)–(3.14); (3.15)] was iteratively solved as described in
Bérubé, Gendreau and Potvin (2009), that is, with decreasing ε2 values, each of which equals
to the MBAV value (Z2), that was found in the previous iteration, decremented by one unit.
Initial ε2 value was obtained by solving model [(3.2); (3.3)–(3.14)] with Z1 equal to the NFC
value obtained with the model [(3.1); (3.3)–(3.14)]. The final ε2 value was bounded by the
MBAV value obtained by solving the model [(3.2); (3.3)–(3.14)]; however, the procedure
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was halted if no feasible solution was found for a given ε2 within the available runtime. Non-
efficient solutions found during the process were excluded by inspection. Note that since the
decision variables in Z1 and Z2 functions have integer values, if GAMS/CPLEX succeeds in
proving the optimality of solutions for each ε2 or the infeasibility of the model, the procedure
produces one feasible solution for each point of the Pareto front.

Table 2 shows the results obtained. The following three columns present, for a given de-
sign, the run orders that result from each iteration, associated NFC value, and associated
MBAV value. Time column presents the time required to find the best solution and the to-
tal runtime (in parentheses); both given in seconds. Runtimes include solving the models that
provide the initial and final ε2 values and exclude (final) iterations that fail to produce feasible
solutions.

Pareto fronts were obtained for Examples 1–5 and 7. In these cases, the runtime per run
order is much longer than that required with the mono-objective model, sometimes reaching
more than 8 hours. For Examples 6 and 8–10, relative gaps vary from 0.001% to 10.8%.
For Example 9, only model [(3.1); (3.3)–(3.14); (3.15)] was solved, given that the resulting
MBAV is zero. The run order for Example 10 also corresponds to the best feasible solution
obtained by solving model [(3.1); (3.3)–(3.14); (3.15)] since GAMS/CPLEX was unable to
provide an integer solution for model [(3.2); (3.3)–(3.14)].

For Examples 2 and 3, the minimum MBAV is greater than zero. This result reveals that
it is not always possible to obtain trend-free run orders for any set of experimental units.
If we replace runs in Example 2 by [ab abc acd ad bcd bd c (1)], the optimal trend-free run
order [bd acd c ab abc (1) ad bcd] with NFC = 17 is obtained in less than 1 second when
model [(3.2); (3.3)–(3.15)] is solved. Similar result was obtained for Example 5: run order
with NFC = 25 and MBAV = 0 is obtained in 99 seconds. Although the aforementioned
designs have maximum efficiency (100%), their resolutions are lower than those presented
by matrices adopted in this work.

Figure 2 shows the Pareto fronts found for Examples 1–4. Examples 5 and 7 are omitted
since they are the only optimally proven cases for which the two objectives do not conflict,
thereby providing a single solution each.

4.3 Minimizing NFC subject to MBAV—Set B

In this section, solutions for the bi-objective model are compared to results reported in
Angelopoulos, Evangelaras and Koukouvinos (2009). Their procedure (henceforth referred to
as AEK09) constructs sets of linear time trend run orders (MBAV = 0) while considering the
trade-off between the matrix D-efficiency values and NFC. In addition to the trade-off anal-
ysis between NFC and MBAV, computational experiments allow us to determining whether
it is possible to obtain equal or less costly linear time trend run orders from higher-efficiency
matrices, which are provided by Statistica (Statsoft). The bi-objective model was solved by
decreasing the ε2 values, with final ε2 value equal to zero, rather than by solving the model
[(3.2); (3.3)–(3.14)].

Table 3 presents the results obtained. For each of the 10 examples of Set B, the second
column presents the number of runs n and k factors of the design. The next three columns
provide, for a given example and for each source (AEK09 or Model), the matrix D-efficiency
value (D-Eff), the NFC value, and the MBAV value. Time column presents the time required
to reach the best feasible solution and the total CPU time (in parentheses); both given in
seconds. Runtimes exclude (final) iterations that fail to produce feasible solutions. The last
column lists the run orders obtained by each source. For cases in which Angelopoulos, Evan-
gelaras and Koukouvinos (2009) report alternative run orders, only the first is presented.

Pareto fronts were obtained for Examples 1, 2 and 5. Linear time trend run orders with
equal NFC values were obtained for Examples 2 and 5, and 24% smaller NFC was found for
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Table 2 Computational results for the bi-objective problem (Set A)

Example Design Run Order NFC MBAV Time [s]

1 23 = 8
Type FULL

ab b bc c (1) a ac abc 7 8 <1 (<1)
a b bc c ac abc ab (1) 9 2 <1 (<1)
c b ab ac a abc bc (1) 11 0 1 (1)

2 24−1 = 8
Type IV

abcd bd (1) ac ab ad cd bc 14 4 <1 (<1)
bd ac bc ad ab cd (1) abcd 22 2 2 (2)

3 25−2 = 8
Type III

cd de be bc ace abcde abd a 15 16 <1 (<1)
a cd bc be de ace abcde abd 16 8 <1 (<1)
abd cd ace a be de abcde bc 19 6 1 (2)
abd ace de be bc cd abcde a 20 4 <1 (3)
abcde a de bc be cd abd ace 24 2 1 (1)

4 24 = 16
Type FULL

abd bd bcd bc c ac a ad d (1) b ab abc
abcd acd cd

15 16 <1 (17)

cd bcd b ab a ac acd ad abd bd d (1) c
bc abc abcd

16 12 325 (399)

abcd abc c (1) b bd abd ad d cd acd ac
a ab bc bcd

17 4 2380 (4260)

bcd cd (1) b ab a acd abcd abd ad ac
abc bc c d bd

19 0 430 (13,550)

5 25−1 = 16
Type IV

a e bde abd acd bcd bce ace cde abcde
abc c b abe ade d

30 0 167 (167)

6 26−2 = 16
Type IV

cef bef bde abd abf acf acd cde abcdef
adef df (1) ae abce bc bcdf

31 16 <1 (6)

adef abcdef abce bc (1) df bcdf abf ae
cde cef acf acd abd bde bef

33 12 27 (254)

acf bef bde cde acd abd abf abcdef cef
(1) df adef ae abce bc bcdf

35 8 221 (13,154)

abf cef cde acd abd bde bef df acf
abcdef abce bc (1) ae adef bcdf

37 2 430 (13,550)

7 25 = 32
Type FULL

de ade ad abd abcd bcd bcde cde ce
bce bc abc ab a ae e (1) b be abe abce
ace ac c cd acd acde abcde abde bde
bd d

31 0 15,237 (15,237)

8 26−1 = 32
Type VI

abcf acdf cf bcef abef abde be ab ad
acde de ce ac cd bcde bdef bd bf bcdf
cdef df adef abdf af ae (1) ef acef
abcdef abce bc abcd

62 6 668 (72,000)

9 27−2 = 32
Type IV

abcdf abd abdeg abcdefg cdefg deg d
cdf acf a aeg acefg bcefg beg b bcf cg
fg ef ce abce abcg abfg abef bdef bcde
bcdg bdfg adfg adef acde acdg

63 0 3945 (36,000)

10 27−2 = 32
Type IV

abdf abfg abeg abde abce abcefh
abdefh abefgh efgh eg ce ch gh fg cdfg
cf df dh cdgh cdeg de defh cefh cdefgh
abcdefgh abcdeg abcdfg abcf abch
abdh abcdgh abgh acegh adegh adg
adfgh bdfgh bcfgh bcdfh acdfh acd
acdeh acdef bcdef bcdeh bcegh bcefg
bcg bcd bdg b a aeh beh bef bfh afh
acfgh acg acefg aef adefg bdefg bdegh

127 20 33,996 (35,275)
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Figure 2 Pareto fronts for Examples 1–4 (set A).

Example 1. Since all matrices used by the model have equal or higher efficiency compared
to those constructed by AEK09, this result indicates that better trade-offs between efficiency
and cost are possible. In contrast, higher NFC values were obtained for Examples 4, 7 and
10, which represent 3.5 to 27.8% quality deterioration relative to corresponding solutions
provided by AEK09. However, according to the lower-bound analysis, the best possible NFC
values in these cases are 30, 46 and 54, respectively, which are larger than those for the
corresponding AEK09 solutions. This indicates that the selection of experiments based on
the maximization of the matrix efficiency clearly conflicts with the minimization of run order
costs. For Examples 3 and 8, the bi-objective model was unable to find an integer solution
within the maximum running time when ε2 (MBAV) was smaller than 2 and 4, respectively.
For Examples 6 and 9, gaps relative to the best lower bounds vary from 0.0013% to 16.7%.

4.4 Illustrative example

An Illustrative example where randomization experiment is inadequate is a glass container
manufacturing process used in the food industry (Oprime, Pureza and Oliveira, 2017). A brief
description of this process indicates four macro-stages:

1. Merging stage, in which the chemical properties of the molten liquid has a significant
influence on the quality of the final product;

2. Hot-forming stage, which key elements are mechanical components and operating proce-
dures;

3. Product cooling stage, which final quality depends on the cooling cycle; and finally,
4. Final inspection of 100% products stage, which critical variable is the inspection equip-

ment instability. This stage is a factor that may produce linear trend effects due to the loss
of accuracy in the measurement system over time.

Five factors (defined as A, B, C, D, and E) related to the manufacturing process were selected:
(i) melting process parameters; (ii) lubrication of melting molds; (iii) features of the raw
materials used in the fusion; (iv) shaping process parameters; (v) lifecycle of the equipment
used in the shaping stage. The response variable process yield (number of defectless bottles),
and is expressed in percentage. This illustrative example, practitioners may be considering
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Table 3 Computational results for the bi-objective problem (Set B)

Example n×k Source D-Eff [%] NFC MBAV Time [s] Run order

1 12 × 4 AEK09 81.41 25 0 – (1) abcd ac ad bcd bd ab bc c d ab acd
Model 85.78 12 14 0.5 (1) bc c ac a ad d bd b ab abc abcd cd

13 10 4 (6) ab a ac c cd bd b bc abc abcd ad d
14 6 9 (15) ab abc ac cd d bd b bc c a ad abcd
15 4 12 (83) c ac b bd abcd abc ab a ad d cd bc
17 2 53 (314) abc ac a bd b d cd c bc ab abcd ad
19 0 27 (1024) cd ab b bc ad a ac c abc abcd bd d

2 16 × 5 AEK09 100.0 30 0 – (1) ab abcd abce acde de ce cd bd bcde be ae abde ad
ac bc

Model 100.0 30 0 100.0 (100.0) c b bde cde ade abe abc acd abcde ace a abd d bcd bce e
3 20 × 4 AEK09 93.95 19 0 – (1) (1) bd bcd bcd abc ac acd acd ad a abc abd abd ab b

bc c cd d
Model 96.69 15 14 22 (142) ad acd cd bcd bc b ab a a ac c c (1) d d bd abd abcd

abcd abc
16 4 1855 (7611) d ab abc b bcd c a cd abcd ac acd abd (1) ad bcd bd c

ad ab abcd d b bc ac
17 2 18,941 (36,000) abcd abcd acd d d (1) c c bc abc ab ab b b bd abd ad ad

a ac ac cd bcd bcd
4 20 × 5 AEK09 86.61 29 0 – (1) ae ab acd acde abcde bce bc bcd bd abde bde e ce

cde d ad ac abc abe
Model 95.14 30 0 2008 (36,000) bce bce ace a a b b d bde abd abe abe ade acd bcd

abcde abc c e cde
5 24 × 4 AEK09 96.84 17 0 – (1) (1) a abd abd abcd acd acd cd c bc bc bcd bcd bd b

ab ab abc ac ac ad d d
Model 96.84 15 12 202 (200) ab ab abc bc c c cd d d ad ad abd bd bcd bcd abcd abcd

acd ac ac a (1) b b
17 0 1879 (13,774) abcd abcd abd d d (1) b b bc abc ac ac c c cd acd ad ad

a ab ab bd bcd bcd
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Table 3 (Continued)

Example n×k Source D-Eff [%] NFC MBAV Time [s] Run order

6 24 × 5 AEK09 93.90 30 0 – (1) (1) ad ade abde abcd abce abce bcde bcd cd bc be
be ce cde acde ae ac ac ab abd bd de

Model 94.28 30 6 4825 (36,000) b b abc abc ace ace cde e e abe abe a a c c bcd bce bce
bde ade d acd abcde abd

32 0 2320 (36,000) b b e e abe ace ace abcde abc abc c c acd a a abe bce
bce bcd cde d bde abd ade

7 24 × 6 AEK09 79.26 36 0 – (1) ac acdf abcdf abdef bde bd bf bef cef ce cde abcde
abce abcef aef af ad ade def cdf bcdf bc ab

Model 82.04 46 4 4988 (36,000) abcf ab (1) ae af bf bc cf cd acdf ad ac abce abcd bd be
abef bcef ce acef abcdef abdf df de

8 28 × 4 AEK09 97.12 21 0 – (1) a ac cd c bc bcd bcd bd bd abd abd ad a ab ab abc
abc abcd acd acd acd d d (1) c bc b

Model 97.94 15 28 9 (197) ab ab b b (1) c c cd cd acd abcd abcd abd abd bd bd d d
ad ad a a ac ac abc bc bc bcd

16 8 1792 (4707) ad ad abd abd ab b b bc bc c c ac ac acd cd cd bcd bd
bd d d (1) a a ab abc abcd abcd

Model 97.94 17 6 1536 (36,000) b b ab a a ad ad abcd abcd acd cd cd bcd bc bc c c (1) d
d bd bd abd abd ab abc ac ac

18 4 4553 (36,000) d d ad ad ab ab b b bc bc abc abcd abcd bcd cd cd acd a
a ac ac c c (1) bd bd abd abd

9 28 × 5 AEK09 94.09 32 0 – (1) a ac acd acde abde abde bd bd bcde bcde ce ce e be
abe abce abc abcd bc bc cd d de ae ab ad acde

Model 96.10 30 4 1885 (36,000) a ad abd ab b bc bce ce cde de ade abde abcde abcd abc
ac c (1) e ae abe abce ace acd d bde bd bcd

36 2 10,049 (36,000) abe ab abd bd bcd cde ac ace ae e (1) d ad a ce bce bc
abce abc abcd acd abcde abde ade de bde b c

10 28 × 6 AEK09 88.55 45 0 – (1) (1) bc bce abcef abcde abcdf bdf df def ef aef abdef
abd ad ace ae acd acdef cde cd bcf cf acf abf ab be bde
bcdef

Model 91.67 54 6 24,141 (36,000) ae ab abcd bc (1) df adef abdf abef abde abce abcf acdf
cf cd ce be bf bcef bcde de bd bdef abcdef acef af ac ad
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the time trend due to the measurement system; as soon, they have used a systematic run order
of experiments.

Considering that the experiments are subjected to linear trends, practitioners have selected
design of experiment with 16 treatments and 5 factors (16.5), using the run order of example
5, Table 2 (25−1 = 16), type VI, with MBVA = 0, and NFC = 30. The analysis of systematic
run order has suggested the advantage: systematic methods can generate low-cost experimen-
tal designs and more robust to linear trend effects. Another aspect, when practitioners use a
systematic sequence approach subjected linear or non-linear time trend, there is no bias in
the model parameters estimations.

5 Conclusions and future steps

In this study, the problem of two-level factorial design experiments as a bi-objective math-
ematical programming model was formulated to obtain run orders with low cost and good
statistical properties. As commonly prescribed in literature, the number of factor changes
and maximum absolute bias values were used to measure cost and quality, respectively, of a
given run order. The performance of the model was assessed by computational experiments
on designs that consisted of up to 64 runs with different resolution levels.

Results have shown that GAMS/CPLEX was able to provide Pareto fronts for 45% of ex-
amples in both considered data sets. For the first set, the exact Pareto Front was obtained
for 60% of cases. Furthermore, 80% of examples in this set were optimally solved when the
mono-objective model for cost minimization was adopted. The computational times required
to obtain the optimal or sub-optimal solution varied from less than one second to the adopted
maximum runtime (36,000 seconds), thereby revealing the difficulties of GAMS/CPLEX in
solving larger examples. However, the best lower bounds obtained in these cases were usually
very close to the best feasible solutions. In addition, many refinements to the basic algorithm
can be applied to improve convergence. These include using reduced costs to eliminate vari-
ables, heuristics to generate good solutions so that nodes can be pruned by bounds, problem
preprocessing, and strengthening cuts through lifting.

For cases in which design matrices are not full-factorial, the quality of solutions is bound
by the chosen experiments. Since in our experiments, the design matrix is a parameter sup-
plied by an outside source, this may result in solutions dominated by other solutions provided
by a different matrix. Therefore, the next step in our agenda is to extend the model to include
the selection of experiments from a regular design matrix. Other interesting research lines
include the consideration of other objectives, such as maximizing the resulting matrix D-
efficiency and the development of heuristics and metaheuristics.
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