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Exponential ergodicity for a class of non-Markovian
stochastic processes
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Abstract. The existence of an invariant probability measure is proven for a
class of solutions of stochastic differential equations with finite delay. This
is done, in this non-Markovian setting, using the cluster expansion method,
from Gibbs field theory. It holds for small perturbations of ergodic diffusions.

1 Introduction

The aim of this paper is to prove the existence of an invariant probability measure, for which
there is exponential ergodicity, for a class of solutions of stochastic differential equations
with finite delay and non regular drift.

We will consider Rd -valued stochastic differential equations of the form:

dXt = (
g(Xt) + βb

(
t, (X)tt−t0

))
dt + dWt,

where (X)ts := {Xu|u ∈ [s, t]} is the path of the process X between times s and t , and t0 is
a fixed positive number. We will make certain assumptions on the underlying semi-group of
the reference process, weak solution of

dXt = g(Xt) dt + dWt .

The additional drift term b, will only be required to be time-local, measurable and bounded
by 1.

Our interest in those equations comes from possible applications for stochastic Cucker–
Smale type models in (Rd)N —such as the one presented by Ha, Lee and Levy in Ha,
Lee and Levy (2009). It is a N -particle mean-field system in R

d , whose velocity v(t) =
(v1(t), . . . , vN(t)) satisfies, for all t ≥ 0, the stochastic differential equation

dv(t) = − λ

N
F

(
t, (v)t0

)
dt + dW(t),

where for all i ∈ {1, . . . ,N}, Fi(t, (v)t0) = ∑N
j=1 ψ((vj )

t
0, (vi)

t
0)(vi(t) − vj (t)) and W is a

standard dN -dimensional Brownian motion. The function ψ , supposed to be non-negative
and symmetric, is called communication rate and quantifies the interaction between each pair
of particles.

Various results about the existence of invariant probability measures for stochastic differ-
ential equations with delay can be found in the literature, going back to the paper of Itô and
Nisio (1964), where is proven that, when the drift and diffusion coefficients are continuous,
there exist stationary solutions for delayed processes. Since then, one can mention, among
many others, the papers by Mohammed (1986), Bakhtin and Mattingly (2005), or the book
of Da Prato and Zabczyk (1996), especially Chapter 10. General results on stochastic dif-
ferential delay equations up to 2003 are gathered in a survey by Ivanov, Kazmerchuk and
Swishchuk (Ivanov, Kazmerchuk and Swishchuk (2003)).
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However, they are mainly valid under strong regularity assumptions on the coefficients,
despite the fact that non-regular coefficients appear in various fields, such as finance (see for
instance Arriojas et al. (2007), about pricing options) or physics (with bistable systems, in
Tsimring and Pikovsky (2001)); stability of non-regular processes is also a fixture in Mao
(2007).

One notable exception is Scheutzow (1984), where the author considers the equation

dx(t) = F
(
(x)tt−1

)
dt + dWt

for a function F measurable and locally bounded. Assuming the existence and uniqueness of
a weak solution, and a restrictive recurrence condition (holding if some condition on certain
Lyapunov functionals are met), the existence of—and the convergence in total variation dis-
tance towards—an invariant probability measure is proven, using the strong Markov property
satisfied by ((x)tt−1)t∈R+ . Nothing is said, however, about the rate of convergence for such
processes. The true novelty of our work is the exponential rate of the ergodicity.

As we are dealing with non-Markovian processes, most standard methods of stochastic
ananlysis are not available. Thus, our main tool here will be the so-called cluster expansion
method, mainly used in statistical mechanics, in particular in Gibbs field theory. As a conse-
quence, our results will hold for irregular but small (albeit not insignificant) perturbations of
the reference process. Technical results for the adaptation of the cluster expansion methods to
Gibbs random fields can be found in the book by Malyshev and Minlos (1991). Subsequent
papers have implemented those methods for stochastic processes, for example interacting
diffusions systems or one-dimensional non-Markovian diffusions. It was done in Ignatyuk,
Malyshev and Sidoravicius (1992), and, more recently, amongst others in Dai Pra and Roelly
(2004), Dai Pra, Roelly and Zessin (2002) or Minlos, Roelly and Zessin (2000).

Our main result is the exponential ergodicity of the process. Moreover, with the same
technique, one obtains that the decay of correlations is exponentially quick. It follows that a
central limit theorem can be derived from the mixing properties implied by this inequality.

Contrary to what was done in Dai Pra and Roelly (2004), we do not require for the semi-
group associated with the reference process to be ultracontractive, but we only need some
strong form of hypercontractivity. One instance of a well-known process which is not ultra-
contractive but verifies our assumptions is the Ornstein–Uhlenbeck process. We will present
some explicit results in this particular setting. Actually, the stochastic Cucker–Smale model
can be seen as a mean-field perturbation of the Ornstein–Uhlenbeck process, and this led to
this work. The lack of ultracontractive bounds for the underlying reference process introduces
several new technical difficulties. We will therefore present a detailed proof for the cluster
estimates. The use of these estimates to get to the final main theorem follows the lines of, for
instance, what was done in Dai Pra and Roelly (2004) and Minlos, Roelly and Zessin (2000)
and we will go rather quickly over this part.

We start by introducing our framework, the objects we will encounter and the assumptions
that will be needed, before giving our main result. Then, we obtain, in Section 3, a cluster
representation for the partition function defined in the first part. In Section 4, we study the
cluster estimates and show that they tend to 0 when β does. In Section 5, we conclude the
proof and present a few consequences of our convergence theorem. Finally, in Section 6, we
explicitly compute some of the bounds in the Ornstein–Uhlenbeck setting.

2 Framework and main theorem

We introduce here the process which will serve as reference in our work: a stochastic pro-
cess sufficiently regular to be exponentially ergodic with respect to its invariant (and even
reversible) probability measure. We present all the assumptions that will be necessary to ex-
tend this ergodicity to small perturbations of this process.
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2.1 The reference process

First, we introduce the framework in which we are considering such a stochastic process:

• � = C(R,Rd) shall be the canonical continuous R
d -valued path space, for some d ≥ 1,

and F the canonical Borel σ -field on �. (Xt)t∈R shall be, as usual, the canonical process.
• W shall be the Wiener measure on (�,F), the law of a standard d-dimensional Brownian

motion (Wt)t∈R.

We consider the following stochastic differential equation, for any t ∈ R,

dXt = g(Xt) dt + dWt (2.1)

with g : Rd → R
d a smooth function (say Ck , for a certain k ≥ 2) and (Wt) a standard d-

dimensional Brownian motion. We suppose that there exists a reversible probability measure,
μ, for this process. We will soon give conditions to ensure that (2.1) has a unique stationary
weak solution.

Let L be its associated infinitesimal generator, defined by

L = 1

2

∑
i,j

∂2
ij + ∑

i

gi∂i .

L is uniformly elliptic, and, as μ is reversible, symmetric in L2(μ): for all f and g smooth
enough,

∫
f Lg dμ = ∫

gLf dμ. It is known that μ is then absolutely continuous with respect
to the Lebesgue measure, with a positive density. Thus, μ is of the form dμ(x) = Ce−V (x) dx;
in addition, V :Rd →R is smooth (at least Ck).

According to Kolmogorov’s characterization of reversible diffusions, in Kolmogorov
(1937), this even implies that g can be written as a gradient function of a potential func-
tion V : g = −1

2∇V . Thus, equation (2.1) becomes:

dXt = −1

2
∇V (Xt) dt + dWt . (2.2)

The probability measure P on (�,F) shall denote the weak stationary solution of (2.2),
with marginal law the invariant probability measure μ.

To ensure that the equation (2.2) indeed admits a stationary weak solution on R, and in par-
ticular, that there is non-explosion in finite time, we further assume (see, e.g., Royer (1999))
that one of the two following assertions on the potential V is true:

(1) V (x) −→|x|→∞ +∞ and |∇V |2 − �V is bounded from below

(2) There exist a, b ∈ R such that, for all x, x∗∇V (x) ≥ −a|x|2 − b,

where x∗ is the transpose of x.
In this case, there even exists a unique strong solution (Theorem 2.2.19 in Royer (1999)).

The semi-group (Pt ) admits a smooth transition density with respect to μ, denoted by
p(t, x, y). As the probability measure μ is reversible, p(t, ·, ·) is symmetric:

∀t, x, y, p(t, x, y) = p(t, y, x).

We now introduce two assumptions which will be essential in the following:

(H1): μ satisfies a Poincaré inequality: there exists a constant CP such that for all smooth
functions f in L2(μ), ∥∥∥∥f −

∫
f dμ

∥∥∥∥2

L2(μ)

≤ CP

∫
|∇f |2 dμ.
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(H2): There exists δ ≥ 0 such that

sup
t≥δ

∥∥p(t, ·, ·)∥∥L8(μ⊗μ) < ∞.

Remark 1. It is well known (see, for example, Ané et al. (2000)) that hypothesis (H1) is
equivalent to the exponential convergence of the semi-group towards μ, that is, there exists a
constant CS such that for all f ∈ L2(μ), for all t ≥ 0,∥∥∥∥Ptf −

∫
f dμ

∥∥∥∥
L2(μ)

≤ e−CSt

∥∥∥∥f −
∫

f dμ

∥∥∥∥
L2(μ)

and, moreover, CS = 1/CP (see Cattiaux, Guillin and Zitt (2013) for a more general state-
ment).

In particular, if
∫

f dμ = 0, then (H1) implies that for every t ≥ 0,

‖Ptf ‖L2(μ) ≤ e−t/CP ‖f ‖L2(μ). (2.3)

Remark 2. Using Cauchy–Schwarz’s and Jensen’s inequalities,

‖Pδf ‖8
L8(μ)

=
∫ (∫

p(δ, x, y)f (y)μ(dy)

)8
μ(dx)

≤
∫ (∫ ∣∣f (y)

∣∣2μ(dy)

)4(∫
p(δ, x, y)2μ(dy)

)4
μ(dx)

≤ ‖f ‖8
L2(μ)

∫∫
p(δ, x, y)8μ(dy)μ(dx)

This means that:

‖Pδf ‖L8(μ) ≤ ∥∥p(δ, ·, ·)∥∥L8(μ⊗μ)‖f ‖L2(μ). (2.4)

Thus, if (H2) is satisfied, Pδ : L2(μ) → L8(μ) is a bounded operator.
If, in addition, (H1) is satisfied, for every k ≥ 2, Pt : L2(μ) → Lk(μ) is bounded by 1

when t is large enough.

Example 1. (H1) is satisfied, for instance, if V is uniformly convex outside of a compact set,
that is if the Hessian matrix of V is a non-degenerate quadratic form outside of a compact
set.

It is, however, difficult to obtain a generic condition on the potential V for hypothesis (H2)
to hold; one can look at Section 3 of Cattiaux, Dai Pra and Roelly (2008) to understand the
underlying difficulties: in particular, condition (A4), introduced at the beginning of Section 2
in Cattiaux, Dai Pra and Roelly (2008) is fairly close to our hypothesis (H2). In the special
case of an Ornstein–Uhlenbeck reference process, discussed in Section 6, (H2) is proven
thanks to the known explicit expression of the density function p.

We now prove a proposition, taking into account hypotheses (H1) and (H2) and yielding
the assumption we will use in practice, rather than (H1) itself.

Proposition 1. Under hypotheses (H1) and (H2), for t ≥ 2δ,∥∥p(t, ·, ·) − 1
∥∥
L8(μ⊗μ) ≤ γδ(t)

(∥∥p(δ, ·, ·)∥∥L8(μ⊗μ) ∨ 1
)
,

where γδ(t) = 2Mδe
−(t−2δ)/CP with Mδ = supa≥δ ‖p(a, ·, ·)‖L8(μ⊗μ) ∨ 1.

In particular, γδ(t) goes to 0 exponentially fast when t goes to infinity.
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Proof. The following lemma is essential for the proof of the proposition.

Lemma 1. Set δ > 0. Suppose that (H1) holds true.
Then for all smooth f such that

∫
f dμ = 0,

∀t ≥ δ, ‖Ptf ‖L8(μ) ≤ e−(t−δ)/CP
∥∥p(δ, ·, ·)∥∥L8(μ⊗μ)‖f ‖L8(μ).

Remark 3. It is possible for both sides of the above inequality to be infinite.

Proof. Let t be a positive number with t ≥ δ and f a smooth function such that
∫

f dμ = 0.
For any t ≥ δ, thanks to the inequality (2.4) proven in Remark 2,

‖Ptf ‖L8(μ) = ∥∥Pδ(Pt−δf )
∥∥
L8(μ) ≤ ∥∥p(δ, ·, ·)∥∥L8(μ⊗μ)‖Pt−δf ‖L2(μ).

As (H1) is supposed to be satisfied, so is (2.3); hence the conclusion of this proof:

‖Ptf ‖L8(μ) ≤ e−(t−δ)/CP
∥∥p(δ, ·, ·)∥∥L8(μ⊗μ)‖f ‖L2(μ)

≤ e−(t−δ)/CP
∥∥p(δ, ·, ·)∥∥L8(μ⊗μ)‖f ‖L8(μ). �

We prove the proposition and start by expressing p(t, x, y) − 1 using the semi-group:

p(t, x, y) − 1 =
∫ (

p(t − δ, x, z)p(δ, z, y) − 1
)
μ(dz)

= Pt−δ

(
p(δ, ·, y)

)
(x) − 1 = Pt−δ

(
p(δ, ·, y) − 1

)
(x).

Thus, applying Lemma 1 for f = p(δ, ·, y) − 1 at time t − δ (≥ δ as t ≥ 2δ),∫ (
p(t, x, y) − 1

)8
μ(dx)

=
∫

P 8
t−δ

(
p(δ, ·, y) − 1

)
(x)μ(dx)

≤ e−8(t−2δ)/CP
∥∥p(δ, ·, ·)∥∥8

L8(μ⊗μ)

∥∥p(δ, ·, y) − 1
∥∥8
L8(μ)

≤ e−8(t−2δ)/CP 28∥∥p(δ, ·, ·)∥∥8
L8(μ⊗μ)

(∥∥p(δ, ·, y)
∥∥8
L8(μ) ∨ 1

)
,

which leads to:∫ (
p(t, x, y) − 1

)8
μ(dx)μ(dy)

≤ e−8(t−2δ)/CP 28∥∥p(δ, ·, ·)∥∥8
L8(μ⊗μ)

(∥∥p(δ, ·, ·)∥∥8
L8(μ⊗μ) ∨ 1

)
.

Hypothesis (H2) ensures that ‖p(u, ·, ·)‖L8(μ⊗μ) is bounded uniformly in u for u ≥ δ, hence
the result. �

Remark 4. As can be noticed in the proof, Mδ is a priori not the optimal bound (although it
corresponds with ‖p(δ, ·, ·)‖L8(μ⊗μ) as will be seen in the Ornstein–Uhlenbeck example in
Section 6) but will be good enough for our needs (and will simplify later computations).

2.2 The perturbed stochastic differential equation

We turn our attention to the stochastic differential equation with finite delay t0, for all t ∈R,

dXt =
(
−1

2
∇V (Xt) + βb

(
t, (X)tt−t0

))
dt + dWt, (2.5)

where the potential V and the Brownian motion (Wt) are as previously defined, β is a positive
constant, which shall be small enough for the result to hold.

The perturbation drift, b shall satisfy the assumption (H3) detailed below:
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(H3): b : R×� →R
d is a measurable function, bounded by 1, and local, in the sense that

there exists a delay t0 > 0 such that, for any u ∈ �, b(t, u) = b(t, (u)tt−t0
).

Example 2. We give here a few examples for perturbation drifts b satisfying (H3):

• we can consider b of the form b(t, (u)tt−t0
) = g(t)

∫ t
t−t0

f (ut , us) ds for any trajectory u ∈
� with f and g bounded by 1 and measurable; for instance, f (x, y) = sign(x − y) or
f (x, y) = 1y∈A with A a subset of Rd (thus obtaining an occupation time);

• we may have a dependence on the past depending on a single time, of the form
b(t, (u)tt−t0

) = g(ut−t0) for a certain function g measurable and bounded by 1, but not
necessarily continuous;

• one can also consider a drift function with jumps, such as b((u)tt−t0
) = 1(u)tt−t0

∈A with A a

subset of C([−t0,0],Rd).

One of the main advantages of our method is that we only require from b that it satisfies
(H3), without any stronger condition on its regularity.

Recall that the probability measure Q on � is said to be a weak solution of the stochastic
differential system (2.5) if the process(

Xt −
∫ t

0

(
−1

2
∇V (Xs) + βb

(
s, (X)ss−t0

))
ds

)
is a Q-Brownian motion.

2.3 The main result

Our main theorem is the following convergence result for the stochastic differential equation
with delay, for t ∈ R,

dXt =
(
−1

2
∇V (Xt) + βb

(
t, (X)tt−t0

))
dt + dWt, (2.5)

considered as a perturbation of the reference process

dXt = −1

2
∇V (Xt) dt + dWt . (2.2)

Theorem 2.1. Assume that the assumptions (H1) and (H2) are satisfied by the reference
stochastic differential equation (2.2). Assume also that the perturbation drift b of equation
(2.5) verifies (H3).

Then, for β small enough,

(i) The stochastic differential equation (2.5) admits a weak stationary solution Q, and
thus an invariant probability measure ν.

(ii) There is exponential ergodicity: there exist θ > 0 and C : Rd → R+ such that for |t |
and |t ′| large enough, for μ a.s.-x ∈R

d , for every bounded measurable function f ,∣∣EQ

[
f (Xt)|X0 = x

] −EQ

[
f (Xt ′)|X0 = x

]∣∣ ≤ C(x)e−θ |t−t ′|.
(iii) The decay of correlations is exponentially quick: there exist two positive constants θ1

and θ2, such that for |t | and |t ′| large enough, for all f and g measurable and bounded by 1,
it holds: ∣∣EQ

[
f (Xt)g(Xt ′)

] −EQ

[
f (Xt)

]
EQ

[
g(Xt ′)

]∣∣ ≤ θ1e
−θ2|t−t ′|.

The rest of the paper is devoted to the proof and the consequences of this theorem.

Remark 5. This theorem is an existence result, and does not provide any uniqueness either
for the weak stationary solution or the invariant probability measure.
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3 Approximation on finite-time windows and cluster representation

The main idea behind the proof is to build approximations on finite-time windows that will
converge towards what will be the weak stationary solution of (2.5); the properties of these
approximations will be then be inherited by this limit.

3.1 Approximations

We set the following notations:

• a, a fixed positive number, destined to become quite large;
• for every j in Z, Ij = [ja, (j + 1)a];
• for every N in N

∗, I (N) = [−Na,Na] = ⋃N−1
j=−N Ij ;

• for every u in �, u(N)(t) = u(Na) if t ≥ Na, u(N)(t) = u(t) if −Na ≤ t ≤ Na, and
u(N)(t) = u(−Na) if t ≤ −Na. That is: u(N) is equal to u frozen outside of the interval
I (N).

Using Girsanov theorem (see, e.g., Lipster and Shiryayev (1977)), we can show that the
restriction to any finite time interval I of the law of the perturbed process is absolutely con-
tinuous with respect to the law of the reference process, P, and that its density is of the form
exp(−HI(u)) du where the associated Hamiltonian HI is defined by

HI (u) = −
∫
I
βb

(
t, (u)tt−t0

)∗
dWt + β2

2

∫
I

∣∣b(
t, (u)tt−t0

)∣∣2 dt, (3.1)

for every trajectory u in the path space �. We will denote HN = HI(N).
To obtain the theorem, our main objective is to prove the convergence of the sequence of

probability measures (QN)N∈N∗ , defined on � by

QN(du) = 1

ZN

exp
(−HN

(
u(N)))

P(du), (3.2)

towards a weak solution of the equation (2.5) that will be time stationary. From this point,
classical results of Gibbs theory shall lead to Theorem 2.1.

Remark 6. Under QN , the canonical process (Xt) is a weak solution of the stochastic dif-
ferential system (2.5), for t ∈ I (N), but not a stationary one.

3.2 The partition function and its cluster representation

The renormalization constant in (3.2), also called partition function, is given by

ZN =
∫
�

exp
(−HN

(
u(N)))

P(du).

The aim of our next section will be to expand ZN with respect to β uniformly in N .
The bulk of the proof shall then be to control the different terms involved in this series

expansion, to show that they are smaller than a certain function of β that vanishes when β

goes to 0.
The cluster expansion method, very useful in statistical mechanics, shall then lead us first

to the convergence of the sequence (QN)N towards a weak stationary solution Q of equation
(2.5) and the existence of a invariant probability measure, second to the exponential ergodic-
ity and Theorem 2.1.

First, however, we aim to expand the partition function into clusters, that is to obtain an
expression of ZN of the form:

ZN = 1 + ∑
τ

∏
i

�τi
,
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with the meaning and nature of each of τ , i and �τi
to be determined.

We start by conditioning the reference probability P on � with respect to the values of its
marginals at times −Na, −(N − 1)a, . . . ,0, a, . . . ,Na:

ZN =
∫
�

exp
(−HN

(
u(N)))

P(du)

=
∫
R(2N+1)d

∫
�

exp
(−HN

(
u(N)))

P
(
du|Xja = yj , j = −N, . . . ,N

)
⊗ PX−Na

(dy−N)

×
N−1⊗

j=−N

PX(j+1)a

(
dyj+1|Xja = yj

)
.

Let Pa,b
I denote the law of the stochastic bridge over I obtained by conditioning P so that

Xinf I = a and Xsup I = b. Then, on the interval I (N),

P(·|Xja = yj , j = −N, . . . ,N) =
N−1⊗

j=−N

P
yj ,yj+1
Ij

(·). (3.3)

Recall that by definition of the transition density p,

PX(j+1)a
(dyj+1|Xja = yj ) = p(a, yj , yj+1)μ(dyj+1). (3.4)

Combining (3.3) and (3.4), one obtains

ZN =
∫
R(2N+1)d

∫
�

exp
(−HN

(
u(N))) N−1⊗

j=−N

P
yj ,yj+1
Ij

(du)

×
N−1⊗

j=−N

p(a, yj , yj+1)

N−1⊗
j=−N

μ(dyj ).

Next, we re-order the terms in a convenient way:

ZN =
∫
R(2N+1)d

∫
�

N−1∏
j=−N

(
exp

(−HIj

(
u(N)))p(a, yj , yj+1)

)

×
N−1⊗

j=−N

P
yj ,yj+1
Ij

(du)

N−1⊗
j=−N

μ(dyj ).

Contrary to what was done, by mistake, between equations (13) and (14) in Dai Pra and
Roelly (2004), we cannot exchange the product and the integral over �. This can be corrected
in a way by a different decomposition:

ZN =
∫
R(2N+1)d

∫
�

N−1∏
j=−N

αj (a, y,u)

N−1⊗
j=−N

P
yj ,yj+1
Ij

(du)

N−1⊗
j=−N

μ(dyj ),

where the coefficients αj are defined, for j ∈ {−N + 1, . . . ,N − 2}, by

αj (a, y,u) = exp
(−HIj

(
u(N)))√p(a, yj−1, yj )p(a, yj , yj+1)

with the extremal cases j = −N and j = N − 1 as follows

α−N(a, y,u) = exp
(−HI−N

(
u(N)))√p(a, y−N,y−N+1),

αN−1(a, y,u) = exp
(−HIN−1

(
u(N)))√p(a, yN−2, yN−1)p(a, yN−1, yN).
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In order to obtain a sum of a product of terms that are “temporally independent” from each
other, we rewrite differently the product of the αj :

N−1∏
j=−N

αj (a, y,u) =
N−1∏

j=−N

(
1 + αj (a, y,u) − 1

) = 1 + ∑
S

∏
j∈S

(
αj (a, y,u) − 1

)
,

where the sum is taken on all non-empty subsets S of {−N, . . . ,N − 1}.
Thus,

N−1∏
j=−N

αj (a, y,u) = 1 + ∑
p∈N∗

∑
τ1�···�τp

p∏
i=1

∏
j∈τi

(
αj (a, y,u) − 1

)
,

with τ of the form τ = {c, c+1, . . . , c+ r}, with r ≥ 0, |c| ≤ N , c+ r ≤ N , and d(τi, τj ) ≥ 2
if i �= j .

More precisely, these sets, called clusters, satisfy three conditions:

• aτi ⊂ I (N), in the sense that if j ∈ τi , then j ∈ {−N, . . . ,N};
• if j1, j2 ∈ τi , with j1 < j2, and j1 ≤ j3 ≤ j2, then j3 ∈ τi (in some way, they are “connected

sets”, as subsets of Z);
• if j1 ∈ τi1 and j2 ∈ τi2 , with i1 �= i2, then |j1 − j2| ≥ 2 (they are “disjoint sets”).

Notice that the sum over p is actually finite: according to the properties of the sets (τi), there
are less than 2 + Na of them, thus p ≤ 2 + Na.

Coming back to the expression of the partition function,

ZN =
∫
R(2N+1)d

∫
�

(
1 + ∑

p∈N∗

∑
τ1�···�τp

p∏
i=1

∏
j∈τi

(
αj (a, y,u) − 1

))

×
N−1⊗

j=−N

P
yj ,yj+1
Ij

(du)

N−1⊗
j=−N

μ(dyj )

= 1 + ∑
p∈N∗

∑
τ1�···�τp

∫
R(2N+1)d

∫
�

p∏
i=1

∏
j∈τi

(
αj (a, y,u) − 1

)

×
N−1⊗

j=−N

P
yj ,yj+1
Ij

(du)

N−1⊗
j=−N

μ(dyj ). (3.5)

The decomposition of the product of the αj was done to be able to invert the product for i

from 1 to p and both integrals in the expression (3.5) just above. This is indeed now possible:

• Take a cluster τi = {ci, . . . , ci + ri}.
As

∏
j∈τi

(αj (a, y,u) − 1) only depends on u(t) for

t ∈ ⋃
j∈τi

[
ja − t0, (j + 1)a

]

= [
(cia − t0)) ∧ (−Na), (ci + ri + 1)a

] ⊂ Ici−1 ∪ · · · ∪ Ici+ri

and (ci1 + ri1 + 1)a < ci2a − t0 for i1, i2 ∈ {1, . . . , p}, i1 �= i2 and a large enough, we have

(Ici1−1 ∪ · · · ∪ Ici1+ri1
) ∩ (Ici2−1 ∪ · · · ∪ Ici2+ri2

) = ∅.
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This allows us to invert the product of the αj with the integral over �: we thus have

ZN = 1 + ∑
p∈N∗

∑
τ1�···�τp

∫
R(2N+1)d

p∏
i=1

[∫
�

∏
j∈τi

(
αj (a, y,u) − 1

)

×
ci+ri−1⊗
k=ci−1

P
yk,yk+1
Ik

(du)

]
N−1⊗

j=−N

μ(dyj ).

• Moreover, notice that the expression between the square brackets only depends on
yci−1, yci

, . . . , yci+ri . As a consequence, we can interchange the integral over R2N+1 and
the product in i.

Thus, we obtain the following cluster representation of the partition function ZN :

ZN = 1 + ∑
p∈N∗

∑
τ1�···�τp⊂I (N)

p∏
i=1

�τi
, (3.6)

where

�τ =
∫
R(|τ |+1)d

∫
�

∏
j∈τ

(
αj (a, y,u) − 1

) max(τ )−1⊗
k=min(τ )−1

P
yk,yk+1
Ik

max(τ )⊗
l=min(τ )−1

μ(dyl), (3.7)

with |τ | the cardinal of τ .

4 Cluster estimates

Having obtained the quantities �τ associated to a cluster τ , we now wish to control them.
More specifically, we will show that, when the perturbation coefficient β is sufficiently small,
there exists a positive function η(β), which goes to 0 when β goes to 0, such that for a large
enough,

|�τ | ≤ η(β)|τ |. (4.1)

4.1 First upper-bound for the clusters

In order to estimate this coefficient �τ , we commute the integrals and the remaining product
(over the elements of τ ), to obtain the following inequality.

Proposition 2. Setting

Aj(a) =
∫
R3d

∫
�

(
αj (a, y,u) − 1

)4
P

yj−1,yj

Ij−1
(du)

× P
yj ,yj+1
Ij

(du)μ(dyj−1)μ(dyj )μ(dyj+1),

we have, for every cluster τ involved in the decomposition (3.6),

�τ ≤ ∏
j∈τ

Aj (a)1/4.

Proof. The following lemma, taken from Minlos, Verbeure and Zagrebnov (2000), is the
main ingredient of the proof.
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Lemma 2. Let (μx)x∈X be a family of probability measures, each one defined on a space
Ex , where the elements x belong to some finite set X . Let us also define a finite family (fi)i
of functions on EX =×x∈X Ex such that each fi is Xi -local for a certain Xi ⊂ X , in the
sense that

fi(e) = fi(e|Xi
), for e = (ex)x∈X ∈ EX .

Let ρi > 0 be numbers satisfying the following conditions:

∀x ∈ X ,
∑
Xi�x

1

ρi

≤ 1.

Then ∣∣∣∣
∫
EX

∏
i

fi

⊗
x∈X

dμx

∣∣∣∣ ≤ ∏
i

(∫
EXi

|fi |ρi
⊗
x∈Xi

dμx

)1/ρi

.

We apply Lemma 2 twice consecutively, first with respect to the integral over �, then with
respect to the integral over R(|τ |+1)d .

• For τ = {c, . . . , c + r}, set

Iτ (y) =
∫
�

c+r∏
j=c

(
αj (a, y,u) − 1

) c+r−1⊗
k=c−1

P
yk,yk+1
Ik

(du).

Taking X = {c − 1, . . . , c + r − 1}, Xi = {i − 1, i}, EX = �, Ek = C(Ik,R
d) and dμk =

P
yk,yk+1
Ik

, for (ρj )j∈τ such that ρj > 1 and 1
ρj

+ 1
ρj+1

≤ 1, by Lemma 2,

Iτ (y) ≤
c+r∏
j=c

gj (yj−1, yj , yj+1)
1/ρj ,

where gj (yj−1, yj , yj+1) = ∫
� |αj (a, y,u) − 1|ρjP

yj−1,yj

Ij−1
(du)P

yj ,yj+1
Ij

(du).
• Set now

�̃τ =
∫
R(r+2)d

c+r∏
j=c

g
1/ρj

j

c+r⊗
l=c−1

μ(dyl).

Here we choose X = {c−1, . . . , c+ r}, Xi = {i −1, i, i +1}, EX =R
(r+2)d , Ex = R

d and
dμx = μ(yx), for (γj )j∈{−N,...,N} such that γj > 1 and 1

γj−1
+ 1

γj
+ 1

γj+1
≤ 1, Lemma 2

ensures that

�̃τ ≤
c+r∏
j=c

(∫
R3d

|gj |γj /ρj μ(dyj−1)μ(dyj )μ(dyj+1)

)1/γj

.

For every i ∈ τ , every j ∈ {−N, . . . ,N}, we take ρi = γj = 4, and this concludes the proof. �

We now control this quantity and prove that it goes to 0, uniformly in j , and even inde-
pendently of N , for a large enough time-scale a.
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4.2 Decomposition of Aj(a)

Using that

xy − 1 = (x − 1)y + (y − 1) and (xy − 1)4 ≤ 8
(
(x − 1)4y4 + (y − 1)4)

for non-negative x and y, and coming back to the expression of the αj , we can decompose
Aj(a) in two parts that will be dealt with separately:

Aj(a) ≤ 8Bj(a) + 8Cj(a);
• if j ∈ {−N + 1, . . . ,N − 2},

Bj(a) :=
∫
R3d

∫
�

(
e
−HIj

(u(N)) − 1
)4

p(a, yj−1, yj )
2p(a, yj , yj+1)

2

× P
yj−1,yj

Ij−1
(du)P

yj ,yj+1
Ij

(du)μ(dyj−1)μ(dyj )μ(dyj+1)

=
∫
�

(
e
−HIj

(u(N)) − 1
)4

p
(
a,u

(
(j − 1)a

)
, u(ja)

)
× p

(
a,u(ja), u

(
(j + 1)a

))
P(du);

Cj(a) :=
∫
R3d

∫
�

(√
p(a, yj−1, yj )p(a, yj , yj+1) − 1

)4

× P
yj−1,yj

Ij−1
(du)P

yj ,yj+1
Ij

(du)μ(dyj−1)μ(dyj )μ(dyj+1)

=
∫
R3d

(√
p(a, x, y)p(a, y, z) − 1

)4
μ(dx)μ(dy)μ(dz);

• if j = −N ,

B−N(a) :=
∫
�

(
e
−HI−N

(u(N)) − 1
)4

p
(
a,u(−Na),u

(
(−N + 1)a

))
P(du);

C−N(a) :=
∫
R2d

(√
p(a, x, y) − 1

)4
μ(dx)μ(dy);

• if j = N − 1,

BN−1(a) :=
∫
�

(
e
−HIN−1 (u(N)) − 1

)4
p

(
a,u

(
(N − 2)a

)
, u

(
(N − 1)a

))
× p

(
a,u

(
(N − 1)a

)
, u(Na)

)2
P(du);

CN−1(a) :=
∫
R3d

(√
p(a, x, y)p(a, y, z) − 1

)4
μ(dx)μ(dy)μ(dz).

We will now study separately the Bj and the Cj , without omitting the two boundary cases,
especially the one when j = N − 1, which will turn out to be the most troublesome.

4.3 Study of Bj(a)

4.3.1 Case j ∈ {−N + 1, . . . ,N − 2}. Using Cauchy–Schwarz’s inequality, we again de-
compose the integral in two parts:

Bj(a) =
∫
�

(
e
−HIj

(u(N)) − 1
)4

p
(
a,u

(
(j − 1)a

)
, u(ja)

)
× p

(
a,u(ja), u

(
(j + 1)a

))
P(du)

≤ B̃j (a)Kj (a)
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with

B̃j (a) =
(∫

�
p

(
a,u

(
(j − 1)a

)
, u(ja)

)2
p

(
a,u(ja), u

(
(j + 1)a

))2
P(du)

)1/2

and

Kj(a) =
(∫

�

(
e
−HIj

(u(N)) − 1
)8
P(du)

)1/2
.

Notice that Kj(a) is bounded uniformly in j : indeed,

Kj(a)4 =
(∫

�
p

(
a,u

(
(j − 1)a

)
, u(ja)

)2
p

(
a,u(ja), u

(
(j + 1)a

))2
P(du)

)2

≤
∫
�

p
(
a,u

(
(j − 1)a

)
, u(ja)

)4
P(du)

∫
�

p
(
a,u(ja), u

(
(j + 1)a

))4
P(du)

= E
[
p

(
a, y

(
(j − 1)a

)
, y(ja)

)4]
E

[
p

(
a, y(ja), y

(
(j + 1)a

))4]
=

(∫
R2d

p(a, x, y)4p(a, x, y)μ(dx)μ(dy)

)2
= ∥∥p(a, ·, ·)∥∥10

L5(μ⊗μ).

The main goal of this subsection is to find an upper bound for

B̃j (a) =
(∫

�

(
e
−HIj

(u(N)) − 1
)8
P(du)

)1/2
,

depending on a and going to 0 as soon as a goes to infinity.
What follows is a direct adaptation of what was done in Roelly and Ruszel (2014) and Dai

Pra and Roelly (2004).
We start by noticing that for every x ∈ R,

(
e−x − 1

)8 = x8
(∫ 1

0
e−tx dt

)8
= x8

∫
[0,1]8

e−(t1+···+t8)x dt1 · · ·dt8,

and thus

B̃j (a)2 =
∫
[0,1]8

∫
�

HIj

(
u(N))8

e
−(t1+···+t8)HIj

(u(N))
P(du)dt1 · · ·dt8.

Set L(z) = ∫
� e

−zHIj
(u(N))

P(du).
Then, L is an holomorphic function, and its eighth derivative is

∂

∂z8 L(z) =
∫
�

HIj

(
u(N))8

e
−zHIj

(u(N))
P(du),

which means we can rewrite B̃j as

B̃j (a)2 =
∫
[0,1]8

∂

∂z8 L(z)|z=t1+···+t8 dt1 · · ·dt8. (4.2)

Notice that

∣∣L(z)
∣∣ ≤

∫
�

∣∣e−zHIj
(u(N))∣∣P(du) =

∫
�

e
−Re(z)HIj

(u(N))
P(du) = L

(
Re(z)

)
.

Recall that the expression of the Hamiltonian H is given by equation (3.1).
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For any real number x, we can obtain an alternative expression of L, using Cauchy–
Schwarz inequality and the martingale property of exp(−H):

L(x) =
∫
�

exp
(
x

∫
Ij

βb
(
t, (u)tt−t0

)∗
dWt − x

2

∫
Ij

β2∣∣b(
t, (u)tt−t0

)∣∣2 dt

)
P(du)

=
∫
�

exp
(
x

∫ (j+1)a

ja
βb

(
t, (u)tt−t0

)∗
dWt − x2

∫ (j+1)a

ja
β2∣∣b(

t, (u)tt−t0

)∣∣2 dt

)

× exp
(

2x2 − x

2

∫ (j+1)a

ja
β2∣∣b(

t, (u)tt−t0

)∣∣2 dt

)
P(du)

≤
(∫

�
exp

(
2x

∫ (j+1)a

ja
βb

(
t, (u)tt−t0

)∗
dWt

− 2x2
∫ (j+1)a

ja
β2∣∣b(

t, (u)tt−t0

)∣∣2 dt

)
P(du)

)1/2

×
(∫

�
exp

(
x(2x − 1)

∫ (j+1)a

ja
β2∣∣b(

t, (u)tt−t0

)∣∣2 dt

)
P(du)

)1/2

=
(∫

�
exp

(
x(2x − 1)

∫ (j+1)a

ja
β2∣∣b(

t, (u)tt−t0

)∣∣2 dt

)
P(du)

)1/2
.

We now apply Cauchy’s inequality to L, for ρ such that L is well defined on B(z,ρ) = {v ∈
C, |v − z| ≤ ρ}: ∣∣∣∣ ∂

∂z8 L(z)

∣∣∣∣ ≤ 8!
ρ8 sup

v∈B(z,ρ)

∣∣L(v)
∣∣. (4.3)

Thanks to the above expression of L,

∣∣L(v)
∣∣2 ≤

∫
�

exp
(
Re(v)

(
2Re(v) − 1

) ∫ (j+1)a

ja
β2∣∣b(

t, (u)tt−t0

)∣∣2 dt

)
P(du).

As |v − z|2 = ρ2, we have (Re(v)− z) ≤ ρ2 for z = t1 +· · ·+ t8, it follows that Re(v) ∈ {x ∈
R : |z − x| < ρ}, hence Re(v) ≤ z + ρ, which implies Re(v)(2Re(v) − 1) ≤ 2(z + ρ)2.

Subsequently,
∣∣L(v)

∣∣2 ≤
∫
�

exp
(
2(ρ + z)2)

aβ2)P(du),

and thus,

sup
v∈C(z,ρ)

∣∣L(v)
∣∣ ≤ exp

(
(ρ + z)2aβ2)

), (4.4)

where C(z, ρ) = {v ∈C, |v − z| = ρ}.
Combining (4.2), (4.3) and (4.4),

B̃j (a)2 ≤
∫
[0,1]8

8!
ρ8 exp

(
(ρ + t1 + · · · + t8)

2aβ2)
dt1 · · ·dt8

≤ 8!
ρ8 exp

(
(ρ + 8)2aβ2)

).

It implies that, for every ρ ≥ 8,

B̃j (a)2 ≤ 8!
ρ8 e4ρ2aβ2

. (4.5)



672 L. Pédèches

We want to determine which ρ ≥ 8 will minimize the right-hand side of this last inequality.
Let f be the function given by f (ρ) = 8!

ρ8 e4ρ2aβ2
. Then, f ′(ρ) = (− 8

ρ
+ 8ρaβ2)f (ρ).

Thus, f ′(ρ) = 0 if and only if ρ2 = 1
aβ2 , which is larger than 8 if and only if

aβ2 ≤ 1

8
, (4.6)

and the optimal inequality for (4.5) is

B̃j (a)2 ≤ 8!e4(
aβ2)4

. (4.7)

Finally coming back to the expression of Bj , we have obtained, under condition (4.6),

Bj(a) ≤ √
8!e2∥∥p(a, ·, ·)∥∥5/2

L5(μ⊗μ)

(
aβ2)2

. (4.8)

4.3.2 Boundary cases, j ∈ {−N,N − 1}. Remember that

B−N(a) =
∫
�

(
e
−HI−N

(u(N)) − 1
)4

p
(
a,u(−Na),u

(
(−N + 1)a

))
P(du).

As in the previous case, we can write

B−N(a) ≤ K−N(a)

(∫
�

(
e
−HI−N

(u(N)) − 1
)8
P(du)

)1/2
,

where

K−N(a)2 =
∫
�

p
(
a,u(−Na),u

(
(−N + 1)a

))2
P(du).

This square root can be dealt with in exactly the same fashion as is done above.
Furthermore,

K−N(a)2 = E
[
p

(
a, y(−Na), y

(
(−N + 1)a

))2]
=

∫
R2d

p(a, x, y)2p(a, x, y)μ(dx)μ(dy) = ∥∥p(a, ·, ·)∥∥3
L3(μ⊗μ).

Hence the following result:

B−N(a) ≤ √
8!e2∥∥p(a, ·, ·)∥∥3/2

L3(μ⊗μ)

(
aβ2)2

. (4.9)

We now turn our attention to

BN−1(a) =
∫
�

(
e
−HIN−1 (u(N)) − 1

)4
p

(
a,u

(
(N − 2)a

)
, u

(
(N − 1)a

))
× p

(
a,u

(
(N − 1)a

)
, u(Na)

)2
P(du).

We proceed in a similar way to decompose BN−1(a) into the product of two terms and we
have to study the quantity:

KN−1(a)

=
√∫

�
p

(
a,u

(
(N − 2)a

)
, u

(
(N − 1)a

))2
p

(
a,u

(
(N − 1)a

)
, u(Na)

)4
P(du).
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In order to obtain an upper bound for a moment of p(a, ·, ·), with respect to μ ⊗ μ, smaller
than 8, Cauchy–Schwarz’s inequality will not suffice: we have to apply Hölder’s inequality.
We choose the conjugated numbers 3 and 3/2:

KN−1(a)2 ≤
(∫

�
p

(
a,u

(
(N − 2)a

)
, u

(
(N − 1)a

))6
P(du)

)1/3

×
(∫

�
p

(
a,u

(
(N − 1)a

)
, u(Na)

)6
P(du)

)2/3
,

which leads to

KN−1(a) ≤ ∥∥p(a, ·, ·)∥∥7
L7(μ⊗μ),

and subsequently to

BN−1(a) ≤ √
8!e2∥∥p(a, ·, ·)∥∥7/2

L7(μ⊗μ)

(
aβ2)2

. (4.10)

4.3.3 A bound for Bj(a), uniform in N . From (4.8), (4.9) and (4.10), we deduce that, for
every j ∈ {−N, . . . ,N − 1},

Bj(a) ≤ √
8!e2∥∥p(a, ·, ·)∥∥7/2

L7(μ⊗μ)

(
aβ2)2

. (4.11)

4.4 Study of Cj(a)

4.4.1 General case, j ∈ {−N + 1, . . . ,N − 2}. We remind that

Cj(a) =
∫
R3d

(√
p(a, x, y)p(a, y, z) − 1

)4
μ(dx)μ(dy)μ(dz).

Again, we seek an upper bound for Cj(a) which vanishes when a goes to infinity.
It can be easily checked that for every positive real number U ,

(
√

1 + U − 1)4 ≤ 1

16
U4, (4.12)

that for positive x and y,

xy − 1 = (x − 1)(y − 1) + (x − 1) + (y − 1),

and that, thanks to the convexity of u �→ u4, for any a, b and c,

(a + b + c)4 ≤ 27
(
a4 + b4 + c4)

.

Subsequently,

Cj(a) ≤ 1

16

∫
R3d

(
p(a, x, y)p(a, y, z) − 1

)4
μ(dx)μ(dy)μ(dz)

≤ 1

16

∫
R3d

[(
p(a, x, y) − 1

)(
p(a, y, z) − 1

) + (
p(a, x, y) − 1

)
+ (

p(a, y, z) − 1
)]4

μ(dx)μ(dy)μ(dz)

≤ 27

16

∫
R3d

((
p(a, x, y) − 1

)(
p(a, y, z) − 1

))4
μ(dx)μ(dy)μ(dz)

+ 27

8

∫
R2d

(
p(a, x, y) − 1

)4
μ(dx)μ(dy)

≤ 27

16

∫
R2d

(
p(a, x, y) − 1

)8
μ(dx)μ(dy)

+ 27

8

∫
R2d

(
p(a, x, y) − 1

)4
μ(dx)μ(dy),

using, once more, Cauchy–Schwarz’s inequality to obtain the final line.
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Furthermore,

∫
R2d

(
p(a, x, y) − 1

)4
μ(dx)μ(dy) ≤

√∫
R2d

(
p(a, x, y) − 1

)8
μ(dx)μ(dy).

Thus, according to Proposition 1,

Cj(a) ≤ 27

16
γδ(a)8(∥∥p(δ, ·, ·)∥∥8

L8(μ⊗μ) ∨ 1
) + 27

8
γδ(a)4(∥∥p(δ, ·, ·)∥∥4

L8(μ⊗μ) ∨ 1
)
.

4.4.2 Boundary cases, j ∈ {−N,N − 1}. We can check that both boundary cases exhibit
an analogous behaviour.

Indeed, on the one hand, recall that

C−N(a) =
∫
R2d

(√
p(a, x, y) − 1

)4
μ(dx)μ(dy).

Thus, thanks to (4.12) and Proposition 1,

C−N(a) ≤ 1

16

∫
R2d

(
p(a, x, y) − 1

)4
μ(dx)μ(dy)

≤ 1

16

√∫
R2d

(
p(a, x, y) − 1

)8
μ(dx)μ(dy)

≤ 1

16
γδ(a)4(∥∥p(δ, ·, ·)∥∥4

L8(μ⊗μ) ∨ 1
)
.

On the other hand,

CN−1(a) =
∫
R3d

(√
p(a, x, y)p(a, y, z) − 1

)4
μ(dx)μ(dy)μ(dz).

Notice that (√
p(a, x, y)p(a, y, z) − 1

)4

≤ 8
(
p(a, y, z) − 1

)4
p(a, x, y)2 + 8

(√
p(a, x, y) − 1

)4
.

With Cauchy–Schwarz’s inequality and the computation of C−N(a) thrown in, this leads to

CN−1(a) ≤ 8
∫
R3d

(
p(a, y, z) − 1

)4
p(a, x, y)2μ(dx)μ(dy)μ(dz)

+ 8
∫
R2d

(√
p(a, x, y) − 1

)4
μ(dx)μ(dy)

≤ 8

√∫
R2d

(
p(a, x, y) − 1

)8
μ(dx)μ(dy)

√∫
R2d

p(a, x, y)4μ(dx)μ(dy)

+ 1

2
γδ(a)4(∥∥p(δ, ·, ·)∥∥4

L8(μ⊗μ) ∨ 1
)

≤ 8γδ(a)4(∥∥p(δ, ·, ·)∥∥4
L8(μ⊗μ) ∨ 1

)∥∥p(a, ·, ·)∥∥2
L4(μ⊗μ)

+ 1

2
γδ(a)4(∥∥p(δ, ·, ·)∥∥4

L8(μ⊗μ) ∨ 1
)

=
(

8
∥∥p(a, ·, ·)∥∥2

L4(μ⊗μ) + 1

2

)
γδ(a)4(∥∥p(δ, ·, ·)∥∥4

L8(μ⊗μ) ∨ 1
)
.
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4.4.3 Global upper bound for all Cj . Taking into account all three cases, when a ≥ 2δ, for
every j ∈ {−N, . . . ,N − 1},

Cj(a) ≤ γδ(a)4(∥∥p(δ, ·, ·)∥∥4
L8(μ⊗μ) ∨ 1

)
×

((
27

16
γδ(a)4 + 8

)(∥∥p(δ, ·, ·)∥∥4
L8(μ⊗μ) ∨ 1

) + 4
)
. (4.13)

To obtain the control of |�τ | we are seeking, we still need to put all the pieces together and
to determine its domain of validity with respect to a and b.

4.5 Back to the clusters

At last, the proposition below gives us the cluster estimates.

Proposition 3. Assume that (H1) and (H2) are satisfied. Let ε be a positive number.
There exist a minimal time-scale aε , defined in (4.22), and an upper-bound βε , given by

(4.23), such that if a ≥ aε and β ≤ βε , then, for every cluster τ , the quantity �τ defined in
(3.7) satisfies

|�τ | ≤ ε|τ |. (4.14)

Proof. Suppose that a ≥ 2δ and that (4.6) holds, i.e. β ≤ 1√
8a

.
Recall that

Mδ = sup
a≥δ

∥∥p(a, ·, ·)∥∥L8(μ⊗μ) ∨ 1. (4.15)

Thus, we can obtain bounds for Bj and Cj easier to deal with: according to (4.11) and (4.13)
respectively,

Bj(a) ≤ √
8!e2M

7/2
δ

(
aβ2)2

,

Cj (a) ≤ M4
δ

(
4 + 2M4

δ

(
4 + γδ(a)4))

γδ(a)4.
(4.16)

Remember that ∣∣�τ (a)
∣∣ ≤ ∏

j∈τ

(
8Bj(a) + 8Cj(a)

)1/4
,

so (4.14) will be satisfied if, for a sufficiently large, both Bj(a) and Cj(a) are smaller than
ε4/16.

• One can check, by solving a second order inequality in γδ(a)4, that for all a such that

γδ(a)4 ≤
(

2 + 1

M4
δ

)(√√√√1 + ε4

32(1 + 2M4
δ )2

− 1
)
, (4.17)

the condition Cj(a) ≤ ε4

16 is true.
We recall that γδ was introduced in Proposition 1 and is defined by

γδ(a) = 2Mδe
−(a−2δ)/CP ,

with CP the constant associated with the Poincaré’s inequality satisfied by μ, according to
hypothesis (H1).

Using this expression, and setting

aC(ε) = 2δ − CP

4
ln

(
1

16M4
δ

(
2 + 1

M4
δ

)(√√√√1 + ε4

32(1 + 2M4
δ )2

− 1
))

, (4.18)
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it can be shown that (4.17) is equivalent to:

a ≥ aC(ε).

Thus, for every a ≥ aC(ε), Cj(a) ≤ ε4

16 .
It can be noticed that

aC(ε) ≥ 2δ if and only if ε ≤ 25/2M2
δ

(
8M8

δ + 2M4
δ + 1

)1/4
. (4.19)

• From (4.16), it can be seen that Bj(a) ≤ ε4

16 if

β ≤ 1

2
√

e(8!)1/8M
7/8
δ

ε√
a
. (4.20)

Notice that

ε

2
√

e(8!)1/8M
7/8
δ

≤ 1√
8

if and only if ε ≤
√

e

2
(8!)1/8M

7/8
δ . (4.21)

Thus, according to (4.6), (4.17) and (4.20), setting

aε = aC(ε) ∨ (2δ),

that is

aε = 2δ −
[
CP

4
ln

(
1

16M4
δ

(
2 + 1

M4
δ

)(√√√√1 + ε4

32(1 + 2M4
δ )2

− 1
))]

−
, (4.22)

where x− = min(x,0), and

βε =
(

ε

2
√

e(8!)1/8M
7/8
δ

∧ 1√
8

)
1√
aε

,

that is,

βε =
ε

2
√

e(8!)1/8M
7/8
δ

∧ 1√
8√

2δ − [CP
4 ln( 1

16M4
δ

(2 + 1
M4

δ

)(

√
1 + ε4

32(1+2M4
δ )2 − 1))]−

, (4.23)

the proposition holds. �

Remark 7. We recall hypothesis (H2): there exists δ ≥ 0 such that

sup
t≥δ

∥∥p(t, ·, ·)∥∥L8(μ⊗μ) < ∞.

One can notice that we only require ‖p(t, ·, ·)‖L8(μ⊗μ) to be finite for certain values of
t and it is not necessary for the supremum over t to be finite. However, the current form
of (H2) simplifies the writing of the proofs, and it is satisfied by the important case of the
Ornstein–Uhlenbeck process, as will be seen in Section 6.
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5 Completion of the proof of Theorem 2.1

In order to connect with the cluster expansion method, and to obtain an inequality of the form
of (4.1), we have to show that ε can be expressed as a function of β that will go to 0 when β

goes to 0.
Suppose that

ε ≤ (
25/2M2

δ

(
8M8

δ + 2M4
δ + 1

)1/4) ∧
(√

e

2
(8!)1/8M

7/8
δ

)
=: ε0. (5.1)

Then according to equivalences (4.19) and (4.21),

βε = ε

2
√

2e(8!)1/8M
7/8
δ

√
δ − CP

8 ln( 1
16M4

δ

(2 + 1
M4

δ

)(

√
1 + ε4

32(1+2M4
δ )2 − 1))

. (5.2)

One can see that ε �→ βε is of the form

C1ε√
1 − C2 ln(C3(

√
1 + C4ε4 − 1))

,

for some C1, C2, C3 and C4 depending only on δ and CP , and is thus an invertible function.
Compute the derivative of βε with respect to ε:

β ′
ε = βε

ε

(
1 + C2C4

C2
1

ε2β2
ε√

1 + C4ε4(
√

1 + C4ε4 − 1)

)
.

β ′
ε is positive for every ε in (0, ε0]; thus, ε �→ βε is (strictly) increasing from (0, ε0] to

(0, βε0].
Therefore, ε �→ βε admits an inverse function on (0, βε0] that we will call η: η is increasing

and η(x) goes to 0 when x goes to 0. For simplicity, we denote by β0 the bound βε0 given by
(5.1) and (5.2).

We can now rewrite Proposition 3 in a more amenable way.

Proposition 4. There exists β0 such that if β ≤ β0, then, for every cluster �τ ,

|�τ | ≤ η(β)|τ |, (5.3)

where η, defined just above, is a function that goes to 0 in 0.

Remark 8. One can easily show that a first-order approximation of βε , when ε is small, is

βε ∼ Cε
(− ln(ε)

)−1/2
,

for a certain, explicit, constant C, depending only on the parameters δ and CP , given by the
hypotheses (H1) and (H2). Since, for any α > 0, when ε is small enough, − ln(ε) ≤ 1

ε2α , thus

βε ≥ Cε1+α , and Proposition 4 holds, with η : y �→ Cy1/(1+α).

Recall that we wish to prove the convergence of the sequence of measures (QN)N , with

QN(du) = 1

ZN

exp
(−HN

(
u(N)))

P(du),

towards a weak stationary solution Q of the perturbed equation (2.5).
Proposition 4, just above, is the key point to prove this convergence: the cluster representa-

tion (3.6) of the partition function ZN and the cluster estimates (5.3) are the crucial elements
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in order to obtain in a canonical way an expansion for the measures QN (see Malyshev and
Minlos (1991)).

It has been explained in details in both Dai Pra and Roelly (2004) and Minlos, Roelly and
Zessin (2000) (see, for instance, paragraph 4.1.4 of Minlos, Roelly and Zessin (2000), with
Lemma 10 and what follows); we give here an overview of the reasoning, adapted to our
framework.

For a finite subset S of Z, we associate IS such that IS = ⋃
k∈S Ik .

We define the partition function on I by

ZI = 1 + ∑
τ1�···�τp

p∏
i=1

�τi
,

where the τi are defined as in Section 3.2: they are connected sets, disjoint from each other,
such that aτi ⊂ I . Notice that I{−N,...,N−1} = I (N) and ZN = ZI(N).

For S1 ⊂ S2, we define

f
S2
S1

=
ZIS2

\ĪS1

ZIS2

,

where ĪS = ⋃
k∈S Īk and Īk = Ik−1 ∪ Ik ∪ Ik+1.

The original version of the following lemma can be found in Malyshev and Minlos (1991);
here it is adapted to our needs.

Lemma 3. For β small enough,

(i) There exists a positive constant C1, independent from S1 and S2, such that∣∣f S2
S1

∣∣ < C12|S1|. (5.4)

(ii) The following assertion holds

f
S2
S1

= 1 + ∑
τ1,...,τp

CS1(τ1, . . . , τp)

p∏
i=1

�τi
, (5.5)

where the sum is over every τ1, . . . , τp for every possible integer p as defined in Section 3.2,
such that IS1 ∩a(τ1 �· · ·�τp) �=∅ and aτ1 �· · ·�aτp ⊂ IS2 . CS1(τ1, . . . , τp) is independent
from S2. Furthermore, the series converges absolutely.

(iii) The expression (5.5) admits a limit fS1 when S2 tends towards Z and it satisfies

fS1 = 1 + ∑
IS1

∩(aτ1�···�aτp) �=∅

CS1(τ1, . . . , τp)

p∏
i=1

�τi
. (5.6)

(iv) There exists a positive constant C2 such that

∣∣f S2
S1

− fS1

∣∣ < C22
|S̄|−d(IS1

,Ic
S2

)
,

where S̄ is such that IS̄ = ĪS1 .
(v) The exists a positive constant C3 such that for any subsets S1 and Ŝ1 of S2,

∣∣f S2

S1∪Ŝ1
− f

S2
S1

f
S2

Ŝ1

∣∣ < C33|S1|+|Ŝ1|η(β)
d(IS1

,IŜ1
)
,

|fS1∪Ŝ1
− fS1fŜ1

| < C33|S1|+|Ŝ1|η(β)
d(IS1

,IŜ1
)
.

(5.7)
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Remark 9. This is where, despite the explicit bounds obtained in (4.23) and (5.1), we must
renounce to an explicit expression for the required smallness of β .

Let I be a finite interval and N large enough such that I ⊂ I (N). Let FI be a I-local
bounded measurable function on �, that is, for every u in �, FI(u) = F(uI). Our aim is to
show that when β is small enough, the sequence (

∫
FI dQN)N converges.

Recall that ∫
FI dQN = 1

ZN

∫
�

FI(u) exp
(−HN

(
u(N)))

P(du).

From manipulations similar to those of Section 3.2, one can establish that∫
FI dQN = 1

ZN

∑
τ1,...,τp

Kτ1,...,τp (FI)ZI(N)\(I∪τ1�···�τp),

with τ1 � · · · � τp ⊂ {−N, . . . ,N} and where the coefficients Kτ1,...,τp (FI) can be given
explicitly, and do not depend on N .

The above expression can be written as∫
FI dQN = ∑

τ1,...,τp

Kτ1,...,τp (FI)f
I (N)
I∪(τ1�···�τp).

From (5.5), we have∫
FI dQN = ∑

τ1,...τp

Kτ1,...,τp (FI)

(
1 + ∑

τ̂1,...,τ̂q

CI∪(τ1�···�τp)(τ̂1, . . . , τ̂q)

q∏
j=1

�τ̂j

)
,

with τ1 � · · · � τp ⊂ {−N, . . . ,N}, τ̂1 � · · · � τ̂q ⊂ {−N, . . . ,N} and (I ∪ (τ1 � · · · � τp)) ∩
(τ̂1 � · · · � τ̂q) �= ∅.

From (5.4) and (5.6), we can conclude that there is absolute convergence at exponential
rate of the series over τ̂1, . . . , τ̂q when S2 converges towards Z, so that

lim
N→+∞

∫
FI dQN = ∑

τ1,...τp

Kτ1,...,τp (FI)fI∪(τ1�···�τp).

Setting
∫

FI dQ := limN→+∞
∫

FI dQN , the following result holds.

Proposition 5. Assume (H1) and (H2). For β small enough, there exists a stationary proba-
bility measure Q on � such that:

Q = lim
N→∞QN

The notion of weak limit here is understood as the limit for the topology of local convergence.

Properties that are satisfied by the approximations QN are inherited by the limit Q. Indeed,
further classical results taken from Gibbs field theory (a combination of Proposition 2 and
Lemma 4 in Dai Pra and Roelly (2004)) ensure that the probability measure Q is truly a
weak stationary solution of the equation:

dXt =
(
−1

2
∇V (Xt) + βb

(
t, (X)tt−t0

))
dt + dWt, (2.5)

that is, under the probability measure Q, the canonical process (Xt) satisfy the stochastic
system (2.5).

Hence our main result.
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The property of exponential decorrelations, (iii) of Theorem 2.1,∣∣∣∣
∫

f (Xt)g(Xt ′) dQ −
∫

f (Xt) dQ

∫
g(Xt ′) dQ

∣∣∣∣ ≤ θ1e
−θ2|t−t ′|,

is a consequence of the inequality (5.7) and of a cluster representation for quantities of the
form: ∫

f (Xt)g(Xt ′) dQN −
∫

f (Xt) dQN

∫
g(Xt ′) dQN,

for t, t ′ ∈ I (N). The fact that the bounds θ1 and θ2 are independent of N comes from that the
convergence for the local functions is absolute and with exponential rate.

As the correlations decay at an exponential rate, we have strong mixing properties, and, in
particular, the central limit theorem below. Though this process is not Markovian, the proof of
the following corollary is similar to that of the famous result obtained in Kipnis and Varadhan
(1986) and expanded in Cattiaux, Chafaï and Guillin (2012).

Corollary 1. If a smooth f is such that
∫

f dν = 0, then under Q,

1√
t

∫ t

0
f (Xs) ds

(d)−→
t→+∞ N

(
0, σ 2

f

)
,

with

σ 2
f := 2

∫ +∞
−∞

EQ

[
f (X0)f (Xs)

]
ds =

∫
|∇f |2 dν.

6 An example: The Ornstein–Uhlenbeck dynamics as reference process

Suppose the reference drift g is a linear one.
In order to simplify the writing of the computations, we restrict ourselves to the one-

dimensional situation d = 1; the behaviour in higher dimensions is completely similar.
We are thus considering the one-dimensional Ornstein–Uhlenbeck process solution of:

dXt = −λXt dt + dWt,

where λ is a positive parameter and (Wt) is a standard one-dimensional Brownian motion.

6.1 Verification of the assumptions

It is a process whose explicit expression and general behaviour are well known; in particular,
it admits the Gaussian law μ = N (0,1/2λ), whose density is given by

μ(dy) =
√

λ

π
e−λy2

dy,

as its (unique) symmetric probability measure.
Furthermore, the transition density of (yt ) with respect to μ is given by

p(t, x, y) = 1√
1 − e−2λt

exp
(
− λ

1 − e−2λt

((
x2 + y2)

e−2λt − 2xye−λt )).

Thus, all the assumptions made at the beginning of Section 2.1 are satisfied, as are hypotheses
(H1) and (H2):

Proposition 6. In this setting, assumptions (H1) and (H2) are satisfied, with CP = 1
2λ

and

any δ > ln(7)
λ

. Furthermore, these bounds are optimal.
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Proof. Indeed, thanks to a well-known result (see, for instance, Ané et al. (2000)) on
Poincaré’s inequalities verified by Gaussian measures, for a smooth function f ,

Varμ(f ) ≤ 1

2λ

∫ (
f ′)2

dμ,

which implies that (H1) holds, with CP = 1/2λ.
Moreover, (H2) follows from the lemma below:

Lemma 4. For every positive t and for k ∈N
∗,∫

R2
p(t, x, y)kμ(dx)μ(dy)

= 1

(1 − e−2λt )k/2−1
√

(1 + (k − 1)e−2λt )2 − k2e−2λt
. (6.1)

We thus have immediately:

Corollary 2. For every integer k, ‖p(t, ·, ·)‖Lk(μ⊗μ) goes to 1 when t goes to infinity, and
for every K > 1, there exists tK such that

sup
t≥tK

∥∥p(t, ·, ·)∥∥Lk(μ⊗μ) ≤ K.

Proof. Set Ik(t) = ∫
R2 p(t, x, y)kμ(dx)μ(dy).

Then, letting Kt = λ(1 − e−2λt )−1, ct = 1 + (k − 1)e−2λt , and dt = ke−λt ,

Ik(t) = λ

π

(
1 − e−2λt )−k/2

×
∫
R2

exp
(
− λ

1 − e−2λt

((
1 + (k − 1)e−2λt )(x2 + y2) − 2kxye−λt ))dx dy

= λ

π

(
1 − e−2λt )−k/2

∫
R2

exp
(
−Ktct

(
x − dt

ct

y

)2)

× exp
(
−Ktct

(
1 − d2

t

c2
t

)
y2

)
dx dy

= λ

π

(
1 − e−2λt )−k/2

√
π

Ktct

√√√√ π

Ktct (1 − d2
t

c2
t

)

= λ
(
1 − e−2λt )−k/2 1

Kt

√
c2
t − d2

t

= (
1 − e−2λt )1−k/2 1√

c2
t − d2

t

.

Hence the result we were looking for. �

In particular,∥∥p(a, ·, ·)∥∥8
L8(μ⊗μ) = (

1 − e−2λa)−3(
1 − 50e−2λa + 49e−4λa)−1/2

,

which is finite if and only a > ln(7)
λ

.
Besides, a study of the function a �→ (1 − e−2λa)−3(1 − 50e−2λa + 49e−4λa)−1/2 shows

that it is decreasing towards 1 on the open interval ( ln(7)
λ

,+∞).



682 L. Pédèches

Thus, for every δ > ln(7)
λ

,

sup
a≥δ

∥∥p(a, ·, ·)∥∥L8(μ⊗μ) < ∞,

and, furthermore,

sup
a≥δ

∥∥p(a, ·, ·)∥∥L8(μ⊗μ) = (
1 − e−2λδ)−3/8(

1 − 50e−2λδ + 49e−4λδ)−1/16 = Mδ,

where Mδ corresponds to the constant defined in (4.15). �

The perturbed equation is

dxt = (−λxt + βb
(
t, (x)tt−t0

))
dt + dWt,

where b : R × C([−t0,0],R) → R is a measurable function, bounded by 1, satisfying the
assumption (H3) introduced in Section 2.2, and β is a positive number.

6.2 Numerical applications

6.2.1 The map ε �→ βε . We represent the function ε �→ βε , where βε is the bound defined
in (4.23), taking δ = 2

λ
(as ln(7) ∼ 1.95).

Then Mδ = (1 − e−4)−3/8(1 − 50e−4 + 49e−8)−1/16 � 1.16.
This map can be seen in Figure 1, for ε evolving between 0 and 1. This curve is not

linear, and, as expected, non-decreasing: the smaller ε, the smaller βε , and it vanishes when
ε vanishes.

6.2.2 Determination of βε . We seek to obtain the largest possible value βε , to have the
largest possible window of choice for β satisfying Proposition 3. Indeed, one should note
that its expression depends on the parameter δ, which appears in hypothesis (H2) and is not
uniquely determined: in our case, any δ > ln(7)

λ
will do.

Consider Bε(·, ·) = βε as a function of ε, δ and λ:

Bε(δ, λ) = ε

2
√

2e(8!)1/8M
7/8
δ

×
(
δ − 1

16λ
ln

(
2M4

δ + 1

16M8
δ

(√√√√1 + ε4

32(1 + 2M4
δ )2

− 1
)))−1/2

,

with Mδ = (1 − e−2δ)−3/8(1 − 50e−2δ + 49e−4δ)−1/16.

Figure 1 The map ε �→ b̄(ε) between 0 and 1.
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Figure 2 The surface (δ, λ) �→ B0.9(δ, λ) for δ ∈ [0,10] and λ ∈ [0,5].

Set ε = 0.9 and a = a0.9.
Differentiating B with respect to δ in order to find the points where the derivative vanishes,

and thus the maxima of the function, looks a rather hopeless case.
We draw the map of (δ, λ) �→ B0.9(δ, λ) in Figure 2.
Looking closely at the relation between supδ B0.9(δ, λ) and λ, one can conjecture that

sup
δ>

ln(7)
λ

B0.9(δ, λ) � 0.0291
√

λ.
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