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Abstract. In this article, we investigate consistency and asymptotic normal-
ity of the maximum likelihood and the posterior distribution of the parameters
in the context of state space stochastic differential equations (SDEs). We then
extend our asymptotic theory to random effects models based on systems of
state space SDEs, covering both independent and identical and independent
but non-identical collections of state space SDEs. We also address asymptotic
inference in the case of multidimensional linear random effects, and in situa-
tions where the data are available in discretized forms. It is important to note
that asymptotic inference, either in the classical or in the Bayesian paradigm,
has not been hitherto investigated in state space SDEs.

1 Introduction

State-space models are well known for their versatility in modeling complex dynamic systems
in the context of discrete time, and have important applications in various disciplines like
engineering, medicine, finance and statistics. As is also well known, most time series models
of interest can be expressed in the form of state space models; see, for example, Durbin
and Koopman (2001) and Shumway and Stoffer (2011). Discrete time state space models
are characterized by a latent, unobserved stochastic process, X = {X(t); t = 0,1,2, . . .} and
another stochastic process Y = {Y(t); t = 0,1,2, . . .}, the distribution of which depends upon
X. The observed time series data are modeled by the conditional distribution of Y given
X, where X is assumed to have some specified distribution. An important special case of
such discrete state space models is the hidden Markov model. Here X is assumed to be
a Markov chain, the distribution of Y(t) depends upon X(t), and conditionally on X(t)’s,
Y(t)’s are independent. Such models have important applications in engineering, finance,
biology, statistics; see, for example, Elliott, Aggoun and Moore (1995) and Cappé, Moulines
and Rydén (2005).

However, when the time is continuous, research on state space or hidden Markov models
seem to be much scarce. Ideally, one should consider a pair of stochastic differential equa-
tions (SDEs) whose solutions would be the continuous time processes Y = {Y(t) : t ∈ [0, T ]}
and X = {X(t) : t ∈ [0, T ]}. In fact, the SDE with solution Y should depend upon X. Since
the solutions of SDEs under general regularity conditions are Markov processes (see, for ex-
ample, Mao (2011)), X would turn out to be a Markov process, and conditionally on X, Y

would also be a Markov process. Thus, such an approach could be interpreted as continuous
time versions of the traditional discrete time hidden Markov model based approach. Contin-
uous time models closely resembling the above-mentioned type exists in the literature, but
rather than estimating relevant parameters, filtering theory has been considered. For instance,
Stratonovich (1968), Jazwinski (1970), Maybeck (1979, 1982), Särkkä (2006), Crisan and
Rozovskii (2011) consider the filtering problem in state space SDEs of the following type:

dY (t) = bY

(
X(t), t

)
dt + dWY (t); (1.1)
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dX(t) = bX

(
X(t), t

)
dt + σX

(
X(t), t

)
dWX(t), (1.2)

where WY and WX are independent standard Wiener processes, bY , bX are real-valued drift
functions, and σX is the real-valued diffusion coefficient. The SDEs are assumed to satisfy
the usual regularity conditions that guarantee existence of strong solutions; see, for exam-
ple, Arnold (1974), Øksendal (2003), Mao (2011). The purpose of filtering theory is to
compute the posterior distribution of the latent process conditional on the observed pro-
cess. This can be obtained from the the continuous-time optimal filtering equation, which
is, in fact, the Kushner–Stratonovich equation (Kushner (1964), Bucy (1965)). Note that
(see Särkkä (2012), for example) it is possible to obtain the latter as continuous-time lim-
its of the Bayesian filtering equations. The so-called Zakai equation (Zakai (1969)) provides
a simplified form by removing the non-linearity in the Kushner–Stratonovich equation. In
the special case of (1.1) and (1.2), with bY (X(t), t) = L(t)X(t), bX(X(t), t) = H(t)X(t)

and σX(X(t), t) = σX(t), exact solution of the filtering problem, known as the Kalman–Bucy
filter (Kalman and Bucy (1961)), can be obtained. In the non-linear cases various approxima-
tions are employed; see Crisan and Rozovskii (2011), Särkkä (2007), Särkkä and Sarmavuori
(2013), among others.

In pharmocokinetic/pharmacodynamic contexts, the following type of model is regarded
as the state space model, assuming {Y1, . . . , Yn} are observed at discrete times {t1, . . . , tn}:

Yj = bY (Xtj , θ) + σY (Xtj , θ)εj ; εj
i.i.d.∼ N(0,1); (1.3)

dX(t) = bX

(
X(t), t, θ

)
dt + σX

(
X(t), θ

)
dWX(t), (1.4)

where bY and σY are appropriate real-valued functions, and θ denotes the set of rele-
vant parameters. The standard choices of σY are σY (x, θ) = σ (homoscedastic model) and
σY (x, θ) = a + σbY (x, θ) (heterogeneous model), and bY is usually chosen to be a linear
function. Thus, even though the latent process X is described as the solution of the SDE
(1.4), the model for the (discretely) observed data is postulated to be arising from indepen-
dent normal distributions, conditional on the discretized version of the diffusion process X.
This simplifies inference proceedings to a large extent, particularly when the Markov tran-
sition model associated with (1.4) is available explicitly. Here we recall that under suitable
regularity conditions, the solution of (1.4) is a continuous time Markov process (see, for ex-
ample, Arnold (1974), Øksendal (2003), Mao (2011)). If the Markov transition model is not
available in closed form, then various approximations are proposed in the literature to approx-
imate the likelihood of θ , using which the MLE of θ or the posterior distribution of θ is ob-
tained. Under special cases, for instance, when σY (x, θ) = σ , bY (x, θ) = bθx, σX(x, θ) = σθ ,
bX(xt , t, θ) = aθxt + cθ (t), an explicit form of the likelihood (based on discretization) is
available, and the resulting MLE has been shown to be consistent and asymptotically normal
by Favetto and Samson (2010), but in more general, non-linear situations, theoretical results
do not seem to be available. A comprehensive account of the methods of approximating the
MLE and posterior distribution of θ , with discussion of related computational issues and
theoretical results, have been provided in Donnet and Samson (2013).

Our interest in this article is primarily the investigation of asymptotic parametric inference,
as T → ∞, from both classical and Bayesian perspectives, in the context of state space mod-
els where the models for the observed data as well as the latent process, are both described
by SDEs. In Section 2.2, we show that such asymptotic parametric inference also addresses
consistency of the so-called particle filtering problem associated with the joint posterior dis-
tribution of the parameters and the latent states X(t) given the data {Y(s) : 0 ≤ s ≤ t}. For
relatively recent research, works on the particle filtering problem in non-SDE setups, see, for
example, Chopin, Jacob and Papaspiliopoulos (2013), Crisan and Miguez (2013), Urteaga,
Bugallo and Djuric (2016), Martino et al. (2017).
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In our knowledge, asymptotic inference in such models has not been hitherto investigated.
In our proceedings we assume a somewhat generalized version of the state space SDEs de-
scribed by (1.1) and (1.2) in that the drift function bY depends upon Y(t), in addition to X(t)

and t ; moreover, we assume that there is a diffusion coefficient σY (Y (t),X(t), t) associated
with the Wiener process WY (t) that drives the observational SDE (1.1); a practical instance of
such a state space model in the case of bacterial growth can be found in Møller et al. (2012).
We further assume that there is a common set of parameters θ associated with both the SDEs,
which are of interest. In particular, we assume that there exist appropriate real-valued, known,
functions for θ , ψY (θ) and ψX(θ), such that the drift functions are ψY (θ)bY (Y (t),X(t), t)

and ψX(θ)bX(X(t), t), respectively. In Section 4, we clarify that ψY (θ) and ψX(θ) offers
very general scope of parameterizations by mapping the perhaps high-dimensional (although
finite-dimensional) quantity θ to appropriate real-valued functional forms composed of the
elements of θ . We also assume that the diffusion coefficients of the respective SDEs are in-
dependent of θ . A key assumption in our approach to asymptotic investigation is that X is
stochastically stable. In a nutshell, in this article, by stochastic stability of X we mean that∣∣x(t)

∣∣ ≤ ξλ(t) for all t ≥ 0, (1.5)

almost surely, for all initial values x(0) ∈ R, where λ(t) → 0 as t → ∞, and ξ is a non-
negative, finite random variable depending upon x(0). For comprehensive details regarding
various versions of stochastic stability of solutions of SDEs, see Mao (2011).

It is to be noted that our model clearly corresponds to a dependent setup, and establish-
ment of asymptotic results are therefore can not be achieved by the state-of-the-art methods
that typically deal with at least independent situations. For Bayesian asymptotics, we find the
consistency results of Shalizi (2009) and the general result on posterior asymptotic normality
of Schervish (1995) useful for our purpose, while for classical asymptotics we obtain a suit-
able asymptotic approximation to the target log-likelihood, which helped us establish strong
consistency, as well as asymptotic normality of the MLE.

Once we establish classical and Bayesian asymptotic results associated with our state space
SDE model, we then extend our model to random effects state space model (see Delattre,
Genon-Catalot and Samson (2013), for instance, for SDE based random effects model), where
we model each time series data available on n individuals using our state space model, as-
suming that the effects ψYi

(θ) and ψXi
(θ) for individual i are parameterized by θ , which

is the parameter of interest. From the classical point of view, this is not a random effects
model technically since θ is treated as a fixed quantity, but from the Bayesian viewpoint, a
prior on θ renders the effects random. Slightly abusing terminology for the sake of conve-
nience, we continue to call the model random effects stochastic SDE, from both classical and
Bayesian perspectives. Under such random effects SDE model we seek asymptotic classical
and Bayesian inference on θ as both number of individuals, n, and the domain of observations
[0, Ti]; i = 1, . . . , n increase indefinitely. For our purpose we assume Ti = T for each i. Here
we remark that Donnet and Samson (2013) discuss population SDE models with measure-
ment errors; see also Overgaard et al. (2005), Donnet and Samson (2008), Yan et al. (2014),
Leander et al. (2015); for the ith individual such models are of the same form as (1.3) and
(1.4), but specifics depending upon i, and with θ replaced with φi , where {φ1, . . . , φn} are
independently and identically distributed with some distribution with parameter θ , say, which
is one of the parameters of interest. This is a genuine random effects model unlike ours, but
here only the latent process X is based upon SDE. Theoretical results do not exist for this
setup; see Donnet and Samson (2013). On the other hand, even though our random effects
state space SDE model is completely based upon SDEs, the simplified form of the effects, pa-
rameterized by a common θ , enables us to obtain desired asymptotic results for both classical
and Bayesian paradigms. Indeed, in our case it is certainly possible to postulate a genuine
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random effects state space SDE model by replacing ψYi
(θ) and ψXi

(θ) with i.i.d. random
effects φYi

and φXi
, having distributions parameterized by quantities of inferential interest θY

and θX , say, but in this setup complications arise regarding handling the observed integrated
likelihood and its associated bounds, which does not assist in our asymptotic investigations.

Discretization of our state space SDE models is essential for practical applications such
as in fields of pharmacokinetics/pharmacodynamics, where continuous time data are usually
unavailable. We show in the supplement (Maitra and Bhattacharya (2019)) that the same
asymptotic results go through in discretized situations.

In our proceedings with each setup, we first investigate Bayesian consistency, then consis-
tency and asymptotic normality of the MLE, and finally asymptotic posterior normality. One
reason behind this sequence is that the proofs of the results on posterior normality depend
upon the proofs of the results of consistency and asymptotic normality of MLE, which, in
turn, depend upon the proofs associated with Bayesian posterior consistency. Moreover, ad-
hering to this sequence allows us to introduce the assumptions in a sequential manner, so that
an overall logical order could be maintained throughout the paper.

The rest of our article is organized as follows. In Section 2, we introduce our state space
SDE model and provide an overview of the asymptotic results in Section 3. We list the var-
ious sets of assumptions including stochastic stability of the solution of the latent SDE, in
Section 4. Development of the asymptotic theory requires asymptotic approximation of the
true and observed likelihoods. Such asymptotic approximations are developed in Section 5,
under suitable regularity conditions. Next, in Section 6, with further regularity conditions,
we prove posterior convergence of θ by proving validity of the conditions of Shalizi stated
formally for our state space SDE setup in Section S-1 of the supplement (Maitra and Bhat-
tacharya (2019)). We prove strong consistency and asymptotic normality of the MLE in Sec-
tion 7, under further extra assumptions. With a few more regularity conditions, In Section 8
we establish asymptotic posterior normality of θ . We introduce random effects state space
SDE models in Section 9 and provide a briefing of the asymptotic results, with the details in
Section S-5 of the supplement (Maitra and Bhattacharya (2019)). Finally, in Section 10 we
provide a brief summary of our work, discuss some key issues, and identify future research
agenda. The extension of our theory for state space SDE models with multidimensional linear
random effects and in the case of discretized data are discussed, respectively, in Sections S-6
and S-7 of the supplement (Maitra and Bhattacharya (2019)).

2 State space SDE

2.1 True and postulated state space SDE models

First, consider the following “true” state space SDE:

dY (t) = φY,0bY

(
Y (t),X(t), t

)
dt + σY

(
Y (t),X(t), t

)
dWY (t); (2.1)

dX(t) = φX,0bX

(
X(t), t

)
dt + σX

(
X(t), t

)
dWX(t), (2.2)

for t ∈ [0, bT ], where bT → ∞, as T → ∞. The first SDE, namely, (2.1) is the true ob-
servational SDE and is associated with the observed data. The second SDE (2.2) is the true
evolutionary, unobservable SDE. In the above two equations, we assume that φY,0 and φX,0
are both explained by a “true” set of parameters θ0, through known but perhaps different func-
tions of θ0. In other words, we assume that φY,0 = ψY (θ0) and φX,0 = ψX(θ0), where ψY and
ψX are known functions. Note that this is a general formulation, where we allow the possi-
bility θ0 = (θY,0, θX,0) and choice of ψY and ψX such that ψY (θ0) = θY,0 and ψX(θ0) = θX,0,
for scalars θY,0 and θX,0. In this instance, the observational and evolutionary SDEs have their
own sets of parameters. We also allow common subsets of the parameter vector θ0 to feature
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in the two SDEs. For instance, ψY (θ0) = θY,0 + θX,0 and ψX(θ0) = θX,0. Indeed, θ0 can be
any finite-dimensional vector, appropriately mapped to the real line by ψY and ψX . We wish
to learn about the set of parameters θ0, which would enable learning about φY,0 and φX,0
simultaneously. For our purpose, we assume that (ψY (θ),ψX(θ)) is identifiable in θ , that is,
(ψY (θ1),ψX(θ1)) = (ψY (θ2),ψX(θ2)) implies θ1 = θ2.

Our modeled state space SDE is analogously given, for t ∈ [0, bT ] by:

dY (t) = φY bY

(
Y (t),X(t), t

)
dt + σY

(
Y (t),X(t), t

)
dWY (t); (2.3)

dX(t) = φXbX

(
X(t), t

)
dt + σX

(
X(t), t

)
dWX(t), (2.4)

where φY = ψY (θ) and φX = ψX(θ).
Throughout, we assume that the initial values associated with the SDEs (2.1), (2.2), (2.3)

and (2.4), are non-random. It is worth mentioning in this context that for stochastic stability
it is enough to assume non-randomness of the initial value; see Mao ((2011), page 111), for
a proof of this.

We wish to establish consistency and asymptotic normality of the maximum likelihood
estimator (MLE) and the posterior distribution of θ , as T → ∞. For technical reasons, we
shall consider the likelihood for t ∈ [aT , bT ], where aT → ∞ and (bT − aT ) → ∞, as T →
∞. In particular, we assume that (bT − aT ) ≥ T .

2.2 Connection of parametric asymptotic inference with the asymptotics of the particle
filtering problem

As already mentioned, in this article we focus on classical and Bayesian asymptotic inference
on the parameter θ . However, such asymptotic parametric inference automatically leads to
asymptotic inference regarding the particle filtering problem. To clarify, first let Yt = {Y(s) :
0 ≤ s ≤ t}, for t ∈ [0, bT ], and let θ̂T denote the MLE of θ or the posterior expectation of
θ , given the data YT . Then provided that θ̂T → θ0 almost surely (or in probability), for each
t ∈ [0, bT ], the posterior distribution π(X(t)|θ̂T ,Yt ) → π(X(t)|θ0,Yt ), as T → ∞, almost
surely (or in probability), if π(X(t)|θ,Yt ) is continuous in θ . As a simple example, let us
assume that bY (Y (t),X(t), t) = L(t)X(t), bX(X(t), t) = H(t)X(t), σY (Y (t),X(t), t) ≡ 1
and σX(X(t), t) = σX(t). Also, let us assume that ψY (θ) and ψX(θ) are continuous in θ .
Then the Kalman–Bucy filter ensures that π(X(t)|θ,Yt ) is a Gaussian density with mean
and variances depending upon t , and the density is continuous in θ . Letting Xt = {X(s) : 0 ≤
s ≤ bT }, we similarly have π(Xt |θ̂T ,Yt ) → π(Xt |θ0,Yt ), as T → ∞, almost surely (or in
probability).

3 A brief overview of the main asymptotic results

3.1 Posterior convergence of θ

Our main result on posterior convergence of θ is based on verification of a general posterior
convergence result of Shalizi (2009), which amounts to validating seven regularity conditions
required by Shalizi’s result, which we denote by (A1)–(A7). We present the assumptions and
the result of Shalizi in Section S-1 of the supplement (Maitra and Bhattacharya (2019)). The
most essential notions, the key assumption, and our main result on posterior convergence
with a brief sketch of the proof utilizing the key assumption of Shalizi, are presented below.

Let FT = σ({Y(s) : s ∈ [aT , bT ]}) denote the σ -algebra generated by {Y(s) : s ∈
[aT , bT ]}. Let T denote the σ -algebra associated with the d (≥ 1)-dimensional parameter
space 
.

Let pT (θ0) denote the marginal likelihood of {Y(t) : t ∈ [aT , bT ]} of the true model (2.1)
and (2.2). Also, let LT (θ) be the modeled likelihood of {Y(t) : t ∈ [aT , bT ]} of the postulated
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model (2.3) and (2.4). We denote LT (θ)
pT (θ0)

by RT (θ). For every θ ∈ 
, the Kullback–Leibler
divergence rate is given by

h(θ) = lim
T →∞

1

bT − aT

Eθ0

(− logRT (θ)
)
,

where Eθ0 denotes the expectation is with respect to the true model.
For A ⊆ 
, let

h(A) = ess inf
θ∈A

h(θ);
J (θ) = h(θ) − h(
);
J (A) = ess inf

θ∈A
J (θ).

The above essential infimums are with respect to the prior π assigned for θ .
With the above notions, our posterior convergence results are summarized by Theorem 1.

Theorem 1. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). For the prior π on θ , consider any set A ∈ T with π(A) > 0
and h(A) > h(
). Then, under suitable assumptions, almost surely,

lim
T →∞π(A|FT ) = 0.

Moreover, if the set A satisfies another technical condition, then almost surely,

lim
T →∞

1

bT − aT

logπ(A|FT ) = −J (A).

Sketch of the proof. The proof follows by verifying the seven assumptions of Shalizi, which
are shown to hold under appropriate conditions. The most important result guiding posterior
convergence is the asymptotic equipartition property, which is given in this case by

1

bT − aT

logRT (θ)

→ −1

2

[
KY (φY − φY,0)

2 + KX(φX − φX,0)
2 + KX

(
φ2

X,0 − φ2
X

)]
= −h(θ),

where

h(θ) = 1

2

[
KY (φY − φY,0)

2 + KX(φX − φX,0)
2 + KX

(
φ2

X,0 − φ2
X

)]

= 1

2

[
KY

(
ψY (θ) − ψY (θ0)

)2 + KX

(
ψX(θ) − ψX(θ0)

)2

+ KX

(
ψ2

X(θ0) − ψ2
X(θ)

)]
.

In the above, KX (> 0) and KY (> 0) are the limits of the bounds of b2
Y (y, x, t)/σ 2

Y (y, x, t)

and b2
X(x, t)/σ 2

X(x, t), respectively, as T → ∞.

This result is achieved using the following approximations proved subsequently: pT (θ0)
a.s.∼

p̂T (θ0) and LT (θ)
a.s.∼ L̂T (θ), where

p̂T (θ0) = exp
(

(bT − aT )KY φ2
Y,0

2
+ φY,0

√
KY

(
WY (bT ) − WY (aT )

)

+ (bT − aT )KXφ2
X,0

)
,
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L̂T (θ) = exp
(
(bT − aT )KY φY φY,0 + φY

√
KY

(
WY (bT ) − WY (aT )

)

− (bT − aT )KY φ2
Y

2
+ (bT − aT )KXφXφX,0

)
,

and then noting that, as T → ∞,

1

bT − aT

logRT (θ)

= 1

bT − aT

log
(

LT (θ)

pT (θ0)

)

a.s.∼ −KY

2
(φY − φY,0)

2 + √
KY (φY − φY,0)

(WY (bT ) − WY (aT ))

bT − aT

− KX

2
(φX − φX,0)

2 + KX

2

(
φ2

X − φ2
X,0

)
a.s.−→ −1

2

[
KY (φY − φY,0)

2 + KX(φX − φX,0)
2 + KX

(
φ2

X,0 − φ2
X

)]
.

It is important to note that compactness of the parameter space 
 is not necessary for The-
orem 1 to hold. Instead, we constructed appropriate “sieves” of the form GT = {θ : |ψY (θ)| ≤
exp(β(bT − aT ))} with β > 2h(
) that are compact for each T and increasing in T and
such the prior probability of the complement Gc

T is exponentially small, and satisfies some
other technical conditions that essentially guarantee posterior convergence, along with the
asymptotic equipartition property. �

Remark 2. In particular, let Aε = {θ ∈ 
 : h(θ) > h(
) + ε}, for ε > 0. Then note
that h(Aε) > h(
), for any ε > 0. Let π(Aε) > 0. Then by the first part of Theorem 1,
π(Aε|FT ) → 0, almost surely, as T → ∞, for any ε > 0. It is also important to note that if θ0
belongs to the support of the prior on 
, then h(
) = 0. In this case, the posterior probability
of Aε = {θ ∈ 
 : h(θ) > ε} tends to zero almost surely, for any ε > 0.

3.2 Consistency of the MLE of θ

Let θ ∈ 
 ⊆ R
d , where 
 is the d(≥ 1)-dimensional, compact parameter space. Our main

result on consistency of the MLE of θ can be formalized as the following theorem.

Theorem 3. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). Then under appropriate regularity conditions the MLE θ̂T of
θ is strongly consistent in the sense that θ̂T

a.s.−→ θ0.

Sketch of the proof. Identifiability of the model and uniqueness of the MLE follow from
our assumptions. To prove strong consistency of the MLE, we first note that the MLE can be
approximated by maximizing the function

g̃T (θ) = gY,T (θ) + gX,T (θ)

with respect to θ , where

gY,T (θ) = −KY

2

(
ψY (θ) − ψY (θ0)

)2

+ √
KY

(
ψY (θ) − ψY (θ0)

)WY (bT ) − WY (aT )

bT − aT

;
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gX,T (θ) = −KX

2

(
ψX(θ) − ψX(θ0)

)2 + KX

2

(
ψ2

X(θ) − ψ2
X(θ0)

)
.

Letting θ̂T denote the MLE, note that

0 = g̃′
T (θ̂T ) = g̃′

T (θ0) + g̃′′
T

(
θ∗
T

)
(θ̂T − θ0),

where θ∗
T lies between θ0 and θ̂T . Since g̃′

T (θ0)
a.s.−→ 0 as T → ∞ and since g̃′′

T (θ∗
T ) is positive

definite for T ≥ 1 under appropriate assumptions, it holds that θ̂T
a.s.−→ θ0, as T → ∞. �

Remark 4. Note that compactness of 
 is not necessary for Bayesian consistency, in contrast
with consistency of the MLE.

3.3 Asymptotic normality of the MLE of θ

For asymptotic normality of the MLE of θ , the result is summarized by the following theorem.

Theorem 5. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). Then under suitable assumptions the MLE of θ is asymp-

totically normal in the sense that
√

bT − aT (θ̂T − θ0)
L−→ Nd(0,I−1(θ0)). Here I(θ) is the

matrix with (j, k)th element given by

{
I(θ)

}
jk = KY

[
∂ψY (θ)

∂θj

∂ψY (θ)

∂θk

]
.

Sketch of the proof. Asymptotic normality follows easily from the above developments on
consistency of MLE, and the fact that θ∗

T

a.s.−→ θ0, and WY (bT )−WY (aT )
bT −aT

a.s.−→ 0, as T → ∞.
Observe that {I(θ0)}jk is the covariance between the j th and the kth components of√
bT − aT g̃′

T (θ0), and so I(θ0) is non-negative definite. �

3.4 Asymptotic posterior normality of θ

We prove posterior normality of θ by verifying the seven regularity conditions of Theo-
rem 7.102 of Schervish (1995).

Theorem 6. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). Then denoting T = (bT − aT )

1
2I 1

2 (θ0)(θ − θ̂T ), for each
compact subset B of Rd and each ε > 0, the following holds under appropriate assumptions:

lim
T →∞Pθ0

(
sup

T ∈B

∣∣π(T |FT ) − �(T )
∣∣ > ε

)
= 0,

where �(·) denotes the density of the standard normal distribution.

Sketch of the proof. Here we assume that 
 is compact which enables us to uniformly
approximate 1

bT −aT
logRT (θ) by gY,T (θ) + gX,T (θ) for θ ∈ 
. Hence, 1

bT −aT
logLT (θ) can

be uniformly approximated by 1
bT −aT

�̃T (θ) = gY,T (θ) + gX,T (θ) + 1
bT −aT

logpT (θ0), for

θ ∈ 
. This is the key idea, and by working with the first three differentials of �̃T (θ), in
conjunction with Taylor’s series expansion and our proven result that θ̂T

a.s.−→ θ0, the seven
regularity conditions of Theorem 7.102 of Schervish (1995) are relatively straightforward to
verify. �
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4 Regularity conditions

4.1 Assumptions regarding bY and σY

(H1) For every T > 0, and integer η ≥ 1, given any x, there exists a positive constant
KY,x,T ,η such that for all t ∈ [0, bT ] and all (y1, y2) with max{y1, y2} ≤ η,

max
{[

bY (y1, x, t) − bY (y2, x, t)
]2

,
[
σY (y1, x, t) − σY (y2, x, t)

]2}
≤ KY,x,T ,η|y1 − y2|2.

(H2) For every T > 0, given any x, there exists a positive constant Kx,T such that for all
(y, t) ∈ R× [0, T ],

max
{
b2
Y (y, x, t), σ 2

Y (y, x, t)
} ≤ Kx,T

(
1 + y2)

.

(H3) For every T > 0, there exist positive constants KY,1,T , KY,2,T , αY,1, αY,2 such that for
all (x, t) ∈R× [0, bT ],

KY,1,T

(
1 − αY,1x

2) ≤ b2
Y (y, x, t)

σ 2
Y (y, x, t)

≤ KY,2,T

(
1 + αY,2x

2)
,

where KY,1,T → KY and KY,2,T → KY as T → ∞; KY being a positive constant. We
further assume that for j = 1,2, (bT − aT )|KY,j,T − KY | → 0, as T → ∞.

In (H3), we have assumed that the bounds of
b2
Y (y,x,t)

σ 2
Y (y,x,t)

do not depend upon y, which is some-

what restrictive. Dependence of the bounds on y can be insisted upon, but at the cost of the
assumption of stochastic stability of Y in addition to that of X. See Section 10 for details
regarding the modified assumption. All our results remain intact under the modified assump-
tion. It is also important to clarify that the lower bound in (H3), when utilized in our SDE
context, becomes non-negative after possibly a few time steps, thanks to the stochastic stabil-
ity assumption which ensures (1.5).

4.2 Assumptions regarding bX and σX

(H4) bX(0, t) = 0 = σX(0, t) for all t ≥ 0.
(H5) For every T > 0, and integer η ≥ 1, there exists a positive constant KT,η such that for

all t ∈ [0, bT ] and all (x1, x2) with max{x1, x2} ≤ η,

max
{[

bX(x1, t) − bX(x2, t)
]2

,
[
σX(x1, t) − σX(x2, t)

]2} ≤ KT,η|x1 − x2|2.
(H6) For every T > 0, there exists a positive constant KT such that for all (x, t) ∈ R ×

[0, bT ],
max

{
b2
X(x, t), σ 2

X(x, t)
} ≤ KT

(
1 + x2)

.

(H7) For every T > 0, there exist positive constants KX,1,T , KX,2,T , αX,1, αX,2 such that for
all (x, t) ∈R× [0, bT ],

KX,1,T

(
1 − αX,1x

2) ≤ b2
X(x, t)

σ 2
X(x, t)

≤ KX,2,T

(
1 + αX,2x

2)
,

where KX,1,T → KX and KX,2,T → KX , as T → ∞; KX being a positive constant.
We also assume that for j = 1,2, (bT − aT )|KX,j,T − KX| → 0, as T → ∞.
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4.3 Further assumptions ensuring almost sure stochastic stability of X(t)

Let C denote the family of all continuous non-decreasing functions f : R+ → R
+ such that

f (0) = 0 and f (r) > 0 when r > 0.
Let Sh = {x ∈ R : |x| < h} and C(Sh × [0,∞);R+) denote the family of all continuous

functions V (x, t) from Sh×[0,∞) to R
+ with continuous first partial derivatives with respect

to x and t . Also, let C(Sh×[0,∞);R+), where 0 < h ≤ ∞, denote the family of non-negative
functions V (x, t) defined on Sh ×R

+ such that they are continuously twice differentiable in
x and once in t . Let

LV (x, t) = Vt(x, t) + Vx(x, t)bX(x, t) + 1

2
σ 2

X(x, t)Vxx(x, t),

where Vt = ∂V
∂t

, Vx = ∂V
∂x

, and Vxx = ∂2V
∂x2 .

With these definitions and notations, we now make the following assumption:

(H8) Let p > 0 and let there exist a function V ∈ C(Sh × [0,∞);R+), a continuous non-
decreasing function γ : R+ → R

+ such that γ (t) → ∞ as t → ∞, and a continuous
function η̆ : R+ →R

+ such that
∫ ∞

0 η̆(t) < ∞. Assume that for x �= 0, t ≥ 0,

γ (t)|x|p ≤ V (x, t) and LV (x, t) ≤ η̆(t).

Thanks to Theorem 6.2 of Mao ((2011), page 145), assumption (H8) ensures that stochastic
stability of X of the form |x(t)| ≤ ξλ(t)for allt ≥ 0 holds almost surely, for all initial values
x(0) ∈ R with

λ(t) = [
γ (t)

]− 1
p ,

where ξ is a non-negative, finite random variable depending upon x(0).

5 Asymptotic approximations of the true and modeled likelihoods of the state
space SDEs

Let us define

vY |X,T =
∫ bT

aT

b2
Y (Y (s),X(s), s)

σ 2
Y (Y (s),X(s), s)

ds; (5.1)

uY |X,T =
∫ bT

aT

bY (Y (s),X(s), s)

σ 2
Y (Y (s),X(s), s)

dY (s); (5.2)

vX,T =
∫ bT

aT

b2
X(X(s), s)

σ 2
X(X(s), s)

ds; (5.3)

uX,T =
∫ bT

aT

bX(X(s), s)

σ 2
X(X(s), s)

dX(s). (5.4)

Due to (H3) and (H7), the following hold:

KY,ξ,T ,1 ≤ vY |X,T ≤ KY,ξ,T ,2; (5.5)

KX,ξ,T ,1 ≤ vX,T ≤ KX,ξ,T ,2, (5.6)

where

KY,ξ,T ,1 = KY,1,T

(
(bT − aT ) − αY,1ξ

2
∫ bT

aT

λ2(s) ds

)
; (5.7)
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KY,ξ,T ,2 = KY,2,T

(
(bT − aT ) + αY,2ξ

2
∫ bT

aT

λ2(s) ds

)
; (5.8)

KX,ξ,T ,1 = KX,1,T

(
(bT − aT ) − αX,1ξ

2
∫ bT

aT

λ2(s) ds

)
; (5.9)

KX,ξ,T ,2 = KX,2,T

(
(bT − aT ) + αX,2ξ

2
∫ bT

aT

λ2(s) ds

)
. (5.10)

To proceed, we shall make use of the following relationships between uY |X,T , vY |X,T and
uX,T , vX,T under the true state space SDE model described by (2.1) and (2.2):

uY |X,T = φY,0vY |X,T +
∫ bT

aT

bY (Y (s),X(s), s)

σY (Y (s),X(s), s)
dWY (s); (5.11)

uX,T = φX,0vX,T +
∫ bT

aT

bX(X(s), s)

σX(X(s), s)
dWX(s). (5.12)

Let

IY,X,T =
∫ bT

aT

bY (Y (s),X(s), s)

σY (Y (s),X(s), s)
dWY (s);

IX,T =
∫ bT

aT

bX(X(s), s)

σX(X(s), s)
dWX(s).

Because of (5.5), (5.6), (5.11) and (5.12) the following hold:

φY,0KY,ξ,T ,1 + IY,X,T ≤ uY |X,T ≤ φY,0KY,ξ,T ,2 + IY,X,T ;
φX,0KX,ξ,T ,1 + IX,T ≤ uX,T ≤ φX,0KX,ξ,T ,2 + IX,T .

(5.13)

5.1 True likelihood and its asymptotic approximation

First note that exp(φY,0uY |X,T − φ2
Y,0
2 vY |X,T ) is the conditional density of Y given X, with

respect to QT,Y |X , the probability measure associated with (2.1) on [aT , bT ], assuming null

drift. Also, exp(φX,0uX,T − φ2
X,0
2 vX,T ) is the marginal density of X with respect to QT,X ,

the probability measure associated with the latent state SDE (2.2) on [aT , bT ], but assuming
null drift. These are standard results; see for example, Lipster and Shiryaev (2001), Øksendal
(2003), Delattre, Genon-Catalot and Samson (2013).

It then follows that the marginal likelihood under the true model (2.1) and (2.2) is the
marginal density of {Y(t) : t ∈ [aT , bT ]}, given by

pT (θ0) =
∫

exp
(
φY,0uY |X,T − φ2

Y,0

2
vY |X,T

)

× exp
(
φX,0uX,T − φ2

X,0

2
vX,T

)
dQT,X

= ET,X

[
exp

(
φY,0uY |X,T − φ2

Y,0

2
vY |X,T

)

× exp
(
φX,0uX,T − φ2

X,0

2
vX,T

)]
, (5.14)

where ET,X denotes expectation with respect to QT,X . The following lemma proved in sup-
plement (Maitra and Bhattacharya (2019)) formalizes the dominating measure with respect
to which pT (θ0) is the Radon–Nikodym derivative.
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Lemma 7. The likelihood given by (5.14) is the density of {Y(t) : t ∈ [aT , bT ]} with respect
to QT,Y , where for any relevant measurable set A,

QT,Y (A) =
∫
XT

dQT,Y |X(A)dQT,X =
∫
A

∫
XT

dQT,Y |X dQT,X.

In the above, XT stands for the sample space of {X(t) : t ∈ [aT , bT ]}.
It is important to remark that our likelihood (5.14) is of a very general form and does not

usually admit a closed form expression, but this is not at all a requirement for our asymptotic
purpose. Closed form expressions may be necessary when it is of interest to directly maximize
the likelihood with respect to the parameters, and in such cases, more stringent assumptions
regarding the SDEs are necessary. See, for example, Frydman and Lakner (2003); see also
Kailath and Zakai (1971). Also, observe that our dominating measure QT,Y is not the Wiener
measure, unlike the aforementioned papers, albeit it reduces to the Wiener measure if σY ≡ 1
and σX ≡ 1.

5.1.1 Asymptotic approximation of pT (θ0). Using (5.5) and (5.13) we obtain

BL,T (θ0) ≤ pT (θ0) ≤ BU,T (θ0),

where

BL,T (θ0) = ET,X

(
ZL,T ,θ0(X)

); (5.15)

BU,T (θ0) = ET,X

(
ZU,T ,θ0(X)

)
, (5.16)

where

ZL,T ,θ0(X) = exp
(
φ2

Y,0KY,ξ,T ,1 + φY,0IY,X,T − φ2
Y,0

2
KY,ξ,T ,2

)

× exp
(
φ2

X,0KX,ξ,T ,1 + φX,0IX,T − φ2
X,0

2
KX,ξ,T ,2

)
and

ZU,T ,θ0(X) = exp
(
φ2

Y,0KY,ξ,T ,2 + φY,0IY,X,T − φ2
Y,0

2
KY,ξ,T ,1

)

× exp
(
φ2

X,0KX,ξ,T ,2 + φX,0IX,T − φ2
X,0

2
KX,ξ,T ,1

)
.

The expressions (5.15) and (5.16) have the same asymptotic form. We first provide the in-
tuitive idea and then rigorously prove our result on asymptotic approximation. Note that, by
(H3) and (H7), (5.7), (5.8), (5.9), (5.10), the facts that 1

bT −aT

∫ bT
aT

λ2(s) ds → 0 as T → ∞,

and ξ is a finite random variable, that KY,ξ,T ,1
a.s.∼ (bT − aT )KY , KY,ξ,T ,2

a.s.∼ (bT − aT )KY ,

KX,ξ,T ,1
a.s.∼ (bT − aT )KX and KX,ξ,T ,2

a.s.∼ (bT − aT )KX , where, for any two random se-

quences {AT : T ≥ 0} and {BT : T ≥ 0}, AT
a.s.∼ BT stands for AT /BT → 1, almost surely, as

T → ∞. Also, as we show, the distributions of (bT − aT )− 1
2 IY,X,T and (bT − aT )− 1

2 IX,T are
asymptotically normal with zero means and variances KY and KX , respectively. Heuristically
substituting these in (5.15) and (5.16) yields the form

p̂T (θ0) = exp
(

(bT − aT )KY φ2
Y,0

2
+ φY,0

√
KY

(
WY (bT ) − WY (aT )

)

+ (bT − aT )KXφ2
X,0

)
.
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5.2 Modeled likelihood and its asymptotic approximation

Our modeled likelihood associated with the state space model described by (2.3) and (2.4) is
given by:

LT (θ) =
∫

exp
(
φY uY |X,T − φ2

Y

2
vY |X,T

)

× exp
(
φXuX,T − φ2

X

2
vX,T

)
dQT,X. (5.17)

Using the same method of obtaining bounds of pT (θ0), we obtain the following bounds
for LT (θ):

B̃L,T (θ) ≤ LT (θ) ≤ B̃U,T (θ),

where

B̃L,T (θ) = ET,X

(
Z̃L,T ,θ (X)

);
B̃U,T (θ) = ET,X

(
Z̃U,T ,θ (X)

)
,

where

Z̃L,T ,θ (X) = exp
(
φY φY,0KY,ξ,T ,1 + φY IY,X,T − φ2

Y

2
KY,ξ,T ,2

)

× exp
(
φXφX,0KX,ξ,T ,1 + φXIX,T − φ2

X

2
KX,ξ,T ,2

)

and

Z̃U,T ,θ (X) = exp
(
φY φY,0KY,ξ,T ,2 + φY IY,X,T − φ2

Y

2
KY,ξ,T ,1

)

× exp
(
φXφX,0KX,ξ,T ,2 + φXIX,T − φ2

X

2
KX,ξ,T ,1

)
.

It follows as before that the modeled likelihood can be approximated as

L̂T (θ) = exp
(
(bT − aT )KY φY φY,0 + φY

√
KY

(
WY (bT ) − WY (aT )

)

− (bT − aT )KY φ2
Y

2
+ (bT − aT )KXφXφX,0

)
.

5.3 A briefing on the formal results on the asymptotic approximations

Formal proof of the results pT (θ0)
a.s.∼ p̂T (θ0) and LT (θ)

a.s.∼ L̂T (θ) requires the following
two additional assumptions:

(H9) There exists an integer k0 ≥ 1 such that
∑∞

T =1 δ
−2k0
T (bT − aT )k0−1 ∫ bT

aT
λ2(s) ds < ∞,

where δT ↓ 0 as T → ∞ is a specific sequence decreasing fast enough so that it
satisfies, because of continuity of the exponential function, the following: for any
ε > 0,

∞∑
T =1

P
(∣∣IY,X,T − √

KY

(
WY (bT ) − WY (aT )

)∣∣ ≤ δT ,

∣∣exp(IY,X,T ) − exp
(√

KY

(
WY (bT ) − WY (aT )

))∣∣ > ε
)
< ∞. (5.18)

Also assume that E|ξ |2k0 < ∞.
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(H10)

sup
T >0

E

(
ZL,T ,θ0(X)

p̂T (θ0)

)
< ∞, sup

T >0
E

(
ZU,T ,θ0(X)

p̂T (θ0)

)
< ∞,

sup
T >0,θ∈


E

(
Z̃L,T ,θ (X)

L̂T (θ)

)
< ∞ and sup

T >0,θ∈


E

(
Z̃U,T ,θ (X)

L̂T (θ)

)
< ∞.

The following lemma shows that under assumptions (H1)–(H9), exp(IY,X,T ) and
exp(IX,T ) are asymptotically independent of X.

Lemma 8. Under assumptions (H1)–(H9),∣∣exp(IY,X,T ) − exp
(√

KY

(
WY (bT ) − WY (aT )

))∣∣ a.s.−→ 0; (5.19)∣∣exp(IX,T ) − exp
(√

KX

(
WX(bT ) − WX(aT )

))∣∣ a.s.−→ 0. (5.20)

The following corollary of Lemma 8 shows asymptotic normality of the relevant quantities
involved in the asymptotic approximations.

Corollary 9. Since (bT − aT )− 1
2
√

KY (WY (bT ) − WY (aT )) and (bT − aT )− 1
2
√

KX ×
(WX(bT ) − WX(aT )) are normally distributed with mean zero and variances KY and KX ,
respectively, it follows that

(bT − aT )−
1
2 IY,X,T

a.s.−→ N(0,KY );
(bT − aT )−

1
2 IX,T

a.s.−→ N(0,KX).

Finally, our asymptotic approximation result is given by the following theorem, which
requires assumptions (H1)–(H10).

Theorem 10. Assume (H1)–(H10). Then

pT (θ0)
a.s.∼ p̂T (θ0); (5.21)

LT (θ)
a.s.∼ L̂T (θ) for all θ ∈ 
. (5.22)

The proofs of Lemma 8 and Theorem 10 are presented in the supplement (Maitra and
Bhattacharya (2019)).

6 Convergence of the posterior distribution of θ

In order to prove convergence of our posterior distribution, we verify the conditions of the
theorem proved in Shalizi (2009) which take account of dependence setups and misspecifi-
cations. The detailed assumptions in our state space SDE context and Shalizi’s theorem is
provided in Section S-1 of the supplement (Maitra and Bhattacharya (2019)).

6.1 Further assumptions

Before proceeding further, we make the following assumptions regarding ψY and ψX:

(H11) (i) For every θ ∈ 
 ∪ {θ0}, ψY (θ) and ψX(θ) are finite and satisfy (ψY (θ1),

ψX(θ1)) = (ψY (θ2),ψX(θ2)) implies θ1 = θ2.
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(ii) |ψY | is coercive, that is, for every sequence {θT : T > 0} such that ‖θT ‖ → ∞,
|ψY (θT )| → ∞.

(iii) For every sequence {θT : T > 0} such that ‖θT ‖ → ∞, |ψY (θT )|2(bT −
aT )|KY,j,T − KY | → 0 and |ψX(θT )|2(bT − aT )|KX,j,T − KX| → 0, for j =
1,2, and C1(bT − aT ) ≤ (ψY (θT ) − ψY (θ0))

8 ≤ C2(bT − aT ), for some con-
stants C1,C2 > 0, as T → ∞.

(iv) |ψY (θ)| is assumed to have finite expectation with respect to the prior π(θ).
(v) |ψX(θ)| ≤ |ψX(θ0)|, for all θ ∈ 
.

(vi) The first and second derivatives of ψX vanish at θ = θ0.
(vii) ψY and ψX are at least thrice continuously differentiable.

6.2 Verification of the assumptions of Shalizi

6.2.1 Verification of (A1). Recall that our likelihood LT (θ) is given by (5.17). In the same
way as the proof of the second part of Proposition 2 of Delattre, Genon-Catalot and Sam-
son (2013), it can be proved that the first factor of the integrand of (5.17) is a measur-
able function of ({Y(s); s ∈ [aT , bT ]}, {X(s); s ∈ [aT , bT ]}, θ). Also, by the same result of
Delattre, Genon-Catalot and Samson (2013) the second factor of the integrand is a measur-
able function of ({X(s); s ∈ [aT , bT ]}, θ). Thus, the integrand is a measurable function of
({Y(s); s ∈ [aT , bT ]}, {X(s); s ∈ [aT , bT ]}, θ). Since the associated measure spaces are σ -
finite, LT (θ) is clearly FT × T -measurable for all T > 0.

6.2.2 Verification of (A2). We consider the likelihood ratio RT (θ) given by (S-1.1). Using
Theorem 10 we obtain that

1

bT − aT

logRT (θ)
a.s.∼ −KY

2
(φY − φY,0)

2

+ √
KY (φY − φY,0)

(WY (bT ) − WY (aT ))

bT − aT

− KX

2
(φX − φX,0)

2 + KX

2

(
φ2

X − φ2
X,0

)
. (6.1)

Since WY (bT )−WY (aT )
bT −aT

a.s.−→ 0, it follows that, almost surely,

1

bT − aT

logRT (θ)

→ −1

2

[
KY (φY − φY,0)

2 + KX(φX − φX,0)
2 + KX

(
φ2

X,0 − φ2
X

)]
. (6.2)

Let

h(θ) = 1

2

[
KY (φY − φY,0)

2 + KX(φX − φX,0)
2 + KX

(
φ2

X,0 − φ2
X

)]

= 1

2

[
KY

(
ψY (θ) − ψY (θ0)

)2 + KX

(
ψX(θ) − ψX(θ0)

)2

+ KX

(
ψ2

X(θ0) − ψ2
X(θ)

)]
. (6.3)

Note that due to (H11)(v), h(θ) ≥ 0, for all θ ∈ 
. Thus (A2) holds.
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6.2.3 Verification of (A3). We now obtain the limit of the quantity

1

bT − aT

Eθ0

(
log

pT (θ0)

LT (θ)

)
= − 1

bT − aT

Eθ0

(
logRT (θ)

)
,

where Eθ0 is the expectation with respect to the true likelihood pT (θ0). Proceeding in the
same way as in the case of RT (θ) and noting that Eθ0(WY (bT ) − WY (aT )) = 0, it is easy to
see that

1

bT − aT

Eθ0

(
log

pT (θ0)

LT (θ)

)
→ h(θ),

as T → ∞.

6.2.4 Verification of (A4). To verify (A4) we reformulate the original parameter space 
 as

 \ I . Abusing notation, we continue to denote 
 \ I as 
. Hence, the prior π on 
 clearly
satisfies π(I) = 0.

6.2.5 Verification of (A5)(i). Now consider GT = {θ ∈ 
 : |ψY (θ)| ≤ exp(β(bT − aT ))},
where β is chosen such that β > 2h(
). Coerciveness of ‖ψY ‖ implies compactness of GT ,
for every T > 0.

The above definition of GT clearly implies GT → 
. Also,

π(GT ) > 1 − E
(∣∣ψY (θ)

∣∣) exp
(−β(bT − aT )

)
= 1 − α exp

(−β(bT − aT )
)
,

where the first inequality is due to Markov’s inequality and α = E(|ψY (θ)|) > 0. The expec-
tation, which is with respect to the prior π , exists by (H11)(iv).

6.2.6 Verification of (A5)(ii). We now show that convergence of (6.2) is uniform in θ over
GT \ I . First note that GT \ I = GT , since we have already removed I from 
. Now note that,
because of compactness of GT and continuity of | 1

bT −aT
logRT (θ) + h(θ)| in θ , there exists

θT ∈ GT such that

sup
θ∈GT \I

∣∣∣∣ 1

bT − aT

logRT (θ) + h(θ)

∣∣∣∣ =
∣∣∣∣ 1

bT − aT

logRT (θT ) + h(θT )

∣∣∣∣. (6.4)

Note that θT depends upon the data. However, under the additional condition (H11)(iii), it is
clear from the proof of Theorem 10 (see Section S-4 of the supplement (Maitra and Bhat-
tacharya (2019))) that our asymptotic approximation of LT (θT ) remains valid even in this
case. Formally,

Theorem 11. Assume (H1)–(H10) and (H11)(iii). Consider any, perhaps, data-dependent
sequence {θT : T > 0}, where either ‖θT ‖ remains finite almost surely or ‖θT ‖ → ∞, almost
surely, as T → ∞. Then LT (θT )

a.s.∼ L̂T (θT ).

The above theorem guarantees that (6.4) admits the following approximation:∣∣∣∣ 1

bT − aT

logRT (θT ) + h(θT )

∣∣∣∣
a.s.∼ √

KY

∣∣∣∣(ψY (θT ) − ψY (θ0))√
bT − aT

× WY (bT ) − WY (aT )√
bT − aT

∣∣∣∣. (6.5)

By Corollary 9 and (H11)(iii), the right hand side of (6.5) goes to zero almost surely, as
T → ∞. Hence, the convergence of (6.2) is uniform in θ over GT \ I .
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6.2.7 Verification of (A5)(iii). We now show that h(GT ) → h(
), as T → ∞. Due to
compactness of GT and continuity of h(θ), it follows that there exists θ̃T ∈ GT such that
h(GT ) = h(θ̃T ). Also, since GT is a non-decreasing sequence of sets, h(θ̃T ) is non-increasing
in T . Since GT → 
, it follows that h(GT ) → h(
), as T → ∞.

6.2.8 Verification of (A6). Under (A1)–(A3), which we have already verified, it holds that
(see equation (18) of Shalizi (2009)) for any fixed G of the sequence GT , for any ε > 0 and
for sufficiently large T ,

1

bT − aT

log
∫
G

RT (θ)π(θ) dθ ≤ −h(G) + ε + 1

bT − aT

logπ(G).

It follows that τ(GT , δ) is almost surely finite for all T and δ. We now argue that for suffi-
ciently large T , τ(GT , δ) > (bT − aT ) only finitely often with probability one. By equation
(41) of Shalizi (2009),

∞∑
T =1

P
(
τ(GT , δ) > (bT − aT )

)

≤
∞∑

T =1

∞∑
m=T +1

P

(
1

bm − am

log
∫
GT

Rm(θ)π(θ) dθ > δ − h(GT )

)
. (6.6)

Now, by compactness of GT , h(GT ) = h(θ̃T ), for θ̃T ∈ GT , and by the mean value theorem
for integrals,

1

bm − am

log
∫
GT

Rm(θ)π(θ) dθ = 1

bm − am

logRm(θ̂T )π(GT ),

for θ̂T ∈ GT depending upon the data, so that

1

bm − am

log
∫
GT

Rm(θ)π(θ) dθ > δ − h(GT )

implies, since h(θ̂T ) ≥ h(θ̃T ), that

1

bm − am

logRm(θ̂T ) + h(θ̂T ) > δ − 1

bm − am

logπ(GT ) > δ.

Thus, it follows from (6.6) and Chebychev’s inequality, that
∞∑

T =1

P
(
τ(GT , δ) > (bT − aT )

)

≤
∞∑

T =1

∞∑
m=T +1

P

(∣∣∣∣ 1

bm − am

logRm(θ̂T ) + h(θ̂T )

∣∣∣∣ > δ

)

≤
∞∑

T =1

∞∑
m=T +1

δ−8E

(
1

bm − am

logRm(θ̂T ) + h(θ̂T )

)8
. (6.7)

From (6.1) and (6.3) it is clear that

1

bm − am

logRm(θ̂T ) + h(θ̂T )

a.s.∼ √
KY

(ψY (θ̂T ) − ψY (θ0))√
bm − am

× WY (bm) − WY (am)√
bm − am

. (6.8)
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Now, let Zm = 1
bm−am

logRm(θ̂T ) + h(θ̂T ) and Z̃m = √
KY

(ψY (θ̂T )−ψY (θ0))√
bm−am

×
WY (bm)−WY (am)√

bm−am
. Then

Z8
m − Z̃8

m

E(Z̃8
m)

= Z8
m − Z̃8

m

Z̃8
m

× Z̃8
m

E(Z̃8
m)

a.s.−→ 0 as m → ∞, (6.9)

because, due to 6.8 the first factor on the right-hand side of (6.9) tends to zero almost
surely, while by (H11)(iii) the second factor is bounded above by a constant times stan-
dard normal distribution raised to the power 6. It can be easily verified using (H11)(iii) that

supm≥1 E[Z8
m−Z̃8

m

E(Z̃8
m)

]2 < ∞, so that Z8
m−Z̃8

m

E(Z̃8
m)

is uniformly integrable. Hence, it follows from (6.9)

that

E(Z8
m) − E(Z̃8

m)

E(Z̃8
m)

→ 0 as m → ∞.

In other words, as m → ∞,

E
(
Z8

m

) a.s.∼ E
(
Z̃8

m

)
. (6.10)

Now note that for studying convergence of the double sum (6.7), it is enough to investigate
convergence of

ST0 =
∞∑

T =T0

∞∑
m=T +1

E

(
1

bm − am

logRm(θ̂T ) + h(θ̂T )

)8
,

for some sufficiently large T0. By virtue of (6.10) it is then enough to study convergence of

ST0 =
∞∑

T =T0

∞∑
m=T +1

E
(
Z̃8

m

)

= c̃

∞∑
T =T0

∞∑
m=T +1

(ψY (θ̃T ) − ψY (θ0))
8

(bm − am)4 ,

where c̃ (> 0) is a constant. By (H11)(iii), for sufficiently large T , (ψY (θ̃T ) − ψY (θ0))
8 ≤

C2(bT − aT ), for some C2 > 0. Hence,

ST0 ≤ CY

∞∑
T =T0

∞∑
m=T +1

bT − aT

(bm − am)4 ,

where CY (> 0) is a constant. Now note that, since (bT − aT ) is increasing in T , (bT0+j −
aT0+j ) < (bT0+j+1 − aT0+j+1) for j ≥ 0, so that

∞∑
T =T0

∞∑
m=T +1

bT − aT

(bm − am)4

= (bT0 − aT0)

(bT0+1 − aT0+1)4 + (bT0 − aT0) + (bT0+1 − aT0+1)

(bT0+2 − aT0+2)4

+ (bT0 − aT0) + (bT0+1 − aT0+1) + (bT0+2 − aT0+2)

(bT0+3 − aT0+3)4 + · · ·

≤
∞∑

k=1

k

(bT0+k − aT0+k)3
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≤
∞∑

k=1

k

(T0 + k)3 ≤
∞∑

k=1

(T0 + k)

(T0 + k)3 =
∞∑

k=1

1

(T0 + k)2 ≤
∞∑

k=1

1

k2

< ∞.

That is, ST0 < ∞ for sufficiently large T0. In other words, (A6) holds.

6.2.9 Verification of (A7). For any set A ⊆ 
 with π(A) > 0, it follows that GT ∩A → 
∩
A = A. Since h(GT ∩A) is non-increasing as T increases, it follows that h(GT ∩A) → h(A),
as T → ∞.

To summarize, we have the following theorem on posterior convergence of θ .

Theorem 12. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). Assume (H1)–(H10) and (H11)(i)–(v). For the prior π on θ ,
consider any set A ∈ T with π(A) > 0 and h(A) > h(
). Then, almost surely,

lim
T →∞π(A|FT ) = 0.

Moreover, if β > 2h(A) or A ⊂ ∩∞
k=T Gk for some T , then almost surely,

lim
T →∞

1

bT − aT

logπ(A|FT ) = −J (A).

7 Consistency and asymptotic normality of the maximum likelihood estimator

Now we make the following further assumption:

(H12) The parameter space 
 is compact.

Let

gY,T (θ) = −KY

2

(
ψY (θ) − ψY (θ0)

)2

+ √
KY

(
ψY (θ) − ψY (θ0)

)WY (bT ) − WY (aT )

bT − aT

; (7.1)

gX,T (θ) = −KX

2

(
ψX(θ) − ψX(θ0)

)2 + KX

2

(
ψ2

X(θ) − ψ2
X(θ0)

)
. (7.2)

Then note that

sup
θ∈


∣∣∣∣ 1

bT − aT

logRT (θ) − gY,T (θ) − gX,T (θ)

∣∣∣∣
=

∣∣∣∣ 1

bT − aT

logRT

(
θ∗
T

) − gY,T

(
θ∗
T

) − gX,T

(
θ∗
T

)∣∣∣∣, (7.3)

for some θ∗
T ∈ 
 where θ∗

T is dependent on data. Proceeding in the same way as in Sec-
tion 6.2.6 it is easily seen that (7.3) tends to zero almost surely with respect to both Y and
X, as T → ∞. Hence, the maximum likelihood estimator (MLE) can be approximated by
maximizing the function

g̃T (θ) = gY,T (θ) + gX,T (θ)

with respect to θ .
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7.1 Strong consistency of the maximum likelihood estimator of θ

Observe that for k = 1, . . . , d ,

∂g̃T (θ)

∂θk

= −KY

(
ψY (θ) − ψY (θ0)

)∂ψY (θ)

∂θk

− KX

(
ψX(θ) − ψX(θ0)

)∂ψX(θ)

∂θk

+ KXψX(θ)
∂ψX(θ)

∂θk

+ √
KY

∂ψY (θ)

∂θk

WY (bT ) − WY (aT )

bT − aT

.

Let

g̃′
T (θ) =

(
∂g̃T (θ)

∂θ1
, . . . ,

∂g̃T (θ)

∂θd

)T

.

Also, let

g̃′′
T (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2g̃T (θ)

∂θ2
1

∂2g̃T (θ)

∂θ1∂θ2
· · · ∂2g̃T (θ)

∂θ1∂θd

∂2g̃T (θ)

∂θ2∂θ1

∂2g̃T (θ)

∂θ2
2

· · · ∂2g̃T (θ)

∂θ2∂θd

· · · · · · · · · · · ·
∂2g̃T (θ)

∂θd∂θ1

∂2g̃T (θ)

∂θd∂θ2
· · · ∂2g̃T (θ)

∂θ2
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

denote the matrix with (j, k)th element given by

∂2g̃T (θ)

∂θj ∂θk

= −KY

[
∂ψY (θ)

∂θj

∂ψY (θ)

∂θk

+ (
ψY (θ) − ψY (θ0)

)∂2ψY (θ)

∂θj ∂θk

]

− KX

[
∂ψX(θ)

∂θj

∂ψX(θ)

∂θk

+ (
ψX(θ) − ψX(θ0)

)∂2ψX(θ)

∂θj ∂θk

]

+ KX

[
∂ψX(θ)

∂θj

∂ψX(θ)

∂θk

+ ψX(θ)
∂2ψX(θ)

∂θj ∂θk

]

+ √
KY

∂2ψY (θ)

∂θj ∂θk

WY (bT ) − WY (aT )

bT − aT

.

Note that by (H11)(vi),[
∂g̃T (θ)

∂θk

]
θ=θ0

= √
KY

[
∂ψY (θ)

∂θk

]
θ=θ0

WY (bT ) − WY (aT )

bT − aT

; (7.4)

[
∂2g̃T (θ)

∂θj ∂θk

]
θ=θ0

= −KY

[
∂ψY (θ)

∂θj

∂ψY (θ)

∂θk

]
θ=θ0

+ √
KY

[
∂2ψY (θ)

∂θj ∂θk

]
θ=θ0

WY (bT ) − WY (aT )

bT − aT

. (7.5)

Letting θ̂T denote the MLE, note that

0 = g̃′
T (θ̂T ) = g̃′

T (θ0) + g̃′′
T

(
θ∗
T

)
(θ̂T − θ0), (7.6)

where θ∗
T lies between θ0 and θ̂T . From (7.5) it is clear that[

∂2g̃T (θ)

∂θj ∂θk

]
θ=θ0

a.s.−→ −KY

[
∂ψY (θ)

∂θj

∂ψY (θ)

∂θk

]
θ=θ0

,
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as T → ∞. Let I(θ) denote the matrix with (j, k)th element given by{
I(θ)

}
jk = KY

[
∂ψY (θ)

∂θj

∂ψY (θ)

∂θk

]
.

From (7.4) it is obvious that {I(θ0)}jk is the covariance between the j th and the kth com-
ponents of

√
bT − aT g̃′

T (θ0), and so I(θ0) is non-negative definite. We make the following
assumptions:

(H13) The true value θ0 ∈ int(
), where by int(
) we mean the interior of 
.
(H14) The matrix I(θ) is positive definite for θ ∈ int(
).

Hence, from (7.6) we obtain, after pre-multiplying both sides of the relevant equation with
I−1(θ∗

T ), the following:

−I−1(
θ∗
T

)
g̃′′

T

(
θ∗
T

)
(θ̂T − θ0) = I−1(

θ∗
T

)
g̃′

T (θ0). (7.7)

Since as T → ∞, g̃′
T (θ0)

a.s.−→ 0 and −I−1(θ∗
T )g̃′′

T (θ∗
T )

a.s.−→ Id , Id being the identity ma-
trix of order d , it hold that

θ̂T
a.s.−→ θ0, (7.8)

as T → ∞, showing that the MLE is strongly consistent. The result can be formalized as the
following theorem.

Theorem 13. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). Assume conditions (H1)–(H14). Then the MLE of θ is strongly
consistent in the sense that (7.8) holds.

7.2 Asymptotic normality of the maximum likelihood estimator of θ

Since θ̂T
a.s.−→ θ0 and θ∗

T lies between θ0 and θ̂T , it follows that θ∗
T

a.s.−→ θ0 as T → ∞. This,
and the fact that (WY (bT ) − WY (aT ))/

√
bT − aT ∼ N(0,1), guarantee that

−√
bT − aT I−1(

θ∗
T

)
g̃′

T (θ0)
L−→ N

(
0,I−1(θ0)

)
,

where “
L−→” denotes convergence in distribution. From (7.7) it then follows, using the fact

I−1(θ∗
T )g̃′′

T (θ∗
T )

a.s.−→ Id , that√
bT − aT (θ̂T − θ0)

L−→ Nd

(
0,I−1(θ0)

)
. (7.9)

Thus, we can present the following theorem.

Theorem 14. Assume that the data was generated by the true model given by (2.1) and
(2.2), but modeled by (2.3) and (2.4). Assume conditions (H1)–(H14). Then the MLE of θ is
asymptotically normal in the sense that (7.9) holds.

8 Asymptotic posterior normality

Let �T (θ) = logLT (θ) stand for the log-likelihood, and let

�−1
T =

{−�′′
T (θ̂T ) if the inverse and θ̂T exist,

Id if not,

where for any z,

�′′
T (z) =

((
∂2

∂θi∂θj

�T (θ)

∣∣∣∣
θ=z

))
.

Thus, �−1
T is the observed Fisher’s information matrix.
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8.1 Regularity conditions and a theorem of Schervish (1995)

(1) The parameter space is 
 ⊆ R
d for some finite d .

(2) θ0 is a point interior to 
.
(3) The prior distribution of θ has a density with respect to Lebesgue measure that is positive

and continuous at θ0.
(4) There exists a neighborhood N0 ⊆ 
 of θ0 on which �T (θ) = logLT (θ) is twice contin-

uously differentiable with respect to all co-ordinates of θ , a.s. [Pθ0].
(5) The largest eigenvalue of �T goes to zero in probability.
(6) For δ > 0, define N0(δ) to be the open ball of radius δ around θ0. Let ρT be the smallest

eigenvalue of �T . If N0(δ) ⊆ 
, there exists K(δ) > 0 such that

lim
T →∞Pθ0

(
sup

θ∈
\N0(δ)

ρT

[
�T (θ) − �T (θ0)

]
< −K(δ)

)
= 1. (8.1)

(7) For each ε > 0, there exists δ(ε) > 0 such that

lim
T →∞Pθ0

(
sup

θ∈N0(δ(ε)),‖γ ‖=1

∣∣1 + γ T �
1
2
T �′′

T (θ)�
1
2
T γ

∣∣ < ε
)

= 1. (8.2)

Theorem 15 (Schervish (1995)). Assume the above seven regularity conditions. Then de-
noting T = �

−1/2
T (θ − θ̂T ), for each compact subset B of Rd and each ε > 0, the following

holds:

lim
T →∞Pθ0

(
sup

T ∈B

∣∣π(T |FT ) − �(T )
∣∣ > ε

)
= 0,

where �(·) denotes the density of the standard normal distribution.

8.2 Verification of the seven regularity conditions for posterior normality

Also we assume that 
 is compact (assumption (H11)) which enables us to uniformly approx-
imate 1

bT −aT
logRT (θ) by gY,T (θ) + gX,T (θ) for θ ∈ 
; see Section 7. As a consequence,

1
bT −aT

�T (θ) can be uniformly approximated by gY,T (θ) + gX,T (θ) + 1
bT −aT

logpT (θ0), for
θ ∈ 
. Let

1

bT − aT

�̃T (θ) = gY,T (θ) + gX,T (θ) + 1

bT − aT

logpT (θ0).

Henceforth, we shall be working with 1
bT −aT

�̃T (θ) whenever convenient. With this, the first
four regularity conditions presented in Section 8.1 trivially hold.

To verify regularity condition (5), note that, since θ̂T
a.s.−→ θ0,

1

bT − aT

�̃′′
T (θ̂T )

a.s.−→ −I(θ0).

Hence, almost surely,

�−1
T ∼ (bT − aT ) × I(θ0),

so that

�T
a.s.−→ 0,

as T → ∞. Thus, regularity condition (5) holds.
For verifying condition (6), observe that

ρT

[
�T (θ) − �T (θ0)

] = ρT (bT − aT ) × 1

bT − aT

logRT (θ),
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where ρT (bT − aT ) → c, for some c > 0 and, due to (6.2),

ρT

[
�T (θ) − �T (θ0)

]
a.s.−→ −c

2

[
KY

(
ψY (θ) − ψY (θ0)

)2 + KX

(
ψX(θ) − ψX(θ0)

)2

+ KX

(
ψ2

X(θ0) − ψ2
X(θ)

)]
, (8.3)

for all θ ∈ 
 \N0(δ). Now note that

lim
T →∞Pθ0

(
sup

θ∈
\N0(δ)

ρT

[
�T (θ) − �T (θ0)

]
< −K(δ)

)

≥ lim
T →∞Pθ0

((
ρT (bT − aT )

) × 1

bT − aT

logRT (θ) < −K(δ) ∀θ ∈ 
 \N0(δ)

)

= 1, (8.4)

the last step following due to (8.3). Thus, regularity condition (6) is verified.
For verifying condition (7), we note that θ ∈ N0(δ(ε)) can be represented as θ = θ0 +

δ2
θ0‖θ0‖ , where 0 < δ2 ≤ δ(ε). Hence, Taylor’s series expansion around θ0 yields

�̃′′
T (θ)

bT − aT

= �̃′′
T (θ0)

bT − aT

+ δ2
�̃′′′
T (θ∗)θ0

(bT − aT )‖θ0‖ , (8.5)

where θ∗ lies between θ0 and θ . As T → ∞,
�̃′′
T (θ0)

bT −aT
tends to −I(θ0), almost surely. Now

notice that

‖�̃′′′
T (θ∗)θ0‖

(bT − aT )‖θ0‖ ≤ ‖�̃′′′
T (θ∗)‖

bT − aT

.

Because of (H11)(vii) and compactness of 
 it follows that
‖�̃′′′

T (θ∗)‖
bT −aT

→ 0 as T → ∞. Hence,

it follows that �̃′′
T (θ) = O(−(bT − aT ) × I(θ0) + (bT − aT )δ2), almost surely. Since �

1
2
T

is asymptotically almost surely equivalent to (bT − aT )− 1
2I− 1

2 (θ0), condition (7) holds. We
summarize our result in the form of the following theorem.

Theorem 16. Assume that the data was generated by the true model given by (2.1) and (2.2),
but modeled by (2.3) and (2.4). Assume (H1)–(H14). Then denoting T = �

−1/2
T (θ − θ̂T ),

for each compact subset B of Rd and each ε > 0, the following holds:

lim
T →∞Pθ0

(
sup

T ∈B

∣∣π(T |FT ) − �(T )
∣∣ > ε

)
= 0,

where �(·) denotes the density of the standard normal distribution.

9 Random effects models based on state space SDEs and a brief overview of the
asymptotic results

9.1 True and postulated systems of state space SDEs with random effects

We now consider the following “true” random effects models based on state space SDEs: for
i = 1, . . . , n, and for t ∈ [0, bT ],

dYi(t) = φYi,0bY

(
Yi(t),Xi(t), t

)
dt + σY

(
Yi(t),Xi(t), t

)
dWY,i(t); (9.1)

dXi(t) = φXi,0bX

(
Xi(t), t

)
dt + σX

(
Xi(t), t

)
dWX,i(t). (9.2)
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In the above, φYi,0 = ψYi
(θ0) and φXi,0 = ψXi

(θ0), where ψYi
and ψXi

are known functions;
θ0 is the true set of parameters.

Our modeled state space SDE is given, for t ∈ [0, bT ] by:

dYi(t) = φYi
bY

(
Yi(t),Xi(t), t

)
dt + σY

(
Yi(t),Xi(t), t

)
dWY,i(t); (9.3)

dXi(t) = φXi
bX

(
Xi(t), t

)
dt + σX

(
Xi(t), t

)
dWX,i(t), (9.4)

where φYi
= ψYi

(θ) and φXi
= ψXi

(θ). As before, we wish to learn about the set of parame-
ters θ . Note that for simplicity of our asymptotic analysis we assumed the same time interval
[0, bT ] for i = 1, . . . , n. We assume that ψYi

(θ) → ψ̄Y (θ) and ψXi
(θ) → ψ̄X(θ), as i → ∞,

for all θ ∈ 
. Also, let KY,i and KX,i be the relevant constants associated with (9.3) and
(9.4), analogous to KY and KX associated with (2.3) and (2.4), respectively. We assume that
KY,i → K̄Y and KX,i → K̄X , as i → ∞. Let pT,i(θ0) and LT,i(θ) be the true and modeled
likelihoods associated with the ith state space SDE.

9.2 A brief overview of the main asymptotic results

9.2.1 Posterior convergence of θ . Here the true likelihood on [aT , bT ] is of the form
p̄n,T (θ0) = ∏n

i=1 pT,i(θ0)
a.s.∼ ∏n

i=1 p̂T ,i(θ0), where

p̂T ,i(θ0) = exp
(

(bT − aT )KYi
φ2

Yi,0

2
+ φYi,0

√
KYi

(
WYi

(bT ) − WYi
(aT )

)

+ (bT − aT )KXi
φ2

Xi,0

)
.

The modeled likelihood on [aT , bT ] is L̄n,T (θ) = ∏n
i=1 LT,i(θ)

a.s.∼ ∏n
i=1 L̂T ,i(θ), where

L̂T ,i(θ) = exp
(
(bT − aT )KYi

φYi
φYi,0 + φYi

√
KYi

(
WYi

(bT ) − WYi
(aT )

)

− (bT − aT )KYi
φ2

Yi

2
+ (bT − aT )KXi

φXi
φXi,0

)
.

Let R̄n,T (θ) = L̄n,T (θ)

p̄n,T (θ0)
. Then the following asymptotic equipartition property holds for the

systems of state space SDEs:

lim
n→∞ lim

T →∞
1

n(bT − aT )
log R̄n,T (θ) = −h̄(θ),

almost surely, where

h̄(θ) = 1

2

[
K̄Y

(
ψ̄Y (θ) − ψ̄Y (θ0)

)2 + K̄X

(
ψ̄X(θ) − ψ̄X(θ0)

)2

+ K̄X

(
ψ̄2

X(θ0) − ψ̄2
X(θ)

)]
.

We define, in our current context, the following:

h̄(A) = ess inf
θ∈A

h̄(θ);
J̄ (θ) = h̄(θ) − h̄(
);
J̄ (A) = ess inf

θ∈A
J̄ (θ).

We summarize our Bayesian convergence result in the form of the following theorem.
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Theorem 17. Let the true, data-generating model be given by (9.1) and (9.2), but let the data
be modeled by (9.3) and (9.4). Consider any set A ∈ T with π(A) > 0 and h̄(A) > h̄(
).
Then under appropriate assumptions,

lim
n→∞,T →∞π(A|F̄n,T ) = 0,

where F̄n,T = σ({Yi(s); i = 1, . . . , n; s ∈ [aT , bT ]}). If the set A satisfies a technical condi-
tion, then we further have

lim
n→∞,T →∞

1

n(bT − aT )
logπ(A|F̄n,T ) = −J̄ (A). (9.5)

Sketch of the proof. The proof easily follows using the asymptotic equipartition property
for the systems of state space SDEs and construction of appropriate sieves of the form Ḡn,T =
{θ : |ψ̄Y (θ)| ≤ exp(β̄n(bT − aT ))}, which have the desired properties. Here β̄ > 2h̄(
). �

9.2.2 Strong consistency of the MLE of θ .

Theorem 18. Let the true, data-generating model be given by (9.1) and (9.2), but let the
data be modeled by (9.3) and (9.4). Then, under suitable regularity conditions, the MLE of
θ , denoted by θ̂n,T , is strongly consistent in the sense that θ̂n,T

a.s.−→ θ0.

Sketch of the proof. In this case, the MLE can be approximated by maximizing

ḡn,T (θ) = ḡY,T (θ) + ḡX,T (θ)

with respect to θ , where

ḡY,T (θ) = −K̄Y

2

(
ψ̄Y (θ) − ψ̄Y (θ0)

)2

+
√

K̄Y

(
ψ̄Y (θ) − ψ̄Y (θ0)

)1

n

n∑
i=1

WYi
(bT ) − WYi

(aT )

bT − aT

; (9.6)

ḡX,T (θ) = −K̄X

2

(
ψ̄X(θ) − ψ̄X(θ0)

)2 + K̄X

2

(
ψ̄2

X(θ) − ψ̄2
X(θ0)

)
.

The rest of the proof follows in the same lines as that of Theorem 3. �

9.2.3 Asymptotic normality of the MLE of θ .

Theorem 19. Let the true, data-generating model be given by (9.1) and (9.2), but let the data
be modeled by (9.3) and (9.4). Then, under suitable regularity conditions,

√
n(bT − aT )(θ̂n,T − θ0)

L−→ Nd

(
0,I−1(θ0)

)
,

as n → ∞, T → ∞. In this case, the (j, k)th element of the matrix I(θ0) is given by

{
I(θ0)

}
jk = K̄Y

[
∂ψ̄Y (θ)

∂θj

∂ψ̄Y (θ)

∂θk

]
θ=θ0

.

Sketch of the proof. The proof of this result follows in the same way as that of Theorem 5. �
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9.2.4 Asymptotic posterior normality. We summarize our result on asymptotic posterior
normality for systems of state space SDEs in the form of the following theorem.

Theorem 20. Let the true, data-generating model be given by (9.1) and (9.2), but let the data
be modeled by (9.3) and (9.4). Then denoting ̄n,T = �̄

−1/2
n,T (θ − θ̂n,T ), for each compact

subset B of Rd and each ε > 0, the following holds under appropriate regularity conditions:

lim
n→∞,T →∞Pθ0

(
sup

̄n,T ∈B

∣∣π(̄n,T |F̄n,T ) − �(̄T )
∣∣ > ε

)
= 0.

Sketch of the proof. In this case, �n,T (θ) = logLn,T (θ), can be uniformly approximated by

1

n(bT − aT )
�̄n,T (θ) = ḡY,T (θ) + ḡX,T (θ) + 1

n(bT − aT )
log p̄nT (θ0),

for θ ∈ 
. The rest of the proof follows in the same way as that of Theorem 6. �

10 Summary and discussion

In this paper, we have investigated the asymptotic properties of the MLE and the posterior
distribution of the set of parameters associated with state space SDEs and random effects state
space SDEs. In particular, we have established posterior consistency based on Shalizi (2009)
and asymptotic posterior normality based on Schervish (1995). In addition, we have also
established strong consistency and asymptotic normality of the MLE associated with our state
space SDE models. Acknowledging the importance of discretization in practical scenarios,
we have shown (in Section S-7 of the supplement (Maitra and Bhattacharya (2019))) that our
results go through even with discretized data.

In the case of our random effects SDE models, we only required independence of the state
space models for different individuals. That is, our approach and the results remain intact
if the initial values for the processes associated with the individuals are different. This is
in contrast with the asymptotic works of Maitra and Bhattacharya (2016) and Maitra and
Bhattacharya (2015) in the context of independent but non-identical random effects models
for the individuals. Although not based on state space SDEs, their approach required the
simplifying assumption that the sequence of initial values is a convergent subsequence of
some sequence in some compact space.

In fact, the relative simplicity of our current approach is due to the assumption of stochas-
tic stability of the latent processes of our models, the key concept that we adopted in our ap-
proach to alleviate the difficulties of the asymptotic problem at hand. Specifically, we adopted
the conditions of Theorem 6.2 provided in Mao (2011), as sufficient conditions of our results.
Indeed, there is a large literature on stochastic stability of solutions of SDEs, with very many
existing examples (see, for example, Mao (2011) and the references therein), which indicate
that the assumption of stochastic stability is not unrealistic.

In our work, we have assumed stochastic stability of X only. If, in addition, asymptotic
stability of Y is also assumed, then our results hold good by replacing (H3) in Section 4 with
the following assumptions:

(H3(i)) bY (0,0, t) = 0 = σY (0,0, t) for all t ≥ 0.
(H3(ii)) For every T > 0, there exist positive constants K1,T , K2,T , α1, α2, β1 and β2 such

that for all (x, t) ∈ R× [0, T ],

KY,1,T

(
1 − α1x

2 − β1y
2) ≤ b2

Y (y, x, t)

σ 2
Y (y, x, t)

≤ KY,2,T

(
1 + α2x

2 + β2y
2)

,
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where KY,1,T → KY and KY,2,T → KY and as T → ∞; KY being a positive con-
stant as mentioned in (H3).

In this case the bounds of
b2
Y (y,x,t)

σ 2
Y (y,x,t)

are somewhat more general than in (H3) in that they

depend upon both x and y, while in (H3) the bounds are independent of y.
To our knowledge, our work is the first time effort towards establishing asymptotic results

in the context of state space SDEs, and the results we obtained are based on relatively general
assumptions which are satisfied by a large class of models. Since the notion of stochastic
stability is valid for any dimension of the associated SDE, it follows that our results admit
straightforward extension to high-dimensional state space SDEs. Corresponding results in
the multidimensional extension of the random effects is provided briefly in Section S-6 of the
supplement (Maitra and Bhattacharya (2019)).

As we mentioned in the introduction, our random effects state space SDE model can not be
interpreted as a bona fide random effects model from the classical perspective, and that intro-
duction of actual random effects would complicate our method of asymptotic investigation.
Also, in this article we have assumed that the diffusion coefficients are free of parameters,
which is not a very realistic assumption. We are working on these issues currently, and will
communicate our findings subsequently.
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Supplementary Material

Supplement to “On classical and Bayesian asymptotics in state space stochastic differ-
ential equations” (DOI: 10.1214/19-BJPS439SUPP; .pdf). Our supplement consists of the
following additional details. Section S-1 provides the assumptions and the main theorem of
Shalizi in the context of our state space SDE. Sections S-2 and S-3 provide the proofs of
Lemma 7 and Lemma 8, respectively, while Section S-4 furnishes the proof of Theorem 10.
The detailed asymptotic theory of random effects models based on state space SDEs is pro-
vided in Section S-5, while in Section S-6, the asymptotic theory for multidimensional linear
random effects is established. Finally, in Section S-7, the asymptotic theory in the case of
discrete data is discussed.
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