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Abstract. This paper deals with branching processes in varying environment
with selection, where the offspring distribution depends on the generation and
every particle has a random fitness which can only increase along genealog-
ical lineages (descendants with small fitness do not survive). We view the
branching process in varying environment (BPVE) as a particular example
of branching random walk. We obtain conditions for the survival or extinc-
tion of a BPVE (with or without selection), using fixed point techniques for
branching random walks. These conditions rely only on the first and second
moments of the offspring distributions. Our results can be interpreted in terms
of accessibility percolation on Galton-Watson trees. In particular, we obtain
that there is no accessibility percolation on almost every Galton-Watson tree
where the expected number of offspring grows sublinearly in time, while su-
perlinear growths allows percolation. This result is in agreement with what
was found for deterministic trees in Nowak and Krug (Europhysics Letters
101 (2013) 66004).

1 Introduction

A branching process in varying environment (or BPVE), also called time-inhomogeneous
branching process, is the generalization of the classical Galton-Watson process when the
offspring distribution depends on the generation. The limit behaviour of these processes was
firstly studied in Agresti (1975), Church (1971), Jagers (1974), Lindvall (1974), and later in
Cohn and Jagers (1994), D’Souza and Biggins (1992), among others. Like the Galton-Watson
process, the BPVE serves as a simple model for the growth of a biological population and to
each of its realizations we can associate its Galton–Watson tree. We refer the reader to Jagers
(1975) for a survey of earlier results about this topic and for biological motivations. See also
Broman and Meester (2008) for a recent study on the survival properties of these processes
and on their connection with percolation theory on trees.

Given a BPVE, we can assign a random label (say, a fitness) to each individual. We sup-
pose that only the children with fitness higher than their parent’s survive. A BPVE with this
selection mechanism is called branching Process in varying environment with selection or
BPWS. This process can be seen as a model for the evolution of species (for similar models
see, for instance, Guiol, Machado and Schinazi (2011), Guiol, Machado and Schinazi (2013),
Liggett and Schinazi (2009)). In particular, the BPWS is a generalization of the accessibility
percolation model on regular trees, which was introduced in Nowak and Krug (2013), and
recently studied on spherically symmetric trees in Coletti, Gava and Rodriguez (2018). In
Nowak and Krug (2013), the authors have deterministic, finite rooted trees, where each ver-
tex has a random label, assigned according to a non-atomic measure. The root is the ancestor
of the population, vertices at distance n from the root represent individuals of generation n
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and each vertex in this generation has a fixed number h(n) of children in generation n + 1.
For this model if h(n) grows sublinearly, then the probability that there is a path from the
root, with increasing labels, reaching a vertex at distance n from the root, goes to 0 as n goes
to infinity, if the growth is superlinear then the limit is 1.

The BPWS is thus a process where the existence of an infinite line of descendance is
equivalent to the existence of an infinite accessibility path on the underlying (inhomogeneous)
Galton–Watson tree. In this paper, we give conditions for survival (with positive probability
there is an infinite population) and extinction (almost surely the process ends in finite time)
for a BPWS. As a corollary, we obtain that, provided that a certain condition on the second
moments is satisfied, if the expected number of children in generation n grows sublinearly
then there is extinction, while if the growth is superlinear then there is survival.

In order to obtain our results we see the BPVE as a particular case of a more general pro-
cess, which is the branching random walk (or BRW) where each particle has a position inside
a space X or, equivalently, the particle is assigned a type/label in X (the breeding law accounts
for both the number of children and their position). We identify the BPVE with a BRW on
the space N (see Section 2 for details). We note that this identification allows us to consider
these processes as BRWs on an at most countable space X, a case which is well-studied
in both continuous time and discrete time: we refer the reader, for details and results on
BRWs to Bertacchi and Zucca (2008, 2009b, 2015), Pemantle and Stacey (2001) (continuous
time), Braunsteins, Decrouez and Hautphenne (2019), Bulinskaya (2015a, 2015b), Gantert et
al. (2010), Hautphenne (2012), Hautphenne, Latouche and Nguyen (2013), Machado et al.
(2001), Machado, Popov and Yu (2003) (discrete time); see also Bertacchi and Zucca (2012)
for a survey on the topic. Examples of BRWs with countable space X (along with some vari-
ants) and their biological applications are presented in Kimmel and Axelrod (2002, Ch.7).
Of course one could see the fitness of individuals in the BPWS as a position and thus use
results for BRWs on uncountable spaces, but for the uncountable case, as well as cases with
non-trivial interactions between particles, there is a lack of general tools (usually, different
processes need different tools, see for instance Bertacchi, Posta and Zucca (2007)). As far
as we know, only a small number of papers are devoted to BRWs where the space X is an
uncountable set. One example of such a process is proposed in Biggins et al. (1991), where
particles are labelled with a reproductive prowess and children who are too weak will not
reproduce; the authors obtain conditions for survival on a family line. Another example of a
model with uncountably many types is Cox and Schinazi (2014), where the type is the fitness
of the individual. We stress here that the BPWS is not a particular case of a BPVE, because
the number of surviving children of a particle depends on its generation and also on its fitness.
In order to obtain conditions for survival of a BPWS, our strategy is to construct a stochastic
coupling between the BPWS and a BPVE in such a way that the survival of the latter implies
the survival of the former.

For the BPVE, we present conditions for survival (Proposition 2.5, Theorem 2.6 and Corol-
lary 2.7) or extinction (Proposition 2.4). These results are related to other results in the lit-
erature: Proposition 2.4 is a consequence of Jagers (1974, Corollary 3) and Theorem 2.6 is
essentially equivalent to the condition in Agresti (1975, Theorem 1). Nevertheless here we
provide different and self-consistent proofs of these facts, which are based on fixed point
techniques. These techniques are a well-established tool for branching processes and BRWs
and are here applied to BPVEs and then to BPWSs. In particular, we exploit the fact that sur-
vival is equivalent to the existence of a nontrivial fixed point of the generating function of the
process (Theorem 4.1). We note that while sufficient conditions for almost sure extinction in-
volve only the sequence of the first moments of the reproduction laws, conditions for survival
cannot rely only on the first moments. We show that given any sequence of first moments
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it is possible to construct a corresponding BPVE which dies out almost surely (see Exam-
ple 2.10). We also provide a surviving BPVE in Example 2.9 where all the first moments are
smaller than 1.

Here is the outline of the paper. In Section 2, we introduce the notions of BPVE, BRW,
BPWS and define survival and extinction. We state the results for BPVEs and provide ex-
amples where the conditions for survival hold (Example 2.8). We also discuss the two afore-
mentioned examples (Examples 2.10 and 2.9), which have a counterintuitive behaviour. Our
main results are in Section 3, which is devoted to BPWSs: Proposition 3.1 and Theorem 3.2.
As a corollary of these results, we provide some explicit examples of surviving BPWSs (Ex-
ample 3.5) and show that on Galton–Watson trees there is a phase transition (from extinction
to survival) where the threshold is the linear growth of the expected number of offspring of
the reproduction laws (Proposition 3.3). In Section 4, the reader can find the proofs of the
statements, along with the results on BRWs which are used to prove our main results.

2 BPVEs, BRWs and BPWSs

2.1 BPVE and BRW

We begin by defining a branching process in varying environment or BPVE. The process starts
with one particle at time 0 (this is the 0th generation). The random number of particles gen-
erated by each particle in the nth generation has generating function �n(z) := ∑+∞

i=0 ρn(i)z
i

and we define a sequence of random variables {Wn}n∈N by P(Wn = i) := ρn(i). Note that
E[Wn] = �′

n(1); we denote by mn this first moment. To avoid trivial situations, we as-
sume henceforth that mn > 0 for all n ∈ N. The random variable Wn represents the “typ-
ical” random number of children of a particle in the nth generation; all the particles be-
have independently. More formally, the BPVE is the stochastic process {Zn}n∈N such that
Zn+1 := ∑Zn

j=1 Wn,j , where Zn is the number of particles in the nth generation, Z0 is the
initial state (Z0 = 1 in our case) and {Wn,j }j≥1,n≥0 is a family of independent variables such
that {Wn,j }j≥1 are identically distributed copies of Wn.

Definition 2.1. The BPVE becomes extinct (almost surely) ifpe := P(
⋃

n≥1{Zn = 0}) = 1;
otherwise, we say that it survives (with positive probability).

If we define H0(z) := z for all z ∈ [0,1] and, recursively, Hn+1 := Hn ◦ �n, it is not
difficult to show that Hn(0) is the probability that the population is extinct at time n; in
particular Hn(0) ↑ pe as n → +∞. The probability of extinction is monotone with respect to
{�n}n∈N, meaning that, if �n ≥ �n (where {�n}n∈N is the sequence of generating functions
related to another BPVE with extinction probability p̄e), then by induction Hn ≥ Hn and thus
pe ≥ p̄e.

In order to avoid trivial situations we require that �n(0) < 1 for all n ∈ N, that is, there is
always a nonzero probability of having at least one child for a particle in any generation. This
implies that there is always a positive probability of finding descendants in the nth generation
for any given n, that is, Hn(0) < 1 for all n ∈ N.

The main idea behind our results is the interpretation of a BPVE as a particular case of
a branching random walk. In a branching process all the particles are indistinguishable. In a
branching random walk, on the other hand, particles live on a spatial structure and are thus
characterized by their position (which can also be interpreted as their type).

A discrete-time BRW on an at most countable set X is a stochastic process {ηn}n∈N, where
ηn(x) represents the number of particles alive at x ∈ X at time n. More formally, consider a
family ν = {νx}x∈X of probability measures on the (countable) measurable space (SX,2SX)
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where SX := {f : X → N : ∑
y∈X f (y) < +∞}. To obtain generation n + 1 from generation

n, we proceed as follows: a particle at site x ∈ X lives one unit of time, then a function
f ∈ SX is chosen at random according to the law νx and the original particle is replaced by
f (y) particles at y, for all y ∈ X; this is done independently for all particles of generation n.
Note that the choice of f simultaneously assigns the total number of children and the location
where they will live.

We consider initial configurations with only one particle placed at a fixed site x: let Pδx be
the law of this process.

Definition 2.2. The BRW survives (globally) starting from x if q̄(x) := 1 −
P

δx (
∑

w∈X ηn(w) > 0,∀n ∈ N) < 1. There is (global) extinction if q̄(x) = 1.

We remark here that a globally surviving BRW can also survive locally, meaning that with
positive probability there will be infinitely many returns to the starting location. Since here we
are just interested in the global survival, we refer the reader to Bertacchi and Zucca (2009a),
Zucca (2011) for details.

Given a BPVE, with its sequence {�n}n∈N of generating functions, we call associated
BRW the process on N where each particle at n ∈ N has a random number of offsprings at
n + 1 according to the distribution ρn. This is a reducible BRW whose generating function
G : [0,1]N → [0,1]N satisfies

G(q|n) := �n

(
q(n + 1)

)
, ∀q ∈ [0,1]N (2.1)

(note that the same identification holds in general for a BRW in varying environment (that
is, time-inhomogeneous BRW) on X and a time-homogeneous BRW on X × N). A BPVE
starting with one particle survives if and only if the associated BRW does (starting with one
particle at 0).

2.2 BPWS and accessibility percolation

Given a BPVE, each individual can be assigned a label; this label can be interpreted as a
position, a type or a fitness. We assume that the label is assigned at birth independently for
each individual, according to a non-atomic measure μ on R (that is, x 
→ μ(−∞, x) is a
continuous map).

By using this label, we define a selection mechanism as follows: all children of a particle
with fitness x ∈ R survive if and only if their fitness belong to the interval [x,+∞). This
is a Bernoulli-type selection, meaning that every child survives (independently) with proba-
bility μ(x,+∞). Hence, elementary computations show that the generating function of the
number of children of a particle with fitness x of generation n, after selection, is Gn,x(z) :=
�n(zμ(x,+∞)+ 1 −μ(x,+∞)). If we call mn the expected number of children, before se-
lection, of a particle in generation n, then G′

n,x(1) = �′
n(1)μ(x,+∞) = mnμ(x,+∞). We

call this process branching Process in varying environment with selection or BPWS.
One graphical way to construct the BPWS is to generate the Galton–Watson tree of the

progeny of the BPVE before selection (starting with one individual represented by the root
of the tree) and to associate independently to every vertex v a random variable Xv ∼ μ. The
BPWS erases all the subtrees branching from a vertex v′ such that Xv′ < Xv , where v is the
parent of v′. There is survival whenever the pruned tree is infinite with positive probability.

Survival of a BPWS is thus equivalent to the presence of accessibility percolation on the
Galton–Watson tree of the associated BPVE. Indeed in the the accessibility percolation model
(introduced in Nowak and Krug (2013)), one considers a graph G = (V,E), and an indepen-
dent identically distributed sequence of continuous random variables {Xv}v∈V . The main
question of interest is the existence of self-avoiding paths of vertices {vi}i∈N, starting from
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the root to the border of the graph (that is, an infinite path when V is infinite), such that
Xvi

≤ Xvi+1 for all i ∈ N. Such a path is called accessibility path and the existence of at least
one of them, with positive probability, is called accessibility percolation. This question has
been addressed mainly on regular trees and hypercubes in Berestycki, Brunet and Shi (2016),
Nowak and Krug (2013), Roberts and Zhao (2013), Schmiegelt and Krug (2014).

In order to study the behaviour of a BPWS, we denote by An the random set of fitness of
the particles of generation n; hence, the size of the population is Nn := #An (# represents the
cardinality of a set) almost surely. From now on, whenever the ancestor has fitness x, we say
that the process starts from x.

Definition 2.3.

1. We define the probability of local extinction in I ⊆ R starting from x by
P(lim infn→+∞{An ∩ I = ∅}|A0 = {x}). We say that there is local extinction when this
probability is equal to 1 and that there is local survival otherwise.

2. We say that there is global survival starting from x if and only if there is local survival in
R starting from x.

Note that there is global survival starting from x if and only if P(An �= ∅,∀n ∈ N|A0 =
{x}) ≡ P(Nn > 0,∀n ∈ N|A0 = {x}) > 0. It is clear from the definition that local survival
implies global survival. We note that the progeny of a particle with fitness x has fitness in
[x,+∞); moreover, if we are interested in local survival, that is, the survival of the progeny
in a fitness interval (a, b), we can disregard (or “kill”) all particles with fitness outside this
interval. Moreover, by using a coupling argument, it is easy to see that the probability of local
extinction is nondecreasing with respect to x ∈R.

Sometimes it is useful to consider the fitness of the least-fit individual which we denote by
ln := minAn (where min(∅) := +∞). By the nature of the selection process and the fact that
μ is non-atomic, {ln}n∈N is a strictly increasing random sequence almost surely. Given any
measurable set I , if μ(I) = 0 there is local extinction in I . In general there is local survival
in I starting from x if and only if P(μ((limn ln,+∞) ∩ co(I)) > 0) > 0 (where co(I ) is the
essential convex hull of I , that is the smallest interval J such that μ(I \ J ) = 0). Indeed no
contribution to co(I ) can come from its right since particles cannot have a smaller fitness than
their parent’s and, by definition of ln, there are no individuals of generation n with fitness in
(−∞, ln). Once there is survival in co(I ) then if is easy to show, by using a Borel-Cantelli
argument, that there is survival in I .

2.3 Preliminary results for BPVEs

We consider a BPVE: although the paper is focused mainly on conditions for survival, nev-
ertheless, there is a simple condition for extinction which involves only the sequence of first
moments {mn}n∈N (see Example 2.9 for an application).

Proposition 2.4. Given a BPVE such that if infn∈N
∏n

i=0 mi = 0, then there is extinction.

The following characterization of surviving BPVEs comes from a result on BRWs (see
Theorem 4.1).

Proposition 2.5. Consider a BPVE and its sequence {�n}n∈N of generating functions. There
is survival for the process if and only if there exists q ∈ [0,1]N, n0 ∈ N such that q(n0) < 1
and �n(q(n + 1)) ≤ q(n) for all n ≥ n0.

Although this proposition is very useful from a theoretical point of view, it is sometimes
difficult to find the sequence q. Thus, it is natural to look for different (sufficient) conditions
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for survival which can be derived from Proposition 2.5. To this aim, we denote by m
(2)
n

the second moment E[W 2
n ] of the reproduction law of the nth generation; henceforth we

suppose that this moment is finite for every sufficiently large n. Note that m
(2)
n = �′′

n(1)+mn.
Theorem 2.6 and Corollary 2.7 provide sufficient conditions for survival (see Example 2.10
for an application). The strategy to prove survival is to show that, to find a good sequence q, it
suffices to control the ratio between the second moment and the product of the first moments
of the reproduction laws.

Theorem 2.6. Consider a BPVE such that m
(2)
n < +∞ for every sufficiently large n. Then,

for every n ∈ N, the following statements are equivalent:

1. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+∞∑
j=n

m
(2)
j − mj

mj

( j∏
i=n

mi

)−1

< +∞,

inf
j∈N

j∏
i=0

mi > 0,

2.

lim
k→+∞

[(
n+k∏
i=n

mi

)−1

+
n+k∑
j=n

m
(2)
j − mj

mj

( j∏
i=n

mi

)−1]
< +∞.

Moreover, if one of these conditions holds for some n then the BPVE survives.

Note that if (1) (resp. (2)) holds for some n = n0 then it holds for every n ≥ n0. The
conditions in Theorem 2.6 are implied by other conditions which are easier to check, as the
following corollary shows.

Corollary 2.7. Consider a BPVE such that m
(2)
n < +∞ for every sufficiently large n. If one

of the following holds:

1.
∑+∞

j=n

m
(2)
j

mj
(
∏j

i=n mi)
−1 < +∞ for some n ∈N;

2. lim supn→+∞
n
√

m
(2)
n /m2

n < lim infn→+∞ n

√∏n−1
i=0 mi ;

3. there exists a function g : N → [1,+∞) such that m
(2)
n /m2

n ≤ g(n) for every sufficiently

large n and such that lim supn→+∞ g(n + 1)/g(n) < lim infn→+∞ n

√∏n−1
i=0 mi ;

4. limn→+∞ mn = +∞ and there exists M,k ≥ 1 such that m
(2)
n /m2

n ≤ kMn for all suffi-
ciently large n ∈ N;

then the BPVE survives.

Theorem 2.6 is essentially contained in Agresti (1975) but here we make use of a dif-
ferent, self-consistent proof. To compare with other results in the literature, we note that
the sufficient condition for a.s. extinction in Broman and Meester (2008, Proposition 1.1) is
a consequence of Proposition 2.4. On the other hand, the sufficient condition for survival
in Broman and Meester (2008, Proposition 1.1) follows from Corollary 2.7(3) by taking
g(n) := supj∈N m

(2)
j / infj∈N m2

j > 0. Another sufficient condition for survival of a BPVE
is given by D’Souza and Biggins (1992, Theorem 1) which, in general, is not comparable
with Theorem 2.6.

In the following example, we consider some relevant reproduction laws which satisfy the
conditions of Theorem 2.6.
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Example 2.8. Consider the following sequences of reproduction laws ρn.

1. Let the law be geometric: ρn(i) = mi
n/(1 + mn)

i+1. The BPVE survives provided∑+∞
n=0(

∏n
j=0 mj)

−1 < +∞. As a partial converse, when
∑+∞

n=0(
∏n

j=0 mj)
−1 = +∞, we

have that it is enough infn∈N
∏n

i=o mi = 0 or infn∈N mn > 0 to get extinction.
2. Let the law be Poisson: ρn ∼ P(mn). If

∑+∞
n=0(

∏n
j=0 mj)

−1 < +∞, then the BPVE sur-

vives; when
∑+∞

n=0(
∏n

j=0 mj)
−1 = +∞, we have that it is enough that infn∈N

∏n
i=o mi = 0

or infn∈N mn > 0 to get extinction.
3. Let the law be binomial: ρn ∼ B(kn, rn). If

∑+∞
n=0(

∏n
j=0 kj rj )

−1 < +∞, then there is
survival. Noting that mn = knrn, the same above conditions for extinction apply.

Note that the geometric law is particularly relevant since it appears as the total number of
children of a particle in a continuous-time branching process with breeding rate mn and
death rate 1. Survival follows from Theorem 2.6, noting that the generating function is
�n(z) := 1/(1 + mn(1 − z)), whence the average number of children is d

dz
�n(z)|z=1 = mn

and m
(2)
n −mn = d2

dz
�n(z)|z=1 = 2m2

n which implies (m
(2)
n −mn)/m2

n = 2 for all n. Extinction
is a consequence of Proposition 2.4 for the first condition, and of Agresti (1975, Theorem 2)
for the second one. The other two cases are analogously obtained.

The following two examples show that a BPVE can survive even if mn < 1 for all n, while
it can die out whatever the sequence {mn}n∈N (even if infn∈N mn > 1 or mn → ∞).

Example 2.9. Let us consider a sequence {an}n∈N such that an ∈ (0,1) for all n. Define Wn

as a Bernoulli variable with parameter 1 − an. Clearly m
(2)
n = mn = 1 − an < 1 for all n: the

corresponding BPVE survives with positive probability if and only if and
∑

n∈N an < +∞.
It is well known that, since an < 1 for all n ∈ N then

∑
n∈N an < +∞ if and only if∏

n∈N(1−an) > 0. If
∑

n∈N an = +∞ then
∏

n∈N mn = ∏
n∈N(1−an) = 0 and the BPVE dies

out according to Proposition 2.4. Survival would follow analogously when
∑

n∈N an < +∞
by applying Theorem 2.6; indeed the sum in the first condition of the theorem is 0 (since
m

(2)
n = mn) and infj

∏j
i=0 mi = ∏

n∈N(1 − an) > 0.

Example 2.10. Consider a nonnegative sequence {mn}n∈N. Define Wn by

P(Wn = i) =
{
mn/kn if i = kn,

1 − mn/kn if i = 0,

where the sequence {kn}n∈N of integers satisfies∑
n∈N

(1 − mn/kn)
∏n−1

i=0 ki = +∞.

Note that mn = E[Wn]. We show recursively that such a sequence {kn}n∈N exists and we
claim that the corresponding BPVE dies out almost surely.

Indeed, consider any sequence {an}n∈N such that an ∈ (0,1) and
∑

n∈N an = +∞ (take
for instance an := ε > 0 for all n). The idea is to find {kn}n∈N in such a way that (1 −
mn/kn)

∏n−1
i=0 ki ≥ an. Fix k0 ∈ N such that 1 − m0/k0 ≥ a0. Suppose we already defined ki

for all i ≤ n − 1; since (1 − mn/x)
∏n−1

i=0 ki → 1 as x → +∞, there exists kn ∈ N such that

(1 − mn/kn)
∏n−1

i=0 ki ≥ an.
Now denote as before by An the event “the BPVE survives up to time n”. Since the

maximum number of individuals alive at time n is
∏n−1

i=0 ki we have P(Ac
n|

⋂n−1
j=1 Aj) ≥
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(1 − mn−1/kn−1)
∏n−2

i=0 ki ≥ an−1 for all n ≥ 1 (where
∏−1

i=0 ki := 1). The result follows this
equivalence:

P

(+∞⋂
i=0

Ai

)
> 0 ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P

(
Ac

i

∣∣∣ i−1⋂
j=0

Aj

)
< 1, ∀i ≥ 0,

+∞∑
i=0

P

(
Ac

i

∣∣∣ i−1⋂
j=0

Aj

)
< +∞,

(2.2)

where P(Ac
0|

⋂−1
j=0 Aj) := P(Ac

0).

For an explicit example, take mn := 2 for all n, k0 > 2 and kn := k2n−1

0 for all n ≥ 1.

Clearly
∏n−1

i=0 ki = k2n−1

0 = kn hence 0 < (1 − mn/kn)
∏n−1

i=0 ki = (1 − 2/kn)
kn → e−2 which

implies minn(1 − mn/kn)
∏n−1

i=0 ki > 0; thus
∑

n∈N(1 − mn/kn)
∏n−1

i=0 ki = +∞.

3 BPWS: Main results

Throughout this section, we consider a BPWS with fitness measure μ; we denote by {mn}n∈N
and {m(2)

n }n∈N the first and second moment of the offspring distribution of the process before
selection. The generating functions before selection are denoted by {�n}n∈N.

In the following proposition, we give a condition for extinction of a BPWS by proving the
absence of an admissible infinite path from the root in the associated accessibility percolation
model on the Galton–Watson tree. This generalizes what was already noted in Coletti, Gava
and Rodriguez (2018).

Proposition 3.1. Given a BPWS, if there exists n0 ≥ 0 such that

lim inf
n→+∞

∏n−1
i=0 mi

(n + n0 + 1)! = 0,

then there is global extinction for every starting fitness x ∈R.

In particular, Proposition 3.1 applies to Galton–Watson trees associated to time-homo-
geneous branching processes (or in any case where {mn}n∈N is a constant sequence or simply
sublinear): on these trees there is no accessibility percolation. The following theorem gives a
sufficient condition for survival of a BPWS (by definition

∏n−1
i=n ci := 1).

Theorem 3.2. Suppose that there exists a sequence {ci}i≥0 of positive real numbers such that∑+∞
i=0 ci/mi < +∞ and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+∞∑
j=n

m
(2)
j − mj

m2
j

(
Cj

j−1∏
i=n

ci

)−1

< +∞,

inf
n∈NCn

n∏
j=0

ci > 0

(3.1)

for some n ∈N and C > 0. Then the BPWS starting with one particle with fitness x̄ such that
μ(x̄,+∞) > 0 survives locally in every I ⊆ [x̄,+∞) such that μ(I) > 0.

As an application of Proposition 3.1 and Theorem 3.2, we have that, on almost every
Galton–Watson tree with the expected number of offspring growing as nα , there is a phase
transition at the critical exponent α = 1. The proof is very easy and we omit it.
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Proposition 3.3. Consider a BPWS such that mn ∼ βnα , β > 0.

1. If α < 1, there is extinction.
2. If α > 1 and equation (3.1) is satisfied, then there is survival.

More generally, (1) if mn/(n + n̄) ≤ 1 for all sufficiently large n (and some n̄ ∈ N) then there
is extinction, (2) if lim infmn/nα > 0 for some α > 1 (and equation (3.1) is satisfied) then
there is survival.

The following corollary, as Corollary 2.7, gives more explicit conditions for survival. We
omit its proof.

Corollary 3.4. Suppose that there exists a sequence {ci}i≥0 of positive real numbers such
that

∑+∞
i=0 ci/mi < +∞ and one of the following conditions holds for some C > 0:

1.
∑+∞

j=n

m
(2)
j

m2
j

(Cj ∏j−1
i=n ci)

−1 < +∞ for some n ∈ N;

2. lim supn→+∞
n
√

m
(2)
n /m2

n < C lim infn→+∞ n

√∏n−1
i=0 ci ;

3. there exists a function g : N → [1,+∞) such that m
(2)
n /m2

n ≤ g(n) for every sufficiently
large n and lim supn→+∞ g(n + 1)/g(n) <

C lim infn→+∞ n

√∏n−1
i=0 ci ;

4. limn→+∞ cn = +∞ and there exists M,k ≥ 1 such that m
(2)
n /m2

n ≤ kMn for all suffi-
ciently large n ∈ N;

then the BPWS starting with one particle with fitness x̄ such that μ(x̄,+∞) > 0 survives
locally in every I ⊆ [x̄,+∞) such that μ(I) > 0.

As in Example 2.8, we are able to show some reproduction laws satisfying the conditions
of Theorem 3.2.

Example 3.5. The following reproduction laws give rise to BPWSs which survive.

1. Geometric laws: ρn ∼ G(1/(1 + mn)) such that
∑+∞

i=0 1/mn < +∞.
2. Poisson laws: ρn ∼ P(mn) where

∑+∞
i=0 1/mi < +∞;

3. Binomial laws: ρn ∼ B(kn, rn) such that
∑+∞

i=0 1/kiri < +∞;

in particular the geometric law corresponds to a continuous-time branching process with
selection.

The role played by the sequence {ci}i≥0 is twofold: on the one hand it allows to treat cases
where

∑+∞
i=0 1/mi = +∞ and, on the other hand, when

∑+∞
i=0 1/mi < +∞ it allows larger

upper bounds for (m
(2)
j − mj)/m

2
j . In the following example, we analyze two explicit cases.

Example 3.6. Let {Wn}n∈N such that

mn :=
{
k + 1 n = 2k,

(n + 1)2 otherwise,

and

cn :=
{

1/(k + 1) n = 2k,

2 otherwise.
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Then
∑

n∈N 1/mn = +∞ while
∑

n∈N cn/mn < +∞. Moreover, if b ∈ (1,2), it is easy to
prove that

∏n
i=0 ci = 2n−�log2(n)�/(�log2(n)� + 1)! ≥ bn eventually as n → +∞; whence, if

lim supn→+∞
n
√

m
(2)
n /m2

n < +∞ then Corollary 2.7(2) applies and there is survival for the
BPWS.

Consider now a process where mn = bn (for some b > 1). If m
(2)
n /m2

n ≤ Kαncn(n−1)/2 for
some K > 0, c ∈ (1, b) and α ≥ 1 then Corollary 3.4(1) applies (with ci := (α + 1)ci , C = 1
and n = 0) and there is survival for the BPWS.

4 Proofs

We begin by considering a fundamental result on BRWs. For a BRW, global survival can be
characterized by using a generating function associated to the process: namely the function
G : [0,1]X → [0,1]X where, for all q ∈ [0,1]X , G(q) ∈ [0,1]X is the following weighted
sum of (finite) products

G(q|x) :=
∫
SX

νx(df )
∏
y∈X

q(y)f (y) = ∑
f ∈SX

νx(f )
∏
y∈X

q(y)f (y),

G(q|x) being the x coordinate of G(q).
Note that [0,1]X is a partially ordered set where q ≥ z if and only if q(x) ≥ z(x) for all

x ∈ X; clearly q > z stands for “q ≥ z and q(x) > z(x) for some x ∈ X”. The function G is
nondecreasing and continuous with respect to the product topology on [0,1]X and the family
{νx}x∈X is uniquely determined by this generating function.

It is easy to show (see for instance Bertacchi and Zucca (2009a, Corollary 2.2) or the proof
of Theorem 4.1) that q̄ is the smallest solution of G(q) ≤ q in [0,1]X , in particular it is the
smallest fixed point of G in [0,1]X , that is G(q̄) = q̄.

Define the first moments mxy := ∑
f ∈SX

f (y)νx(f ); denote by m
(0)
xy := δxy and m

(n+1)
xy :=∑

w∈X m
(n)
xwmwy for all n ∈ N (clearly, by using +∞ · 0 := 0 and +∞ · x := +∞ for all

x > 0, we have m
(n)
xy ∈ [0,+∞] for all n ∈ N, x, y ∈ X). Given v ∈ [0,+∞]X we define

Mv ∈ [0,+∞]X by Mv(x) := ∑
w∈X mxwv(w); clearly Mnv(x) = ∑

w∈X m
(n)
xwv(w). The

following theorem characterizes global survival; it appears, in different flavors, in Zucca
(2011, Theorem 4.1) or Bertacchi and Zucca (2014, Theorem 3.1) and it is based on Bertacchi
and Zucca (2009a, Proposition 2.1). Unlike those results, here we remove the requirement
that

∑
y∈X mxy is uniformly bounded; hence we write the proof which is slightly different

from the ones in the above cited papers. We point out that it is essential to remove the above
uniform bound on

∑
y∈X mxy in order to avoid a similar bound supn∈N mn < +∞ which, ac-

cording to Proposition 3.1, would imply extinction for a BPWS. Henceforth, by 0,1 ∈ [0,1]X
we mean the constant functions 0(x) := 0, 1(x) := 1 for all x ∈ X; note that G(1) = 1.

Theorem 4.1. Consider a BRW and a fixed x ∈ X. The following statements are equivalent:

1. q̄(x) < 1 (i.e. there is global survival starting from x);
2. there exists q ∈ [0,1]X such that q(x) < 1 and G(q) ≤ q (i.e. G(q|y) ≤ q(y), for all

y ∈ X);
3. there exists q ∈ [0,1]X such that q(x) < 1 and G(q) = q (i.e. G(q|y) = q(y), for all

y ∈ X).

If q satisfies either (2) or (3), then q ≥ q̄. Moreover, global survival starting from x implies
that lim infn→+∞

∑
y∈X m

(n)
xy > 0.



Branching processes with selection and accessibility percolation 623

Proof. Consider the sequence {qn}n∈N defined as{
q0 := 0,

qn+1 := G(qn), ∀n ∈ N,

clearly qn(x) is the probability that the process, which starts with one particle at x at time 0,
has no particles at time n. Moreover qn converges pointwise to q̄ (that is, with respect to the
product topology). By the continuity of G we have q̄ = G(q̄).

Now (1) =⇒ (3) =⇒ (2) are trivial. Assume (2); by induction on n we have that qn ≤ q;
indeed 0 ≤ q and, since G is nondecreasing, qn+1 = G(qn) ≤ G(q) ≤ q. By taking the limit
as n → +∞ we have q̄ ≤ q. This implies q̄(x) ≤ q(x) < 1; thus (1) is proven.

We are left to prove that, say, (1) implies lim infn→+∞
∑

y∈X m
(n)
xy > 0. To this aim con-

sider a realization {ηn}n∈N of the BRW and denote by E
x the expectation with respect to P

δx .
If Pδx (S) > 0 where S := {∑y∈X ηn(y) > 0,∀n ∈ N} then, since

∑
y∈X ηn(y) ≥ 1 on S, we

have ∑
y∈X

m(n)
xy = E

x

[∑
y∈X

ηn(y)

]
≥ E

x

[∑
y∈X

ηn(y)|S
]
P

δx (S) ≥ P
δx (S) > 0.

This implies that infn∈N
∑

y∈X m
(n)
xy > 0 which is also equivalent to lim infn→+∞

∑
y∈X m

(n)
xy >

0 (since
∑

y∈X m
(n)
xy = 0 for some n implies the same equality for all subsequent values

of n). �

Applying Theorem 4.1 to the BRW associated to the BPVE we can prove the Proposi-
tions 2.4 and 2.5.

Proof of Proposition 2.4. It can be easily derived from Theorem 4.1. This could also be seen
as a consequence of Jagers (1974, Corollary 3). �

Proof of Proposition 2.5. According to Theorem 4.1 the associated BRW survives globally
if and only if there exists q ∈ [0,1]N such that G(q) ≤ q and q(n) < 1 for some n ∈ N (that
is, q < 1). By equation (2.1) the condition is equivalent to �n(q(n+1)) ≤ q(n) for all n ≥ n0
and q(n0) < 1 for some n0; indeed we can always define q(i) = 1 for all i = 0,1, . . . , n0 − 1
and we have �n(q(n + 1)) ≤ q(n) for all n ∈ N. This implies survival starting from the n0th
generation.

However, since �n(0) < 1 for all n ∈ N, there is a positive probability for the BPVE to
survive up to the n0th generation (for every fixed n0 ∈ N). Thus, there is survival starting
from the 0th generation if and only if there is survival starting from the n0th generation. �

Proof of Theorem 2.6. The idea is to construct a solution q as in Proposition 2.5. To this
aim, we make use of an upper bound due to Agresti (1974): �n(x) ≤ fn(x) for all x ∈ [0,1]
where fn(x) := 1 − bn/(1 − cn) + bnx/(1 − cnx) with bn := m3

n/(m
(2)
n )2 and cn := (m

(2)
n −

mn)/m
(2)
n . In particular, by defining 1/0 := +∞ and 1/ + ∞ := 0, we have

fn(x) = 1 − 1

ξn(1/(1 − x))

for all x ∈ [0,1] where

ξn(s) :=
{
s/mn + (

m(2)
n − mn

)
/m2

n s ∈R,

+∞ s = +∞.
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Define Sn,l := ∑l
j=n

m
(2)
j −mj

mj
(
∏j

i=n mi)
−1 and βn,l := Sn,l + (

∏l
i=n mi)

−1 (for all 0 ≤ n ≤ l).
Note that Sn,l is nondecreasing with respect to l: indeed, Wj is an integer-valued random

variable, whence m
(2)
j ≥ mj . Now we prove that also l 
→ βn,l is nondecreasing. Indeed it

is trivial to show that βn,l+1 − βn,l = (m
(2)
l+1/m2

l+1 − 1)(
∏l

i=n mi)
−1 ≥ 0. Observe that, for

every n ∈ N, infj≥n

∏j
i=n mi > 0 if and only if infj∈N

∏j
i=0 mi > 0; moreover,

∏j
i=0 mi and∏j

i=n mi have the same behaviour as j → +∞.
(1) =⇒ (2). Indeed if Sn,n+k converges as k → +∞ and βn,n+k − Sn,n+k is bounded

from above with respect to k, then βn,n+k is bounded from above with respect to k, thus the
convergence follows from the monotonicity.

(2) =⇒ (1). Clearly Sn,n+k ≤ βn,n+k ; if βn,n+k converges as k → +∞, since Sn,n+k is
non decreasing then it converges, thus βn,n+k − Sn,n+k is bounded from above with respect
to k.

(2) =⇒ survival. Denote limk→+∞ βn,n+k by bn. Now we prove that: (a) q(n) := 1 −
1/bn ∈ [0,1] for all n ∈N, (b) q(n) < 1 for some n and (c) q is a solution of �n(q(n + 1)) ≤
q(n). Thus Proposition 2.5 applies.

Clearly bn ≥ βn,n = 1/mn + (m
(2)
n − mn)/m2

n = m
(2)
n /m2

n ≥ 1, whence q(n) ∈ [0,1] and
(a) is proved. Moreover (2) implies 1 − 1/bn < 1, that is, (b). To prove (c) it suffices to show
that q(n) = fn(q(n + 1)) ≥ �n(q(n + 1)). To this aim we show that ξn(bn+1) = bn. Indeed,
by using the continuity of ξn,

ξn(bn+1) = lim
k→+∞

(
βn+1,n+k+1/mn + (

m(2)
n − mn

)
/m2

n

)
= lim

k→+∞

[(
n+k+1∏

i=n

mi

)−1

+
n+k+1∑
j=n+1

m
(2)
j − mj

mj

( j∏
i=n

mi

)−1

+ m
(2)
n − mn

m2
n

]
= lim

k→+∞βn,n+k+1 = bn.

�

Proof of Corollary 2.7. It is enough to prove that (4) =⇒ (3) =⇒ (2) =⇒ (1) =⇒ survival.

(1) =⇒ survival. Since m
(2)
j /mj ≥ 1 then

∑+∞
j=n

m
(2)
j

mj
(
∏j

i=n mi)
−1 < +∞ implies both

limn→+∞
∏n

i=0 mi = +∞ and
∑+∞

j=n

(m
(2)
j −mj )

mj
(
∏j

i=n mi)
−1 < +∞ whence condition (1) of

Theorem 2.6 holds and the survival follows.
(2) =⇒ (1). It follow easily from Cauchy’s Root Test.
(3) =⇒ (2). We observe that since g : N → [1,+∞) then lim supn→+∞ g(n + 1)/g(n) ≥

1. For every ε > 0 define

Kε := sup
n

(
n−1∏
i=0

g(i + 1)/g(i)

)/(
lim sup
i→+∞

g(i + 1)/g(i) + ε
)n

< +∞;

then

m(2)
n /m2

n ≤ g(n) = g(0)

n−1∏
i=0

g(i + 1)/g(i) ≤ g(0)Kε

(
lim sup
i→+∞

g(i + 1)/g(i) + ε
)n
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which implies lim supn→+∞
n
√

m
(2)
n /m2

n ≤ lim supn→+∞ g(n+1)/g(n)+ε. This can be done
for every ε > 0, hence

lim sup
n→+∞

n
√

m
(2)
n /m2

n ≤ lim sup
n→+∞

g(n + 1)/g(n) < lim inf
n→+∞

n

√√√√n−1∏
i=0

mi.

(4) =⇒ (3). It is enough to choose g(n) := kMn. �

Proof of Proposition 3.1. We start by supposing that the initial fitness x is chosen according
to μ. We use the identification of the BPWS with the associated accessibility percolation
model on its infinite Galton–Watson tree: indeed, if the tree is finite, i.e. there is extinction
before selection, there is extinction also for the BPWS. Suppose that the Galton–Watson tree
τ is infinite; then, almost surely, the number of leaves at distance n from the root, say sn(τ ),
has an asymptotic value sn(τ ) ∼ W

∏n−1
i=0 mi as n → +∞ for a suitable random variable W

(it is enough to use a martingale argument as in Harris (1963, Chapter I, Section 8.1)). Note
that there is a unique path of length n from the root to each leaf. The probability that a fixed
path of length n is admissible is 1/(n + 1)! since there are (n + 1)! possible orderings for the
n+ 1 labels and all orderings have the same probability. Denote by An the event “there exists
an admissible path of length n from the root” and by Pτ the probability conditioned on the
realization τ of the Galton–Watson tree. Thus for every τ , Pτ (An) ≤ sn(τ )/(n + 1)!. On the
other hand, for almost every τ , sn(τ )/(n + 1)! ∼ (W

∏n−1
i=0 mi)/(n + 1)! as n → +∞; thus

lim infn→+∞ sn(τ )/(n + 1)! = 0. Hence,

lim
n→+∞Pτ (An) = lim inf

n→+∞Pτ (An) ≤ lim inf
n→+∞ sn(τ )/(n + 1)! = 0.

This yields the result when n0 = 0.
Suppose n0 > 0 and consider a new BPWS with generating functions {�̂n}n∈N (before

selection) where �̂n(z) := z if n < n0 and �̂n(z) := �n−n0(z) if n ≥ n0 (for all z ∈ [0,1]).
This means that every individual from generation 0 to n0 − 1 has exactly one child. This new
BPWS survives with positive probability if and only if the original one does; indeed, it is
enough to note that there is always a positive probability that the unique path from generation
0 to generation n0 is admissible. The result follows by the first part of the proof by noting
that

∏n+n0−1
i=0 m̂i = ∏n−1

i=0 mi .
This proves that the probability of extinction is 1 for almost every starting fitness x with

respect to μ; since this probability is nondecreasing with respect to the starting fitness x we
have that it is 1, for all x ∈ R. �

Proof of Theorem 3.2. Note that it is enough to prove local survival in [x̄, y) where
μ(x̄, y) > 0. Indeed, if μ([y,+∞) ∩ I ) > 0 then, according to the Borel-Cantelli lemma lo-
cal survival in [x̄, y) implies that an infinite number of particles have fitness in [y,+∞) ∩ I .
Furthermore, C can always be chosen as equal to 1, by using a new sequence c′

i := Cci in-
stead of ci ; thus, we assume, without loss of generality, C = 1. Finally, observe that if the
condition (3.1) holds for some n = n1 then it holds for every n ≥ n1.

Fix δ ∈ (0,μ(x̄,+∞)) and, using the continuity of μ, pick y such that μ(x̄, y) = δ. Let
n0 ∈ N be such that

∑
n≥n0

cn/mn < δ/2; n0 can always be chosen larger than n1. Let pn :=
δ/(2n0) for all n < n0 and pn := cn/mn for all n ≥ n0. We construct recursively a strictly
increasing sequence {xn}n∈N satisfying{

x0 = x̄,

μ(xn, xn+1) = pn.
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Clearly
∑

n≥n0
pn < δ/2 and limn→+∞ xn < y. Indeed

μ
(
x̄, lim

n→+∞xn

)
= ∑

n∈N
μ(xn, xn+1) = ∑

n<n0

pn + ∑
n≥n0

pn < δ = μ(x̄, y).

Thus, if we can prove local survival of the BPWS in [x̄, limn→+∞ xn) we have local survival
in [x̄, y).

We proceed by constructing a BPVE which is stochastically dominated by the BPWS as
follows: at each generation n ≥ 1 we obtain a BPVE by removing all the particles of the
BPWS with fitness outside the interval [xn−1, xn) (along with their progenies). More pre-
cisely the BPVE starts with one particle with fitness x̄ which breeds according to the law
of W0 and kills all the particles with fitness outside the interval [x0, x1); this is equivalent
to removing each child independently with probability 1 − p0. Given the nth generation, we
construct the next one by keeping all children of the particles of the nth generation whose
fitness belongs to the interval [xn, xn+1); again, this is like removing each newborn indepen-
dently with probability 1 − pn. This is a BPVE which is dominated by the original BPWS
since if a particle has fitness x ∈ [xn−1, xn), in the BPWS we keep every child with fitness in
the interval [x,+∞) while in the BPVE we keep only those children whose fitness belongs
to [xn, xn+1) ⊂ [x, y) ⊂ [x,+∞). Hence, the survival of the BPVE implies the local survival
of the BPWS in [x̄, y).

Denote by m̃n and m̃
(2)
n the first and second moments respectively of this BPVE. They are

related to the moments of the original process: m̃n = pnmn and m̃
(2)
n − m̃n = p2

n(m
(2)
n − mn).

Note that m̃n = cn and (m̃
(2)
n − m̃n)/m̃n(

∏n
i=n0

m̃i)
−1 = (m

(2)
n −mn)/m2

n(
∏n−1

i=n0
ci)

−1 for all
n ≥ n0. Theorem 2.6 yields the conclusion. �
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