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Abstract. Given a branching random walk on a set X, we study its extinc-
tion probability vectors q(·,A). Their components are the probability that the
process goes extinct in a fixed A ⊆ X, when starting from a vertex x ∈ X.
The set of extinction probability vectors (obtained letting A vary among all
subsets of X) is a subset of the set of the fixed points of the generating func-
tion of the branching random walk. In particular here we are interested in
the cardinality of the set of extinction probability vectors. We prove results
which allow to understand whether the probability of extinction in a set A is
different from the one of extinction in another set B. In many cases there are
only two possible extinction probability vectors and so far, in more compli-
cated examples, only a finite number of distinct extinction probability vectors
had been explicitly found. Whether a branching random walk could have an
infinite number of distinct extinction probability vectors was not known. We
apply our results to construct examples of branching random walks with un-
countably many distinct extinction probability vectors.

1 Introduction

The branching random walk (or briefly BRW) on an at most countable set X is a process which
describes the evolution of a population breeding and dying on X. When X is a singleton, the
BRW reduces to the branching process (the BRW is also known as multi-type branching
process). In the long run, for any A ⊆ X, a BRW starting with one individual at x ∈ X can go
extinct in A (no individuals alive in A from a certain time on) or survive in A (infinitely many
visits to A). If the probability of extinction in A is equal to 1, we say that there is extinction
in A, otherwise that there is survival in A.

Letting x vary in X, we get an extinction probability vector, and letting also A vary we
have the family of extinction probability vectors. These vectors are of particular interest and
can be seen as fixed points of a suitable generating function associated to the process (see
Section 2).

It is well known that the generating function of the branching process has at most two
fixed points: the extinction probability and 1. When the space X is not a singleton, there are,
in principle, more extinction probabilities (see Section 2), thus more fixed points. It remains
true that the vector 1 is always a fixed point and the global extinction probability vector (that
is, the probability of extinction in the whole space X) is always the minimal fixed point.

In order to construct a BRW with a large number of fixed points, a trivial way is to use
reducible BRWs (see Section 2 for the definition). Roughly speaking, in the reducible case,
X is divided into classes and the progeny of particles living in some classes cannot colonize
other ones, and it is not difficult to have different extinction probability vectors in each class.
The interesting case is when the BRW is irreducible, that is, the progeny of a particle has
always a positive probability of reaching every point of X. Therefore our study addresses the
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question whether an irreducible BRW can have infinitely many distinct extinction probability
vectors.

It turns out that for any irreducible BRW on a finite X the situation is the same as in a
branching process: there are at most two fixed points. In particular, this means that the value
of the probability of extinction in a (nonempty) set A does not depend on A. The interests
on fixed points slowed down when in Spataru (1989) the author claimed that the generating
function of every irreducible BRW on a finite or countable X has at most two fixed points.
In particular, if this were true, in any BRW the probability of extinction in A ⊆ X would be
either 1 or equal to the probability of global extinction (this last case is called strong local
survival at A, see Bertacchi and Zucca (2014), Machado, Menshikov and Popov (2001)).

In Bertacchi and Zucca (2014), the authors found a gap in the proof of Spataru (1989,
Theorem 3) and provided an example of an irreducible BRW with more than two fixed points.
Later on, in Bertacchi and Zucca (2017) the authors provided an example of an irreducible
BRW with an uncountable number of fixed points which are not extinction probabilities.
Since then, some authors have been trying to describe the properties of the space of fixed
points and the subspace of extinction probabilities (see Section 4 for further details on the
state of the art).

The first example of an irreducible BRW with (at least) two nontrivial extinction probabil-
ities is in Bertacchi and Zucca (2014, Example 4.2) while the first example of an irreducible
BRW with (at least) three nontrivial extinction probabilities can be found in Braunsteins and
Hautphenne (2018). Both BRWs are inhomogeneous, that is, the reproduction laws differ
from site to site. It is natural to wonder whether a BRW can have infinitely many extinction
probability vectors and in particular if this is possible without “inhomogeneity”. Perhaps the
strongest “homogeneity” one can think of is transience, that is when one can map every site to
any other site through an automorphism (see Section 2). In this paper, we provide an example
of an irreducible and transient BRW on a regular tree with an uncountable number of distinct
extinction probabilities (see Section 3.1). The key to the proof is finding an uncountable fam-
ily F of unions of subtrees such that the probability that the process starting from the root
goes extinct in A, is different for all A ∈ F . Two members of F have different “size of their
boundaries”, so at first one may think that the probability of extinction, starting from the root,
only depend on this size, but we prove that this is not the case (again see Section 3.1).

In the example in Section 3.1, there is extinction in all finite sets; this is not necessary,
indeed Example 3.4 is an inhomogeneous BRW on the tree with uncountably many extinc-
tion probability vectors and survival with positive probability in each finite set. The tree is a
graph with a particularly “large” boundary, but even this property is not necessary: in Sec-
tion 3.2 we generalize our result to a wider class of BRWs with uncountably many extinction
probabilities, supported on the comb, which is a subset of Z2.

In Section 2, we define the process in discrete-time and in continuous-time, survival and
extinction and then define the generating function of a BRW (Section 2.2), its fixed points
and the extinction probability vectors (Section 2.3). We state and prove two results which
tell when two extinction probabilities are equal or not. In particular, Theorem 2.4 compares
two BRWs whose reproduction laws are the same outside a set A ⊂ X, while Lemma 2.5
deals with the case when the process survives in a set, without ever visiting another set. In
Section 3.1, we prove in detail that on the tree the generating function of a BRW can have
uncountably many extinction probabilities. This is not just a property of the tree; indeed, by
projecting BRWs (see Definition 3.5) we prove in Section 3.2, that the same holds for a larger
class (up to projections) of BRWs. Finally, Section 4 is devoted to a brief description of the
state of the art on extinction probabilities and fixed points and contains some open questions.
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2 Extinction probabilities: Definitions and properties

Given an at most countable set X, a discrete-time BRW is a process {ηn}n∈N, where ηn(x)

is the number of particles alive at x ∈ X at time n. The dynamics is described as follows:
consider the (countable) measurable space (SX,2SX) where SX := {f : X → N : ∑

y f (y) <

∞} and let μ = {μx}x∈X be a family of probability measures on (SX,2SX). A particle of
generation n at site x ∈ X lives one unit of time; after that, a function f ∈ SX is chosen at
random according to the law μx . This function describes the number of children and their
positions, that is, the original particle is replaced by f (y) particles at y, for all y ∈ X. The
choice of f is independent for all breeding particles. The BRW is denoted by (X,μ) and it is
a Markov chain with absorbing state 0, the configuration with no particles at all sites.

The total number of children associated to f is represented by the function H : SX → N
defined by H(f ) := ∑

y∈X f (y); the associated law ρx(·) := μx(H−1(·)) is the law of the
random number of children of a particle living at x. We denote by mxy := ∑

f ∈SX
f (y)μx(f )

the expected number of children that a particle living at x sends to y. It is easy to show that∑
y∈X mxy = ρ̄x where ρ̄x is the expected value of the law ρx .
In particular, if ρx does not depend on x ∈ X, we say that the BRW can be projected on a

branching process (see Bertacchi and Zucca (2012) for details). More generally, some BRWs
can be projected onto BRWs defined on finite sets as explained in Bertacchi and Zucca (2017,
Section 2.3) (see also Definition 3.5 for the case of continuous-time BRWs). In the case of
the projection on a branching process, the finite set is a singleton. Other examples are the
so called quasi-transitive BRWs (see Bertacchi and Zucca (2014, Section 2.4, p. 408) for the
formal definition) where the action of the group of the automorphisms of the BRW (namely,
bijective maps preserving the reproduction laws) has a finite number j of orbits: the finite
set onto which we project has cardinality j . When there is just one orbit, then it is called
transitive (which is thus a particular case of BRW projected on a branching process).

To a generic discrete-time BRW, we associate a graph (X,Eμ) where (x, y) ∈ Eμ if and

only if mxy > 0. We say that there is a path from x to y of length n, and we write x
n→ y,

if it is possible to find a finite sequence {xi}ni=0 (where n ∈ N) such that x0 = x, xn = y and

(xi, xi+1) ∈ Eμ for all i = 0, . . . , n − 1. Clearly x
0→ x for all x ∈ X; if there exists n ∈ N

such that x
n→ y then we write x → y. If the graph (X,Eμ) is connected then we say that the

BRW is irreducible.
We consider initial configurations with only one particle placed at a fixed site x and we

denote by Pδx the law of the corresponding process. We now distinguish between the possible
long-term behaviours of a BRW.

Definition 2.1.

1. The process survives locally in A ⊆ X starting from x ∈ X if

q(x,A) := 1 − Pδx

(
lim sup
n→∞

∑
y∈A

ηn(y) > 0
)

< 1.

2. The process survives globally starting from x if q̄(x) := q(x,X) < 1.

In the rest of the paper, we use the notation q(x, y) instead of q(x, {y}) for all x, y ∈ X.
When there is no survival with positive probability, we say that there is extinction and the
fact that extinction occurs almost surely will be tacitly understood. It is worth noting that,
in the irreducible case, for every A ⊆ X, the inequality q(x,A) < 1 holds for some x ∈ X if
and only if it holds for every x ∈ X. For details and results on survival and extinction, see for
instance, Section 2.3 or Bertacchi and Zucca (2012), Zucca (2011).
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2.1 Continuous-time branching random walks

In continuous time, each particle has an exponentially distributed random lifetime with pa-
rameter 1. The breeding mechanisms can be regulated by putting on each couple (x, y) and
for each particle at x, a clock with Exp(λkxy)-distributed intervals (where λ > 0), each time
the clock rings the particle breeds in y.

If one is only interested in survival and extinction of the process, the continuous-time BRW
has a discrete-time counterpart with the same long-term behavior: here is the construction.
The initial particles represent the generation 0 of the discrete-time BRW; the generation n+1
(for all n ≥ 0) is obtained by considering the children of all the particles of generation n

(along with their positions).
If X has a graph structure and K := (kxy)x,y∈X is the adjacency matrix then we call the

process an edge-breeding BRW; in this case the graph (X,Eμ) associated to the discrete-
time counterpart is the preexisting graph on X. In particular an edge-breeding BRW is quasi-
transitive if and only if the underlying graph is.

Given x ∈ X, two critical parameters are associated to the continuous-time BRW: the
global survival critical parameter λw(x) and the local survival one λs(x). They are defined as

λw(x) := inf
{
λ > 0 : Pδx (∃t : ηt = 0) < 1

}
,

λs(x) := inf
{
λ > 0 : Pδx

(∃t̄ : ηt (x) = 0,∀t ≥ t̄
)
< 1

}
.

(2.1)

In particular when λ < λw(x) (resp. λ > λw(x)) then q̄(x) = 1 (resp. q̄(x) < 1); while if
λ = λw(x) there can be both global extinction and global survival (see, for instance, Bertacchi
and Zucca (2009)). As for the local behavior λ ≤ λs(x) if and only if q(x, x) = 1. If the
process is irreducible, then the critical parameters do not depend on x. See Bertacchi, Coletti
and Zucca (2017), Bertacchi and Zucca (2008, 2009, 2012) for a more detailed discussion on
the values of λw(x) and λs(x), including their characterizations.

2.2 Infinite-dimensional generating function

To the family {μx}x∈X , we associate the following generating function G : [0,1]X → [0,1]X ,

G(z|x) := ∑
f ∈SX

μx(f )
∏
y∈X

z(y)f (y),

where G(z|x) is the x coordinate of G(z). The family {μx}x∈X is uniquely determined by
G. G is continuous with respect to the pointwise convergence topology of [0,1]X and non-
decreasing with respect to the usual partial order of [0,1]X (see Bertacchi and Zucca (2009,
Sections 2 and 3) for further details). Extinction probabilities are fixed points of G and the
smallest fixed point is q̄ (see Section 2.3 for details): more generally, given a solution of
G(z) ≤ z then z ≥ q̄.

Consider now the closed sets FG := {z ∈ [0,1]X : G(z) = z}, UG := {z ∈ [0,1]X : G(z) ≤
z} and LG := {z ∈ [0,1]X : G(z) ≥ z}; clearly FG = UG∩LG. Moreover, by the monotonicity
property, G(UG) ⊆ UG and G(LG) ⊆ LG. The iteration of G produces sequences converging
to fixed points.

Proposition 2.2. Consider a sequence {zn}n∈N in [0,1]X such that zn+1 = G(zn) for all
n ∈ N and suppose that zn → z as n → +∞ for some z ∈ [0,1]X . Then z ∈ FG. Moreover,
fix w ∈ [0,1]X .

1. If w ∈ UG, then w ≥ z0 implies w ≥ z (the converse holds for z0 ∈ LG).
2. If w ∈ LG, then w ≤ z0 implies w ≤ z (the converse holds for z0 ∈ UG).
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The proof is straightforward (see, for instance, Bertacchi and Zucca (2009)). The conver-
gence of the sequence {zn}n∈N defined in the previous proposition holds if z0 ∈ LG (resp.
z0 ∈ UG): in that case zn ↑ z (resp. zn ↓ z) for some z ∈ FG.

The following properties of UG and LG allow to identify potentially new fixed points:
if we have a collection {wi}i∈I where wi ∈ UG (resp. wi ∈ LG) for all i ∈ I and z0(x) :=
infi∈I wi (x) then z0 ∈ UG (resp. if z0(x) := supi∈I wi(x) then z0 ∈ LG); for instance, it is
enough to consider a collection {wi}i∈I of fixed points. In both cases, z = limn→+∞ zn is
well defined; moreover, if z0 < wi (resp. z0 > wi) for all i ∈ I then z is a fixed point different
from wi for any i ∈ I .

2.3 Fixed points and extinction probabilities

Define qn(x,A) as the probability of extinction in A before time n starting with one particle
at x, namely qn(x,A) = Pδx (ηk(y) = 0,∀k ≥ n,∀y ∈ A). The sequence {qn(x,A)}n∈N is
nondecreasing and satisfies⎧⎪⎪⎨

⎪⎪⎩
qn(·,A) = G

(
qn−1(·,A)

)
, ∀n ≥ 1,

q0(x,A) = 0, ∀x ∈ A,

q0(x,A) = G
(
q0(·,A)|x)

, ∀x /∈ A.

(2.2)

Moreover, qn(x,A) converges to q(x,A), which is the probability of local extinction in
A starting with one particle at x (see Definition 2.1); more precisely qn(·,A) ∈ LG for all
n ∈ N. Since G is continuous, by Proposition 2.2 we have that q(·,A) = G(q(·,A)), hence
these extinction probability vectors are fixed points of G. For details on the last equality
in equation (2.2) see Remark 2.3. We denote the set of extinction probability vectors by
EG := {q(·,A) : A ⊆ X} ⊇ {q̄,1}, since q(·,∅) = 1 where 1(x) = 1 for all x ∈ X.

Clearly UG ⊇ FG ⊇ EG and it is well known that q̄ is the smallest element of each one of
these three sets (since q0(·,X) = 0, it is enough to apply Proposition 2.2) and 1 is the largest
one. Hence, q̄ = 1 (global extinction) if and only if at least one of these sets is a singleton,
that is, if and only if they are all singletons.

Note that A ⊆ B ⊆ X implies q(·,A) ≥ q(·,B) ≥ q̄. Since for all finite A ⊆ X we have
q(x,A) ≥ 1 − ∑

y∈A(1 − q(x, y)) then, for any given finite A ⊆ X, q(x,A) = 1 if and only
if q(x, y) = 1 for all y ∈ A. If the BRW is irreducible then, for all A ⊆ X, q(·,A) < 1 if and
only if q(x,A) < 1 for all x ∈ X; moreover for all finite (nonempty) subsets A,B ⊆ X we
have q(·,A) = q(·,B).

Remark 2.3. We observe that if d(x,A) := min{n ∈ N, y ∈ A : x
n→ y} then qn(x,A) =

q0(x,A) for all x such that d(x,A) ≥ n. Hence, q1(x,A) = q0(x,A) for all x /∈ A and ac-
cording to equation (2.2) we have q0(x,A) = G(q0|x) for all x /∈ A.

2.4 Extinction probabilities in different sets

We give here a couple of results which allow, in some cases, to know whether q(x,A) is
different from q(x,B). The first theorem, is a generalization of Bertacchi and Zucca (2014,
Theorem 3.3) and Bertacchi and Zucca (2017, Theorems 4.1 and 4.2). We include the proof
for the sake of completeness. In the case of global survival, it gives equivalent conditions for
strong local survival in terms of extinction probabilities.

Theorem 2.4.

(a) For every subset A ⊆ X and every fixed point z of G, the following assertions are equiv-
alent.
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(1) q(x,A) ≤ z(x), for all x ∈ X;
(2) q0(x,A) ≤ z(x), for all x ∈ X.
In particular if z = q(·,B), where A ⊆ B , then the previous conditions are equivalent to
(3) q(x,A) = q(x,B) for all x ∈ X.

(b) Consider two BRWs (X,μ) and (X, ν). Suppose that A ⊆ X is a nonempty set such that
μx = νx for all x /∈ A. Then qμ

0 (·,A) = qν
0(·,A) Moreover, if A ⊆ B then

qμ(x,A) = qμ(x,B), ∀x ∈ X ⇐⇒ qν(x,A) = qν(x,B), ∀x ∈ X.

Proof. (a) If q0(·,A) ≤ z(·) then, by equation (2.2), qn(·,A) ≤ z(·) for all n ∈ N, whence
q(·,A) = limn→+∞ qn(·,A) ≤ z(·). Conversely, if q(·,A) ≤ z(·) then, by the monotonicity
of {qn(·,A)}n∈N we have q0(·,A) ≤ z(·).

(b) The equality qμ
0 (x,A) = qν

0(x,A) is trivial when x ∈ A and, when x /∈ A, it follows
from the fact that the behavior of the two BRWs is the same until they first hit the set A. From
the previous part of the theorem, by taking z = qμ(·,B) and z = qν(·,B) we have that

qμ(x,A) = qμ(x,B), ∀x ∈ X ⇐⇒ qμ
0 (x,A) ≤ qμ(x,B), ∀x ∈ X;

qν(x,A) = qν(x,B), ∀x ∈ X ⇐⇒ qμ
0 (x,A) ≤ qν(x,B), ∀x ∈ X.

If, for some x ∈ X, qμ(x,A) �= qμ(x,B) then, since A ⊆ B , qμ(x,A) > qμ(x,B); thus,
from the previous part of the theorem, with positive probability (X,μ) survives in B without
ever visiting A (starting from a suitable y ∈ B \ A). Thus, the same holds for (X, ν) (because
their behavior is the same until they first hit A), thus, qν(x,A) > qν(x,B) for some x ∈ X.
By switching, now, the roles of (X,μ) and (X, ν), the equivalence follows. �

From the previous theorem, we have the following dichotomy: for every sets A,B ⊆ X,
either q(·,A) ≤ q(·,B) or there is x ∈ B \ A such that there is a positive probability of local
survival in B starting from x without ever visiting A. In particular q(x,A) > q(x,B) implies
that there is a positive probability of local survival in B and local extinction in A starting
from x (if A ⊆ B then also the converse is true). Note that, q0(x,A) > q(x,B) implies
q(x,A) > q(x,B) but the converse is not true. The second tool that we need is the following
lemma.

Lemma 2.5. Consider a BRW (X,μ) and three subsets A1,A2 ⊆ A ⊆ X such that A1 ∩A2 =
∅. If there exists z ∈ X such that Pz(

∑
x∈A1

ηn(x) > 0 i.o., limn→+∞
∑

x∈A2
ηn(x) = 0) > 0,

then q(z,A2) > q(z,A), whence q(·,A2) > q(·,A).
In particular, if x is such that x → z then q(x,A2) > q(x,A) provided that q̄(y) > 0

whenever x → y (for instance, if μy(0) > 0 for all y).

Proof. From the inclusion Ai ⊆ A we have q(·,Ai) ≥ q(·,A) (for i = 1,2). From the hy-
potheses, we have

Pz

(∑
x∈A

ηi(x) > 0 i.o., lim
i→+∞

∑
x∈A2

ηi(x) = 0
)

≥ Pz

( ∑
x∈A1

ηn(x) > 0 i.o., lim
n→+∞

∑
x∈A2

ηn(x) = 0
)

> 0

whence q(z,A2) > q(z,A) and this implies q(·,A2) > q(·,A).
If x → z, then there is a positive probability p0 that the process can reach z and

that the progenies of all the particles, except at most one at z, die out; in this case
the long term behavior is given by the evolution of the progeny of one particle at
z. Thus Px(

∑
y∈A1

ηi(y) > 0 i.o., limi→+∞
∑

y∈A2
ηi(y) = 0) ≥ p0Pz(

∑
y∈A1

ηn(A1) >

0 i.o., limn→+∞
∑

y∈A2
ηn(y) = 0) > 0. As before, this implies q(x,A2) > q(x,A). �
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3 BRWs with uncountably many extinction probabilities

3.1 A BRW with an uncountable set of extinction probability vectors: The tree

Consider the regular tree Tm (where m ≥ 3) and the discrete-time counterpart of a
continuous-time BRW where K is the adjacency matrix on Tm; for this BRW it is well
known that λw = 1/m < 1/2

√
m − 1 = λs . Denote a vertex by o and call it the root. Given

x �= o we denote by Tx the subtree branching from x, that is, the set of vertices which are
disconnected from o by removing x from Tm; moreover, let To := Tm. Given any automor-
phism � of Tm (that is, a bijective map preserving the edges), one can easily prove that
q(·,A) = q(�(·),�(A)); in particular if �(o) = o and �(x) = y then �(Tx) = �(Ty), thus
q(·, Tx) = q(�(·), Ty).

If λ ≤ λw then there is only one fixed point, namely z = 1; if λ > λs then there are just
two extinction probability vectors, q(·,T3) and 1, indeed in this case q(·,A) = q(·,Tm) for
all A �= ∅ (see Bertacchi and Zucca (2014, Corollary 3.2) and Bertacchi and Zucca (2017,
Example 4.5)). The last case λ ∈ (λw,λs] is the most interesting one: q(·,Tm) < 1 while
q(·,A) = 1 for every finite A ⊂ T3. We prove now that x �→ q(·, Tx) is injective, thus FG is
at least countable.

Henceforth, for simplicity we consider just the case m = 3 although an analogous con-
struction can be done on Tm for all m ≥ 3; indeed, a more general example is sketched in
Section 3.2 (see Theorem 3.6). Let d be the natural distance on the graph T3 and consider a
sequence {yn}n∈Z of distinct vertices such that yn is a neighbor of yn+1 (for all n ∈ Z) and
d(o, yn) = |n| (clearly y0 = o). We denote by xi the third neighbor of yi−1 (outside yi−2 and
yi ). A graphical representation is depicted in Figure 1. We note that d(o, xn) = n for all n ∈N
and Txn ∩ Txm =∅ whenever n �= m.

Lemma 3.1. Let λ ∈ (λw,λs]. For every n ≥ 1 and x ∈ T3.

q(x,T3) = q(x, Ty0) < q(x, Tyn) < q(x, Tyn+1) < 1.

Proof. Denote by A the subtree Tyn , by A2 the subtree Tyn+1 and by A1 the set A \ (A2 ∪
{yn}). Since q(·,T3) < 1 and q(·, {yn}) = 1 then, by Theorem 2.4 (if we take B := {yn} then
(3) fails), there exists w ∈ T3 such that the process starting from w survives with positive
probability without ever visiting yn; by rotational symmetry centered in yn, w can be chosen
in A1. If a process starts in A1 and never visits yn it is then confined to A1 whence, by
Lemma 2.5, q(·, Tyn+1) > q(·, Tyn) and the strict inequality holds for every coordinate. �

Observe that, given x, z ∈ T3 such that z /∈ Tx , then q(z, Tx) depends only on d(z, x).
Indeed, there exists an automorphism � such that �(z) = o and �(x) = yd(z,x). Thus,
�(Tx) = Tyd(z,x)

, hence q(z, Tx) = q(�(z),�(Tx)) = q(o, Tyd(z,x)
). In particular, if x,w ∈ T3

are such that d(o, x) < d(o,w) then q(o, Tx) = q(o, Tyd(o,x)
) < q(o, Tyd(o,w)

) = q(o, Tw) (the
case d(o, x) > d(o,w) is analogous). If d(o, x) = d(o,w) then d(x,w) > 0 and it is easy to
show that q(x, Tx) < q(o, Tyd(x,w)

) = q(x, Tw).

Figure 1 The tree T3.



BRWs with uncountably many extinction vectors 433

Now we prove the local extinction on a bi-infinite line.

Lemma 3.2. Let λ ∈ (λw,λs]. If γ is a bi-infinite line in T3 then q(x, γ ) = 1.

Proof. It is enough to prove that q(x, γ ) = 1 when γ := {yn}n∈N. Since there is a.s. local
extinction then q(·, γ ) ≥ limn→∞ q(·, Tyn). Now, by using a suitable automorphism, then
q(o, Tyn) = q(yn−1, Tx1) for all n > 0. Since q(·, Tx1) �= q(·,X) then a result of Moyal
(see Moyal (1962)) and the transitivity of T3 imply that limn→∞ q(yn−1, Tx1) = 1 whence
q(o, γ ) = 1; the irreducibility yields q(x, γ ) = 1 for all x ∈ T3. �

There are two interesting consequences of the previous lemma.

1. Any surviving population leaves a.s. every bi-infinite line γ .
2. Since q(·, γ ) = 1 then the population visits a.s. a finite number of vertices {yn}n∈N, hence

survival occurs in a finite number of subtrees {Txn}n∈Z (this argument can be repeated
inside each subtree and so on). Thus, for all I ⊆ N \ {0} we have q(·,⋃

i∈I : i≤n Txi
) ↓

q(·,⋃
i∈I Txi

) as n → +∞.

By Lemma 3.1 we have at least a countable collection of distinct extinction probability
vectors. The following theorem proves the existence of an uncountable collection.

Theorem 3.3. Let λ ∈ (λw,λs]. If I1, I2 ⊆ N \ {0} such that
∑

n∈I1
2−i �= ∑

n∈I2
2−i then

q(·,⋃
i∈I1

Txi
) �= q(·,⋃

i∈I2
Txi

).

Proof. We observe that q(o, Txn) = q(o, Tyn) for all n ≥ 1. We start by proving that for all
finite I ⊆ N \ {0}, if i0 := i0(I ) = max I ,

q
(
o,

⋃
i∈I

Txi

)
= q

(
o,

⋃
i∈Ī

Txi

)
, (3.1)

where Ī := {i ∈ I : i < io} ∪ {i > i0}. Indeed, by a simple automorphism argument
(choose an automorphism � such that �(o) = o and �(xi0) = �(yi0)), q(o,

⋃
i∈I Txi

) =
q(o,

⋃
i∈I : i<io

Txi
∪ Tyi0

). Since there is a.s. extinction in every infinite line, then survival in
Tyi0

is equivalent to survival in
⋃

i>i0
Txi

and this yields equation (3.1).
From Lemma 2.5 as in Lemma 3.1, we have that for all I, J ⊆ N \ {0}

I � J =⇒ q
(
o,

⋃
i∈I

Txi

)
> q

(
o,

⋃
i∈J

Txi

)
. (3.2)

Since I1 �= I2 we can define j0 := j0(I1, I2) = min I1�I2; suppose, without loss of gener-
ality, that j0 ∈ I1 \ I2. Define I3 := {i ∈ I1 : i ≤ j0} and I4 := {i ∈ I3 : i < j0}∪ {i > j0}. Note
that by equation (3.1),

q
(
o,

⋃
i∈I3

Txi

)
= q

(
o,

⋃
i∈I4

Txi

)
. (3.3)

Moreover, I3 ⊆ I1 and I2 ⊆ I4. Since
∑

n∈I1
2−i ≥ ∑

n∈I3
2−i = ∑

n∈I4
2−i ≥ ∑

n∈I2
2−i but∑

n∈I1
2−i >

∑
n∈I2

2−i (remember that j0 ∈ I1 \ I2) then we have just two possible cases.

• I2 � I4, I3 ⊆ I1. In this case, by equation (3.2),

q
(
o,

⋃
i∈I1

Txi

)
≤ q

(
o,

⋃
i∈I3

Txi

)
= q

(
o,

⋃
i∈I4

Txi

)
< q

(
o,

⋃
i∈I2

Txi

)
. (3.4)



434 D. Bertacchi and F. Zucca

• I2 = I4, I3 � I1.In this case, again by equation (3.2),

q
(
o,

⋃
i∈I1

Txi

)
< q

(
o,

⋃
i∈I3

Txi

)
= q

(
o,

⋃
i∈I4

Txi

)
= q

(
o,

⋃
i∈I2

Txi

)
. (3.5)

�

Note that the previous theorem contradicts what had been written in Bertacchi and Zucca
(2017, p. 244), namely it is not true that on quasi-transitive irreducible BRWs {q̄,1} = EG

(unless q(x, x) = q̄(x) for some x ∈ X). Indeed, Bertacchi and Zucca (2014, Corollary 3.2)
implies that either q(·,A) = 1 for all finite A or q(·,A) = q̄(·) for all nonempty subsets A (in
particular if there is local survival at x, then there is strong local survival at each y ∈ X). This
implies that when q̄ < 1 = q(·,A) for all finite subsets A then in general nothing can be said
about q(·,A) when A is infinite: in Bertacchi and Zucca (2017, Example 3.6) q(·,A) = q̄(·)
for every infinite A, in Braunsteins and Hautphenne (2018, Examples 1 and 2) there are BRWs
with a finite number of extinction probability vectors corresponding to different choices of
the infinite set A, while in the above BRW on the tree there are uncountably many different
extinction probability vectors.

An uncountable set of of extinction probability vectors can also be found in BRWs where
there is local survival as the following example shows.

Example 3.4. Consider the BRW on the tree obtained by adding a loop at o. If the loop
has a sufficiently large reproduction rate, the BRW has local survival at every vertex (see
Bertacchi and Zucca (2017, Example 4.5)). It also has an uncountable number of extinction
probability vectors. Indeed, in order to apply Lemma 2.5 to obtain Lemma 3.1, we just need to
prove that there is a positive probability of surviving in Tyn+1 without ever visiting yn: this is
equivalent to surviving in B := Tyn+1 ∪{o} without ever visiting A := {yn, o} and this follows
from Theorem 2.4. Moreover, in case Lemma 3.2 does not hold, the equality in equation (3.1)
becomes an inequality which implies q(o,

⋃
i∈I3

Txi
) ≤ q(o,

⋃
i∈I4

Txi
) instead of the equality

in equation (3.3), but this does not change the conclusions in equations (3.4) and (3.5).

Theorem 3.3 implies that the relation {(∑i∈I 2−i ,q(o,
⋃

i∈I Txi
))}I⊆N\{0} is a well-

defined, strictly decreasing map. One may conjecture that q(x,A) only depends on “how
large A is at infinity”. To be more precise, consider the simple random walk and the branch-
ing random walk (with rates 1 on each edge) on the regular tree Tm. Denote by (M, νx) the
measure space where M is the Martin boundary and νx is the harmonic measure related to the
random walk starting from x ∈ Tm. For any A ⊆ Tm there is a well-defined (possibly empty)
boundary ∂A ∈ M (see Woess (2000) for details on the Martin boundary of a random walk
and the associated measure). Is the relation {(νx(∂A),q(x,A))}A⊆Tm

a well-defined map?
The answer is no, by the following argument. It is enough to prove that q(o,A) �= q(o,B)

for A and B such that νo(∂A) = νo(∂B). Let A = Tx1 and let s and v be the two neighbors
of x1 which are in A. Since there is local extinction, q(o,A) = q(o,A1 ∪ A2) where A1 = Ts

and A2 = Tv . Let B = A2 ∪ Tx2 . We focus on survival in A and in B: it suffices to prove
that the probability of survival in A is different from the probability of survival in B . If the
process survives in A2 then there is survival both in A and in B . We prove that the probability
of the event A∗ = surviving in A1 but not in A2 is different from the probability of the event
B∗ = surviving in Tx2 and not in A2. Let Cz

n be the event that the original particle at o

has exactly n descendants at z, whose reproduction trail hits z for the first time (roughly
speaking, the reproduction trail is the path which traces the lineage, see Pemantle and Stacey
(2001) for a formal definition). By symmetry, P(C

x1
n ) = P(C

y1
n ), moreover A∗ ⊆ ⋃

n≥1 C
x1
n

and B∗ ⊆ ⋃
n≥1 C

y1
n . Again by symmetry, A∗ ∩ C

x1
n is the event where none of the n children

has an infinite progenies in A2, while at least one of them has an infinite progenies in A1 and
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its probability is equal to the probability that, starting with n particles at o, there is extinction
in Ty1 and survival in A. Similarly, B∗ ∩ C

y1
n is the event where none of the n children has

an infinite progenies in A2, while at least one of them has an infinite progenies in Tx2 and its
probability is equal to the probability that, starting with n particles at o, there is extinction
in Ty3 and survival in A. By Lemma 3.1, q(o,Ty1) < q(o,Ty3) and the same inequality holds
for the process starting with n particles. Since the event “extinction in Ty1” is a subset of
“extinction in Ty3 ”, it is enough to note that the event “extinction in Ty3 with survival both in
A and in Ty1 ” has a positive probability.

3.2 A BRW with an uncountable set of extinction probability vectors: The comb

In this section, we sketch the proof of a generalization of Theorem 3.3. To this aim, consider
the BRW in Figure 2 on the 2-dimensional comb C2, that is, the graph on {(x, y) ∈ Z2 : y ≥ 0}
where (x, y) and (x1, y1) are neighbors if and only if either “x = x1 and |y − y1| = 1” or
“y = y1 = 0 and |x − x1| = 1”. Let α ≥ 1 and consider the rates kxy as in Figure 2, that
is 1 on the horizontal neighbors, 1 downward and α + 1 upward except when leaving the
horizontal axis where the rate is α. We denote by Vi the vertical line from yi : when i ≥ 1 this
is Tyi

\ Tyi+1 .
The following definition of projection of a BRW first appeared in Bertacchi and Zucca

(2008) for multigraphs, in Bertacchi and Zucca (2009) for continuous-time BRWs and Zucca
(2011) for generic discrete-time BRWs (in these papers it was called local isomorphism). We
just need it in the case of a continuous-time process.

Definition 3.5. A projection of a BRW (X,K) onto (Y, K̃) is a surjective map g : X → Y ,
such that

∑
z∈g−1(y) kxz = k̃g(x)y for all x ∈ X and y ∈ Y .

If {ηt }t≥0 is a realization of the BRW (X,K), then {∑z∈g−1(·) ηt (z)}t≥0 is a realization
of the BRW (Y, K̃). In particular, it is easy to prove that q(x, g−1(A)) = q̃(g(x),A) for all
x ∈ X and A ⊆ Y .

To give an explicit example, consider the BRW on the comb: this can be projected on
a continuous-time branching process, that is a BRW on a singleton with rate α + 2. This
implies that λw = 1/(α+2) while, by applying Bertacchi and Zucca (2012, Proposition 4.33),
λs = 1/(s

√
α + 1). We note that the edge-breeding BRW on Tm can be projected on the BRW

on the comb with α = m − 2 (one can easily understand it by comparing Figures 1 and 2).
One last example, which will be useful in the main result of the section is the BRW on the
set B in Figure 3: this BRW can be projected on the BRW on Vi by a map g : B → Vi where
d(yi, g(x)) = d(y′

i , x).
The following theorem can be considered a generalization of Theorem 3.3 in the sense

that every BRW which can be projected on the comb, including the BRW on Tm, satisfies the
same property below (by using g−1(Vi) instead of Vi , where g is the projection).

Figure 2 The BRW on the comb.
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Figure 3 The BRW on B .

Theorem 3.6. Let λ ∈ (λw,λs]. If I1, I2 ⊆ N \ {0} such that
∑

n∈I1
2−i �= ∑

n∈I2
2−i then

q(·,⋃
i∈I1

Vi) �= q(·,⋃
i∈I2

Vi).

Proof. We quickly sketch the main steps of the proof. We start by proving the analogous of
Lemma 3.1 with Vi instead of Tyi

. To this aim consider the BRW obtained from the BRW on
C2 by replacing Vi with B (we identify yi with y′

i): we call this BRW C′
2. Clearly the BRW on

C′
2 can be projected on the BRW on C2 by simply extending the function g (defined above on

B) with the identity map on C′
2 \ B ≡ C2 \ Vi . Clearly q′(o,B) = q′(o, g−1(Vi)) = q(o,Vi).

But in C′
2 there are both Vi+1 and a copy V ′

i+1 = Ty′
i+2

\ Ty′
i+1

⊆ B (the vertical line from

y′
i+1). By using Lemma 2.5, we have

q(o,Vi+1) = q̃(o,Vi+1) = q̃
(
o,V ′

i+1
)
> q′(o,B) = q(o,Vi)

and from this q(x,Vi+1) > q(x,Vi) for all x ∈ C2.
The last step, as in Example 3.4, is to prove

q
(
o,

⋃
j∈I

Vj

)
≤ q

(
o,

⋃
j∈Ī

Vj

)
,

where I ⊆ N \ {0} is finite and Ī := {j ∈ I : < i} ∪ {j > i} (i = max I ). By using the projec-
tion on the BRW on C ′

2 we have that

q
(
o,

⋃
j∈Ī

Vj

)
= q̃

(
o,

⋃
j∈I : j<i

Vj ∪ ⋃
j>i

V ′
j

)

≥ q̃
(
o,

⋃
j∈I : j<i

Vj ∪ B

)
= q

(
o,

⋃
j∈I

Vi

)
.

Now we can use it, as in Example 3.4, instead of equation (3.1) to prove an analogous in-
equality instead of the equality (3.3). The claim then follows easily. �

4 State of the art and open questions

Let us summarize the (main) known relations between {q̄,1}, EG and FG in the irreducible
case. In between, we list some interesting questions that, up to our knowledge, are still open.
Henceforth, we denote the cardinality of a set by | · |.
• As we already noted, FG ⊇ EG ⊇ {q̄,1}; moreover q̄ = 1 ⇐⇒ |FG| = 1 ⇐⇒ |EG| = 1.

This is equivalent to global extinction.
• X finite =⇒ FG = EG = {q̄,1} (see, for instance, Spataru (1989) or Bertacchi and Zucca

(2014, Corollary 3.1)).
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• X infinite, (X,μ) quasi-transitive and q(·, x) < 1 for some x ∈ X =⇒ EG = {q̄,1} (here
local survival implies strong local survival). Indeed, in this case, q(·,A) = q̄ for all A �= ∅.
Whether the cardinality |FG \ EG| can be positive (finite, countable or uncountable) is an
open question.

• X infinite, (X,μ) quasi-transitive and q(·, x) = 1 for all x ∈ X: our example in Section 3.1
shows that EG can be uncountable. The cardinality |FG \ EG| is unknown. We conjecture
that it can be uncountable, at least when EG is finite; indeed, we believe that Bertacchi and
Zucca (2017, Example 3.6) can be extended as explained in Bertacchi and Zucca (2017,
Remark 3.7).

• X infinite and q(·, x) < 1: Example 3.4 shows that EG can be uncountable. The cardinality
|FG \ EG| is unknown.

• X infinite, projected on a branching process: Bertacchi and Zucca (2017, Example 3.6)
shows that FG \ EG can be uncountable (EG = {q̄,1} in this case).

• In Braunsteins and Hautphenne (2017, 2018), there are examples of BRWs where either
|EG| = |FG| = 2 or EG is finite (larger than 2) and FG is uncountable.

Other interesting open questions on |EG| and FG are the following.

• Is it possible that |EG| < |FG| < +∞?
• Is it possible that EG and FG \ EG are both infinite?

In particular we conjecture that EG (resp. FG) is either finite or uncountable.
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