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Abstract. In this paper we propose a new, simple and explicit mechanism
allowing to derive Stein operators for random variables whose characteris-
tic function satisfies a simple ODE. We apply this to study random variables
which can be represented as linear combinations of (not necessarily indepen-
dent) gamma distributed random variables. The connection with Malliavin
calculus for random variables in the second Wiener chaos is detailed. An ap-
plication to McKay Type I random variables is also outlined.

1 Introduction and overview

1.1 On Stein’s method

Stein’s method is a popular and versatile probabilistic toolkit for stochastic approximation.
Presented originally in the context of Gaussian CLTs with dependent summands (see Stein
(1972)) it has now been extended to cater for a wide variety of quantitative asymptotic results,
see Chen, Goldstein and Shao (2010) for a thorough overview in the context of Gaussian ap-
proximation or https://sites.google.com/site/steinsmethod for an up-to-date list of references
on non-Gaussian and non-Poisson Stein-type results.

Given two random objects F , F∞, Stein’s method allows to compute fine bounds on quan-
tities of the form

sup
h∈H
∣∣E[h(F )

]−E
[
h(F∞)

]∣∣
with H some meaningful class of functions with respect to which both F and F∞ are inte-
grable (Zolotarev’s integral probability metrics Zolotarev (1983), which include for example,
the total variation distance and the Kolmogorov distance, are of the above form). The method
rests on three pins:

A. a “Stein pair”, that is, a linear operator and a class of functions (A∞,F(A∞)) such that
E[A∞(f (F∞))] = 0 for all test functions f ∈ F(A∞);

B. a “Stein equation and its magic factors”, that is, a contractive inverse operator A−1∞ acting
on the centered functions h̄ = h − Eh(F∞) in H and tight bounds on A−1∞ (h̄) and its
derivatives;

C. handles on the structure of F (such as F = Fn = T (X1, . . . ,Xn) a U -statistic, F = F(X)

a functional of an isonormal Gaussian process, F a statistic on a random graph, etc.).

Given the conjunction of these three elements one can then apply some form of transfer
principle:

sup
h∈H
∣∣E[h(F )

]−E
[
h(F∞)

]∣∣= sup
h∈H
∣∣E[A∞

(
A−1∞

(
h̄(F )

))]∣∣; (1.1)
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remarkably the right-hand side of the above is often much more amenable to computations
than the left-hand side, even in particularly unfavourable circumstances. This has resulted in
Stein’s method delivering several striking successes (see Barbour, Holst and Janson (1992),
Chen, Goldstein and Shao (2010), Nourdin and Peccati (2012)) which have led the method
to becoming the recognised and acclaimed tool it is today.

Given a target F∞, the identification of an appropriate Stein operator A∞ is the corner-
stone of Stein’s method. While historically most practical implementations relied on adhoc
arguments, several general tools exist, including Stein’s density approach (Stein (1986)) and
Barbour’s generator approach (Barbour (1990)). A general theory for Stein operators is avail-
able in Ley, Reinert and Swan (2017). It is easy to see that, given any sufficiently regular tar-
get F∞, there are infinitely many admissible choices of operator A∞ and the difficulty is to
identify those that shall lead to quantities useful for tackling (1.1). In many important cases,
particularly Pearson or Ord random variables, these “useful” operators are first order differen-
tial operators (see Döbler (2015)) or difference operators (see Ley and Swan (2013)). Higher
order differential operators are sometimes necessary to characterize more complex distribu-
tions, see Gaunt (2014), Peköz, Röllin and Ross (2013) for random variables with densities
satisfying second order differential equations and Gaunt (2017, 2018), Gaunt, Mijoule and
Swan (2019) for random variables which can be written as the product of independent Pear-
son variables satisfying certain conditions.

The purpose of this paper is to add to the literature on Stein’s method by proposing a new,
simple and explicit mechanism allowing to derive Stein operators for random variables whose
characteristic function satisfies a simple ODE. We apply this to study random variables which
can be represented as linear combinations of (not necessarily independent) gamma distributed
random variables. The connection with Malliavin calculus for random variables in the second
Wiener chaos is detailed. An application to the study of McKay Type I random variables is
also outlined.

1.2 The Malliavin–Stein method and its extensions

If F∞ is standard Gaussian random variable, then the Stein operator is A∞f (x) = f ′(x) −
xf (x) with F(A∞) the class of all differentiable functions such that E|f ′(F∞)| < ∞. The
simple structure of both the operator and the class, as well as the wide variety of possible
choices for F , entail that all stars align beautifully well for a Gaussian target and that many
paths are open for exploration. A particularly fruitful path was opened by Ivan Nourdin and
Giovanni Peccati who, in Nourdin and Peccati (2009b), identified the possibility of inter-
twining Stein’s method with Malliavin calculus. Given a sufficiently regular centered random
variable F with finite variance and smooth density, the first step in this direction is to define
its Stein kernel τF (F ) through the integration by parts formula

E
[
τF (F )f ′(F )

]= E
[
Ff (F )

]
for all absolutely continuous f, (1.2)

(see Stein’s monograph Stein (1986) for the origins of this concept and for a detailed study
when F is Pearson distributed). Then, for fh a solution to f ′

h(x)−xfh(x) = h(x)−E[h(F∞)]
(i.e. fh = A−1∞ (h̄)), we can write

E
[
h(F )

]−E
[
h(F∞)

]= E
[
f ′

h(F ) − Ffh(F )
]= E

[(
1 − τF (F )

)
f ′

h(F )
]
.

By the Cauchy–Schwarz inequality, we have

∣∣E[h(F )
]−E

[
h(F∞)

]∣∣≤ ∥∥f ′
h

∥∥√E[(1 − τF (F )
)2]
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and at this stage two good things happen: (i) the constant suph∈H ‖f ′
h‖ (which is intrinsically

Gaussian and does not depend on the law of F ) is bounded for wide and relevant classes H;
(ii) the quantity

S(F ‖ F∞) = E
[(

1 − τF (F )
)2] (1.3)

(called the Stein discrepancy) is tractable, via Malliavin calculus, as soon as F is a suf-
ficiently regular functional of a Gaussian process because, in this case, the Stein ker-
nel is τF (F ) = 〈DF,−DL−1F 〉H, where D and L−1 stand for Malliavin derivative and
pseudo-inverse Ornstein–Uhlenbeck operators. These two realizations spawned an entire
new field of research known as “Malliavin–Stein method” or as “Nourdin–Peccati” method,
see Nourdin and Peccati (2009b), Nourdin and Peccati (2012) or the dedicated webpage
https://sites.google.com/site/malliavinstein.

Extensions of the Malliavin–Stein method outside of the Gaussian framework have been
studied as well. The first natural target to tackle is F∞ = 2G − d , d > 0 where G has gamma
law with parameter d/2 (i.e., F∞ is centered gamma) with operator

A∞f (x) = 2(x + d)f ′(x) − xf (x), (1.4)

see Luk (1994), Pickett (2004), Döbler and Peccati (2018) as well as Nourdin and Peccati
(2009a), Azmoodeh, Campese and Poly (2014), Azmoodeh et al. (2016) for applications of
the Malliavin–Stein method. Mimicking the Gaussian approach outlined above, one captures
the difference in law between F∞ and some arbitrary F by considering solutions to the ODE
2(x + d)f ′

h(x) − xfh(x) = h(x) −E[h(F∞)] and∣∣E[h(F )
]−E

[
h(F∞)

]∣∣= E
[
2(F + d)f ′

h(F ) − Ffh(F )
]

≤ ∥∥f ′
h

∥∥E∣∣2(F + d) − τF (F )
∣∣.

Again it is necessary, for the last bound to be of interest, that f ′
h be uniformly bounded in

h (see, for example, Luk (1994), Pickett (2004), Döbler and Peccati (2018)) and that τF (F )

have good properties; see Döbler and Peccati (2018) and Nourdin and Peccati (2009b), Sec-
tion 3.3, for an illustration as well as Kusuoka and Tudor (2012), Eden and Viquez (2015) for
further explorations for targets F∞ belonging to the Pearson family.

Important progress in this direction is due to Gaunt (2014, 2017). In Gaunt (2017), he
shows that if F∞=N1 ×N2 where N1 and N2 are two independent N (0,1) random variables
then its law is characterized by a second order Stein equation

xf ′′(x) + f ′(x) − xf (x) = h(x) −E
[
h(F∞)

]
(1.5)

and in Gaunt (2013, 2014) he studies the entire family of Variance-Gamma distributions (see
Example 2.3 below), obtains Stein operators A∞ and also bounds on the solutions on the re-
sulting Stein equations A∞f = h under smoothness assumptions on h. These results are used
in Eichelsbacher and Thäle (2014), where Gaunt’s estimates are combined with higher order
Stein kernels firstly introduced in Nourdin and Peccati (2010) (see below, Definition 1.1) in
order to extend the scope of the Nourdin–Peccati approach to targets of the form

F∞ =
d∑

i=1

α∞,i

(
N2

i − 1
)

(1.6)

where the coefficients {α∞,i : i = 1, . . . , d} are non-zero and distinct and the Ni are i.i.d.
standard Gaussian (actually d = 2 in Eichelsbacher and Thäle (2014), but we shall consider
the general case from here onwards).

As we shall see (e.g., in (2.3)), random variables of the form (1.6) are characterized by
Stein operators A∞ which are differential operators of order d . In order for Nourdin and

https://sites.google.com/site/malliavinstein
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Peccati’s approach to function for such operators one needs to introduce higher order versions
of the Stein kernel (1.2), one for each degree of the operator. This is exactly the purpose of
Section 2.1.

Definition 1.1 (see Nourdin and Peccati (2012)). Let F ∈ D
∞ the class of infinitely many

times Malliavin differentiable random variables (see Nourdin and Peccati (2012), Chapter 2,
for a detailed discussion). The sequence of random variables {�i(F )}i≥0 ⊂ D

∞ is recursively
defined as follows. Set �0(F ) = F and, for every i ≥ 1,

�i(F ) = 〈DF,−DL−1�i−1(F )
〉
H.

Iterated gammas from Definition 1.1 are higher order versions of the Stein kernel (1.2);
by definition we have �1(F ) = τF (F ). Also note how E[τF (F )] = Var(F ) and (see again
Nourdin and Peccati (2012)) the cumulants of the random element F and the iterated Malli-
avin �-operators are linked by the relation κr+1(F ) = r!E[�r(F )] for r = 0,1, . . . .

Targets F∞ of the form (1.6) admit operators A∞f =∑d
j=0 ajf

(j) with aj polynomials
and d ≥ 1. Mimicking the Gaussian and gamma cases, a direct extension of the Nourdin–
Peccati approach then consists, in principle, in writing out

E
[
h(F )

]−E
[
h(F∞)

]= E

[
d∑

j=0

aj (F )f
(j)
h (F )

]

= E

[
d∑

j=0

(
ãj (F ) − �j(F )

)
f

(j)
h (F )

]
.

for fh a solution to the ODE A∞f (x) = h(x) − E[h(F∞)]. In order for this approach to be

useful it is necessary that both �j(F ) and f
(j)
h be tractable. So far the question of finding

tight bounds on solutions to such higher order Stein equations is open; this seems to be a
difficult problem to tackle in all generality.

Estimates on the derivatives of solutions to Stein equation are, however, not crucial for
a version of Stein’s method to apply to variables of the form (1.6), see the paragraph after
Proposition 2.1, and Arras et al. (2019) for more details.

2 Stein-type characterization and main results

2.1 Stein operators for the second Wiener chaos

The aim of this section is to use the recent findings in Azmoodeh, Peccati and Poly (2014) to
derive “appropriate” Stein equations, i.e. differential operators of finite order with polynomial
coefficients, for random elements in the second Wiener chaos. Following Nourdin and Poly
(2012), Azmoodeh, Peccati and Poly (2014), first we define two crucial polynomials P and
Q as follows:

Q(x) = (P(x)
)2 =

(
x

d∏
i=1

(x − α∞,i )

)2

. (2.1)

Next, for some random element F living in a finite sum of Wiener chaoses, we consider the
following quantity (whose first occurrence is in Azmoodeh, Peccati and Poly (2014))

�(F,F∞) :=
deg(Q)∑
r=2

Q(r)(0)

r!
κr(F )

2r−1(r − 1)! . (2.2)

Then the following result holds.
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Proposition 2.1 (Azmoodeh, Peccati and Poly (2014), Proposition 3.2). Let F be a cen-
tered random variable living in a finite sum of Wiener chaoses. Moreover, assume that

(i) κr(F ) = κr(F∞), for all 2 ≤ r ≤ d + 1 = deg(P ), and
(ii)

E

[
d+1∑
r=1

P (r)(0)

r!2r−1

(
�r−1(F ) −E

[
�r−1(F )

])]2

= 0.

Then, F
law= F∞, and F belongs to the second Wiener chaos.

As we shall see in Section 2.1, Proposition 2.1 leads to Stein operators for random variables
belonging to the second Wiener chaos. By analogy with the case of a Gaussian target, it
appears that the quantity �(F,F∞) is the second-chaos equivalent of the (first-Wiener chaos)
Stein discrepancy S(F ‖ F∞) (1.3). Moreover we have shown, in a separate publication Arras
et al. (2019), that estimating this quantity directly (without requiring any bounds on solutions
to Stein equations) leads to bounds on the Wasserstein-2 distance between the law of F and
the law of F∞.

We now show how item (ii) of Proposition 2.1 can be used to derive a Stein operator for
F∞. To this end, set

al = P (l)(0)

l!2l−1 , 1 ≤ l ≤ d + 1,

bl =
d+1∑
r=l

arE
[
�r−l+1(F∞)

]= d+1∑
r=l

ar

(r − l + 1)!κr−l+2(F∞), 2 ≤ l ≤ d + 1.

Now, we introduce the following differential operator of order d (acting on functions f ∈
Cd(R)):

A∞f (x) :=
d+1∑
l=2

(bl − al−1x)f (d+2−l)(x) − ad+1xf (x). (2.3)

Then, we have the following result (see Section 3 for a proof).

Theorem 2.1 (Stein characterization). Assume that F is a general centered random vari-
able living in a finite sum of Wiener chaoses (and hence smooth in the sense of Malliavin
calculus) and let A∞ be as in (2.3). Then F=F∞ (equality in distribution) if and only if
E[A∞f (F )] = 0 for all polynomials f :R →R.

Example 2.1. Consider the special case of only two non-zero distinct eigenvalues λ1 and λ2,
that is,

F∞ = λ1
(
N2

1 − 1
)+ λ2

(
N2

2 − 1
)
, (2.4)

where N1,N2 ∼ N (0,1) are independent. In this case, the polynomial P takes the
form P(x) = x(x − λ1)(x − λ2). Simple calculations reveal that P ′(0) = λ1λ2, P ′′(0) =
−2(λ1 + λ2), and P (3)(0) = 3!. Also, κ2(F∞) = E[γ1(F∞)] = 2(λ2

1 + λ2
2), and κ3(F∞) =

2E[γ2(F∞)] = 4(λ3
1 + λ3

2). Then, the Stein equation (2.3) reduces to

A∞f (x) = −4
(
λ1λ2x + (λ1 + λ2)λ1λ2

)
f ′′(x)

+ 2
(
λ2

1 + λ2
2 + (λ1 + λ2)x

)
f ′(x) − xf (x). (2.5)
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We also remark that when λ1 = −λ2 = 1
2 , and hence F∞ law= N1 ×N2, the Stein equation (2.5)

coincides with that in Gaunt (2017), equation (1.9). One has to note that for general λ1 and
λ2, the random variables of the form (2.4) lie outside the Variance-Gamma class, see also
Example 2.3.

2.2 A Fourier approach to Stein characterizations

The characteristic functions φF (ξ) = E[eiξF ] (we drop the indexation in ∞ and write F

instead of F∞, αi instead of α∞,i etc. from now on) of random variables of the form (1.6)
satisfy a simple ODE with polynomial coefficients, namely

d∏
j=1

(1 − 2iξαj )φ
′
F (ξ) = −2ξ

d∑
j=1

α2
j

∏
k =j

(1 − 2iξαk)φF (ξ). (2.6)

Such are but particular cases of a wide family of variables to which the following simple
lemma applies (see Section 3 for a proof).

Lemma 2.1. Let (ak)0≤k≤d and (bk)0≤k≤d ′ be real numbers and consider the polynomials
Ad(ξ) =∑d

k=0 akξ
k and Bd ′(ξ) =∑d ′

k=0 bkξ
k with d, d ′ ∈ N. Assume that the random vari-

able F has a continuously differentiable characteristic function φF on R such that

Ad(iξ)φ′
F (ξ) = iBd ′(iξ)φF (ξ), ξ ∈ R. (2.7)

Let Y be a real valued random variable such that E[|Y |] < +∞. Then Y
law= F if and only if

E
[
YAd(f )(Y ) −Bd ′(f )(Y )

]= 0 (2.8)

for all test functions f ∈ S(R) := {f ∈ C∞(R) | supx∈R |xαf (β)(x)| < ∞, for all α,β ∈ N0}
the Schwartz space of smooth functions with rapid decrease, where

Ad =
d∑

k=0

ak

dk

dxk
and Bd ′ =

d ′∑
k=0

bk

dk

dxk
. (2.9)

The differential operator f �→ A∞(f )(x) = xAd(f )(x) − Bd ′(f )(x) is a Stein operator for
F with Stein class S(R).

From here onwards all test functions f are supposed to belong to S(R).

Example 2.2. If F is a normal random variable with mean μ and variance σ 2, then φF (ξ) =
eiμξ−σ 2ξ2/2 so that φ′

F (ξ) = i(μ + σ 2(iξ))φF (ξ) and, in the notations of Lemma 2.1: d = 0,
a0 = 1, d ′ = 1, b0 = μ, and b1 = σ 2 so that F is characterized by the identity

E
[
Ff (F ) − (μf (F) + σ 2f ′(F )

)]= 0

as expected (see Chen, Goldstein and Shao (2010)).

Example 2.3. If F is Variance-Gamma distributed, then its cumulant generating function is,
in the classical parameterization,

logφF (ξ) = μiξ + 2λ logγ − λ log
(
α2 − (β + iξ)2)

so that Lemma 2.1 applies with d = 2, a0 = α2 − β2, a1 = −2β , and a2 = −1, d ′ = 2,
b0 = μ(α2 − β2) + 2λβ , b1 = 2(λ − μβ), and b2 = −μ so that F is characterized by

E
[
F
((

α2 − β2)f (F ) − 2βf ′(F ) − f ′′(F )
)

− ((μ(α2 − β2)+ 2λβ
)
f (F ) + 2(λ − μβ)f ′(F ) − μf ′′(F )

)]= 0



400 Arras, Azmoodeh, Poly and Swan

or, after simplifications,

E
[
(F − μ)f ′′(F ) + (2β(F − μ) + 2λ

)
f ′(F )

+ ((α2 − β2)(F − μ) + 2λβ
)
f (F )

]= 0.

This is the result obtained by Gaunt (2014), Lemma 3.1.

Example 2.4. Take αi = 1 for all i ≥ 1 in (1.6), i.e. F =∑d
i=1(N

2
i − 1) ∼ χ2

(d) is a centered
chi-squared random variable with d degree of freedom. The CF of a chi-squared distributed
random variable is φ(ξ) = (1 − 2iξ)−d/2, and so

(1 − 2iξ)φ′
F (ξ) = −2dξφF (ξ).

Again, Lemma 2.1 applies, this time with d = 1, a0 = 1, a1 = −2, d ′ = 1, b0 = 0, and b1 =
2d so that

E
[
Ff (F )

]= 2E
[
(F + d)f ′(F )

]
.

This is the same as (1.4).

Example 2.5. A random variable F follows the type I McKay distribution with parameters
a > −(1/2), b > 0 and c > 1 when its PDF is proportional to the function

∀x ∈ R+, fI (x) = xae−xc/bIa(x/b), (2.10)

where Ia(·) denotes the modified Bessel function of the first kind and of order a, see Holm
and Alouini (2004) for context and further references. Direct computations lead to

(logφF )′(ξ) = −i
(1 + 2a)bc − (1 + 2a)b2(iξ)

1 − c2 + 2cb(iξ) − b2(iξ)2 . (2.11)

Lemma 2.1 applies and we deduce that if F is type I McKay then

E
[((

1 − c2)F + (1 + 2a)bc
)
f (F )

+ (2cbF − (1 + 2a)b2)f ′(F ) − b2Ff ′′(F )
]= 0 (2.12)

for all f ∈ S(R).

2.3 Stein operators for sums of independent gamma

Before stating the next theorem, we need to introduce some notations. For any d-tuple
(λ1, . . . , λd) of real numbers, we define the symmetric elementary polynomial of order
k ∈ {1, . . . , d} evaluated at (λ1, . . . , λd) by

ek(λ1, . . . , λd) = ∑
1≤i1<i2<···<ik≤d

λi1 · · ·λik .

We set, by convention, e0(λ1, . . . , λd) = 1. Moreover, for any (c1, . . . , cd) ∈ R
∗ and any k ∈

{1, . . . , d}, we denote by (λc) the d tuple (λ1c1, . . . , λdcd) and by (λc)k the d − 1 tuple
(λ1c1, . . . , λk−1ck−1, λk+1ck+1, . . . , λdcd)

The objects of interest in this section are the following generalizations of (1.6): for d ≥ 1,
(m1, . . . ,md) ∈ N

d , (λ1, . . . , λd) ∈R \ {0} all distinct we consider

F =
d∑

i=1

λi

(
γi(miαi, ci) − miαici

)
, (2.13)
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where, for any (α, c) ∈ R
∗+, we denote by γ (α, c) a gamma random variable with parameters

(α, c) with density

∀x ∈ R+ \ {0}, γα,c(x) = 1

c�(α)

(
x

c

)α−1
e− x

c

and CF

φγ (α,c)(ξ) = (1 − icξ)−α.

The family {γi(miαi, ci), i = 1, . . . , d} is a collection of independent random variables. Ap-
plying Lemma 2.1 we obtain the following (proof in Section 3).

Theorem 2.2. Let F be as in (2.13) and let Y be a real valued random variable such that

E[|Y |] < +∞. Then Y
law= F if and only if

E

[(
Y +

d∑
i=1

λimiαici

)
(−1)d

(
d∏

j=1

λjcj

)
f (d)(Y ) +

d−1∑
l=1

(−1)l

(
Yel

(
(λc)

)

+
d∑

k=1

λkmkαkck

(
el

(
(λc)

)− el

(
(λc)k

)))
f (l)(Y ) + Yf (Y )

]
= 0 (2.14)

for all f ∈ S(R).

Taking αk = 1/2 and ck = 2 in the previous theorem implies the following straightforward
corollary.

Corollary 2.1. Let d ≥ 1, q ≥ 1 and (m1, . . . ,md) ∈ N
d such that m1 + · · · + md = q . Let

(λ1, . . . , λd) ∈ R \ {0} pairwise distinct and consider

F =
m1∑
i=1

λ1
(
N2

i − 1
)+ m1+m2∑

i=m1+1

λ2
(
N2

i − 1
)+ · · · +

q∑
i=m1+···+md−1+1

λd

(
N2

i − 1
)
.

Let Y be a real valued random variable such that E[|Y |] < +∞. Then Y
law= F if and only if

E

[(
Y +

d∑
i=1

λimi

)
(−1)d2d

(
d∏

j=1

λj

)
f (d)(Y ) +

d−1∑
l=1

2l(−1)l(Y el(λ1, . . . , λd)

+
d∑

k=1

λkmk

(
el(λ1, . . . , λd) − el

(
(λk)

))
f (l)(Y ) + Yf (Y )

]
= 0, (2.15)

for all f ∈ S(R).

Example 2.6. Let d = 1, m1 = q ≥ 1 and λ1 = λ > 0. The differential operator reduces to
(on smooth test functions), for all x ∈ R

−2λ(x + qλ)f ′(x) + xf (x).

This differential operator is similar to the one characterizing the gamma distribution of pa-

rameters (q/2,1/(2λ)). Indeed, we have, for F
law= γ (q/2,1/(2λ)), on smooth test function

f :

E

[
Ff ′(F ) +

(
q

2
− F

2λ

)
f (F )

]
= 0.

We can move from the first differential operator to the second one by performing a scaling of
parameter −1/(2λ) and the change of variable x = y − qλ.
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Example 2.7. Let d = 2, q = 2, λ1 = −λ2 = 1/2 and m1 = m2 = 1. The differential operator
(on smooth test functions) reduces to:

A(f )(x)

= 4
(
x + 〈m,λ〉)λ1λ2f

′′(x) − 2
[
xe1(λ1, λ2) + λ1m1

(
e1(λ1, λ2) − e1(λ2)

)
+ λ2m2

(
e1(λ1, λ2) − e1(λ1)

)]
f ′(x) + xf (x),

= −xf ′′(x) − f ′(x) + xf (x),

where we have used the fact that e1(λ1, λ2) = λ1 + λ2 = 0, e1(λ2) = λ2 = −1/2, e1(λ1) =
λ1 = 1/2. Therefore, up to a minus sign factor, we retrieve the differential operator associated
with the random variable F = N1 × N2.

We conclude this section by comparing the Stein-type operators defined by the Fourier
approach with those obtained by the Malliavin calculus tools in (2.3) (see Section 3 for a
proof).

Proposition 2.2. The Stein-type operators defined in Corollary 2.1 and in (2.3) coincide, up
to some normalizing constant.

2.4 Stein operators for projections of multivariate gamma

Independence of the contributions, as required in (2.13), is not crucial. Indeed, consider all
random variables of the form

F = 〈γ − K,λ〉 =
d∑

i=1

λi(γi − ki) (2.16)

with K = (k1, . . . , kd) ∈ R
d and γ = (γ1, . . . , γd) a d-variate gamma distributed random

variable defined as follows.

Definition 2.1 (Krishnamoorthy and Parthasarathy (1951)). A random vector γ =
(γ1, . . . , γd) has a d-variate gamma distribution in the sense of
Krishnamoorthy and Parthasarathy (1951) with degree of freedom ν = 2α and covariance
matrix C if its characteristic function is

φγ (t1, . . . , td) = |Id − iCT |−α (2.17)

with tj ≥ 0 for all j , | · | the determinant operator, Id the (d × d)-identity, α > 0, T =
diag(t1, . . . , td), and C a symmetric positive definite d × d matrix.

Conditions on C and α under which (2.17) is a bona fide characteristic function have been
thoroughly addressed in the literature, see Vere-Jones (1997), Eisenbaum and Kaspi (2009),
Royen (2016) and references therein. In the sequel we suppose that these conditions are
satisfied.

Lemma 2.2. Let � = diag(λ1, . . . , λd) and C = (cij )1≤i,j≤d a symmetric positive definite
matrix. For all ξ ∈ R, we have

|Id − iξC�| =
d∑

j=0

(−1)j rj (iξ)j (2.18)
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with r0 = 1 and

rj = ∑
S⊂[d]

#(S)=j

|C|S
∏
j∈S

λj , (2.19)

(the summation in (2.19) is over all collections S of indices in [d] = {1, . . . , d} with cardinal-
ity #(S) = j , and |C|S is the determinant of the matrix (Cij )i,j∈S ).

Example 2.8. If d = 3 and C = (ci,j )1≤i,j≤3, then

r0 = 1,

r1 = c1λ1 + c2λ2 + c3λ3,

r2 = (c1c2 − c2
12
)
λ1λ2 + (c1c3 − c2

13
)
λ1λ3 + (c2c3 − c2

23
)
λ2λ3,

r3 = |C|λ1λ2λ3

(we also write cj instead of cjj for j = 1,2,3).

From Lemma 2.2, we deduce the CF of linear combinations of marginals of multivariate
gamma random vectors: if γ has marginals γj ∼ γ (α, cj ) and F is as in (2.16) then, letting
κ =∑d

j=1 λjkj :

φF (ξ) = E
[
eiξF ]= e

−iαξ
∑d

j=1 λj kj
E
[
e
i
∑d

j=1(ξλj )γj
]

= e−iακξφγ (ξλ1, . . . , ξλd)

= e−iακξ

(
d∑

j=0

(−1)j rj (iξ)j

)−α

with (rj )0≤j≤d given in Lemma 2.2. Taking derivatives, we obtain(
d∑

j=0

(−1)j rj (iξ)j

)
φ′

F (ξ)

= −iα

(
κ

d∑
j=0

(−1)j rj (iξ)j +
d∑

j=1

(−1)j jrj (iξ)j−1

)
φF (ξ).

Applying Lemma 2.1 we deduce, after straightforward simplifications.

Theorem 2.3. Let F be defined in (2.16) and (rj )j=1,...,d as in (2.19). Set rd+1 = 0. Let Y

be a real valued random variable such that E[|Y |] < +∞. Then Y
law= F if and only if

E

[(
F + α(κ − r1)

)
f (F )

+
d∑

j=1

(−1)j
(
rj (F + ακ) − α(j + 1)rj+1

)
f (j)(F )

]
= 0 (2.20)

for all test functions f ∈ S(R).

Remark 2.1. If F is of the form (2.13) with all shape coefficients identical then F =∑d
i=1 λi

∑mi

j=1(γj (α, ci) − αci). Letting m = ∑d
j=1 mi , then F is of the form (2.16) for

γ a m-variate gamma random variable with m × m diagonal correlation matrix C =
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diag(((c1)m1, . . . , (cd)md
)) (we write (x)q = (x, . . . , x) a vector of length q). Applying The-

orem 2.3 will lead, via (2.20), to an operator of order m > d which coincides with (2.15) (and
thus (2.3)) only when mi = 1 for all i.

Example 2.9. If d = 2, then F = 〈γ − K,λ〉 has second-order differential Stein operator

Af (x) = (x + α(κ − r1)
)
f (x) − {r1x + α

(
r1κ − 2

(
c1c2 − c2

12
)
λ1λ2

)}
f ′(x)

+ λ1λ2
(
c1c2 − c2

12
)
(x + ακ)f ′′(x), (2.21)

(recall that κ =∑d
j=1 λjkj and r1 =∑d

j=1 λjcj ).

2.5 Application: McKay type I and combinations of two gamma variates

We continue the paper with applications of the identities in the case d = 2. There is interest,
even in this simple situation, in obtaining handles on law of sums and differences of correlated
gamma variates as these have applications in performance analysis, see, for example, Holm
and Alouini (2004). Recall Example 2.5 and the corresponding operator

AMcKayf (x) =
(
x + (1 + 2a)bc

1 − c2

)
f (x) + 2cbx − (1 + 2a)b2

1 − c2 f ′(x)

− b2

1 − c2 xf ′′(x) (2.22)

for type I McKay random variables with parameters a, b, c (see its pdf defined in (2.10)).
From (2.12) (applied to functions of the form f (x) = xn, along with a continuity argument
for extending the identity to functions not in S(R)) we immediately deduce

E[F ] = (1 + 2a)bc

c2 − 1
,

E
[
F 2]= (2a + 1)b2(2(a + 1)c2 + 1)

(c2 − 1)2

(see Holm and Alouini (2004), Equation (6)), as well as the formula(
1 − c2)

E
[
Fn+1]+ bc

(
1 + 2(a + n)

)
E
[
Fn]

− nb2(1 + 2a + n − 1)E
[
Fn−1]= 0 (2.23)

for all n ≥ 2.

Corollary 2.2. McKay Type I random variables can be represented as projections of bivari-
ate gamma random variables with degree of freedom 2α and covariance matrix C = (

c1 c12
c12 c2

)

whenever

a = α − 1/2,

b = 2
c1c2 − c2

12√
(c1 + c2)2 − 4(c1c2 − c2

12)
,

c = c1 + c2√
(c1 + c2)2 − 4(c1c2 − c2

12)
.

Remark 2.2. Corollary 2.2 contains Theorems 3, 4 and 5 from Holm and Alouini (2004). In
that paper they consider also the so-called McKay Type II distribution for which our method
also applies; we do not perform the computations here.
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Proof. Taking K = 0 and λ1 = λ2 = 1 in Example 2.9 we obtain that combinations of depen-
dent gamma random variables G1 ∼ gamma(α, c1) and G2 ∼ gamma(α, c2) with identical
shape parameter and covariance C have operator

AG1+G2f (x) = (x − α(c1 + c2)
)
f (x)

− ((c1 + c2)x − 2α
(
c1c2 − c2

12
))

f ′(x)

+ (c1c2 − c2
12
)
xf ′′(x). (2.24)

We identify the coefficients in (2.24) and (2.22) to get the system of 4 equations:

bc

1 − c2 (1 + 2a) = −α(c1 + c2), 2
bc

1 − c2 = −(c1 + c2),

b2

1 − c2 (1 + 2a) = −2α
(
c1c2 − c2

12
)
,

b2

1 − c2 = −(c1c2 − c2
12
)
.

Solving for a, b, c in terms of α, c1, c2 and c12 we immediately deduce that a = α − 1/2 is
necessary, so that the system reduces to

b2 = (c1c2 − c2
12
)(

c2 − 1
)
, 2bc = (c1 + c2)

(
c2 − 1

)
and the result follows. �

We end this subsection by discussing infinite divisibility of the law of projections of mul-
tivariate gamma distribution. Infinite divisibility of the multivariate gamma distribution has
been addressed thoroughly in the literature (see Griffiths (1984), Bapat (1989), Eisenbaum
and Kaspi (2006, 2009)). Thanks to the previous corollary, we are able to explicit the Lévy
measure of the sum of two dependent gamma random variables using the parametrization
(a, b, c) with a > −(1/2), b > 0 and c > 1. We have the following straightforward corollary.

Corollary 2.3. Let (G1,G2) be a 2-dimensional gamma random vector of parameters 2α >

0 and covariance matrix C such that c1c2 > c2
12 and c1 + c2 > 1. Then, the law of G1 + G2

is infinitely divisible and its characteristic function is given by, for all t ∈ R

φG1+G2(t) = exp
(∫ +∞

0

(
eitx − 1

)(1

2
+ a

)(
e− c−1

b
x + e− c+1

b
x)dx

x

)
, (2.25)

with

a = α − 1

2
,

b = 2
c1c2 − c2

12√
(c1 + c2)2 − 4(c1c2 − c2

12)
,

c = c1 + c2√
(c1 + c2)2 − 4(c1c2 − c2

12)
.

Moreover, the following identity in law holds true

G1 + G2 = γ1 + γ2 (2.26)

where γ1 and γ2 are independent gamma random variables with parameters (a + 1/2, (c −
1)/b) and (a + 1/2, (c + 1)/b), respectively.
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Proof. Let a, b and c be as in the statement of the corollary. By Corollary 2.2, we know
that G1 + G2 has the same law as a McKay type I random variable with parameters (a, b, c).
Then, by (2.11),

(logφG1+G2)
′(ξ) = −i

(1 + 2a)bc − (1 + 2a)b2(iξ)

1 − c2 + 2cb(iξ) − b2(iξ)2 .

Performing a partial fraction decomposition, we obtain straightforwardly

(logφG1+G2)
′(ξ) = ib

(
1

2
+ a

)(
1

c − 1 − ibξ
+ 1

c + 1 − ibξ

)
.

Now,

1

c − 1 − ibξ
=
∫ +∞

0
exp
(−(c − 1 − ibξ)x

)
dx

and similarly for the other term. By standard computations, we obtain formula (2.25). The
identity (2.26) follows trivially. �

3 Proofs

Proof of Theorem 2.1. Repeatedly using the Malliavin integration by parts formulae
Nourdin and Peccati (2012), Theorem 2.9.1, we obtain for any 2 ≤ l ≤ d + 2 that

E
[
Ff (d−l+2)(F )

]= E
[
f (d)(F )�l−2(F )

]

+
d−1∑

r=d−l+3

E
[
f (r)(F )

]
E
[
�r+l−d−2(F )

]
. (3.1)

For indices l = 2,3, the second term in the right-hand side of (3.1) is understood to be 0.
Summing from l = 2 up to l = d + 2, we obtain that

d+2∑
l=2

al−1E
[
Ff (d−l+2)(F )

]

=
d+2∑
l=2

al−1E
[
f (d)(F )�l−2(F )

]

+
d+2∑
l=4

al−1

d−1∑
r=d−l+3

E
[
f (r)(F )

]
E
[
�r+l−d−2(F )

]

=
d+1∑
l=1

alE
[
f (d)(F )�l−1(F )

]

+
d+1∑
l=3

al

q−2∑
r=d−l+2

E
[
f (r)(F )

]
E
[
�r+l−d−1(F )

]

=
d+1∑
l=1

alE
[
f (d)(F )�l−1(F )

]

+
d+1∑
l=2

al

l−2∑
r=1

E
[
f (d−r)(F )

]
E
[
�l−r−1(F )

]
. (3.2)
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On the other hand,

d+1∑
l=2

blE
[
f (d+2−l)(F )

]= d−1∑
l=0

bl+2E
[
f (d−l)(F )

]

=
d−1∑
l=0

[
d+1∑

r=l+2

arE
(
�r−l−1(F∞)

)]
E
[
f (d−l)(F )

]

=
d+1∑
r=2

ar

r−2∑
l=0

E
[
�r−l−1(F∞)

]×E
[
f (d−l)(F )

]
. (3.3)

Wrapping up, we finally arrive at

E
[
A∞f (F )

]

= −E

[
f (d)(F ) ×

(
d+1∑
r=1

ar

[
�r−1(F ) −E

[
�r−1(F )

]])]

+
d+1∑
r=2

ar

r−2∑
l=0

{
E
[
f (d−l)(F )

]× (E[�r−l−1(F∞)
]−E

[
�r−l−1(F )

])}

= −E

[
f (d)(F ) ×

(
d+1∑
r=1

ar

[
�r−1(F ) −E

[
�r−1(F )

]])]

+
d+1∑
r=2

ar

r−2∑
l=0

E[f (d−l)(F )]
(r − l − 1)! × (κr−l(F∞) − κr−l(F )

)
. (3.4)

We are now in a position to prove the claim. First, we assume that F
law= F∞. Then obviously

κr(F ) = κr(F∞) for r = 2, . . . ,2d + 2, and moreover, random variable F belongs to the
second Wiener chaos. Hence, according to Azmoodeh, Peccati and Poly (2014), Lemma 3,
the Cauchy–Schwarz inequality, and the hypercontractivity property of the Wiener chaoses
Nourdin and Peccati (2012), Theorem 2.7.2, we obtain that

∣∣E[A∞f (F )
]∣∣≤√E[f (d)(F )

]2 ×
√√√√√E

[
d+1∑
r=1

ar

(
�r−1(F ) −E

[
�r−1(F )

])]2

=
√
E
[
f (d)(F )

]2 ×√�(F,F∞)

=
√
E
[
f (d)(F )

]2 ×√�(F∞,F∞) = 0.

Conversely, assume that E[A∞f (F )] = 0 for all polynomial functions f . Then relation
(3.4) implies that, by choosing appropriate polynomials f , we have κr(F ) = κr(F∞) for
r = 2, . . . , d + 1. Now, combining this observation together with relation (3.4), we infer that

E

[
Fn

d+1∑
r=1

ar

(
�r−1(F ) −E

[
�r−1(F )

])]= 0, n ≥ 2.

Using for example, the Malliavin integrations by parts, and a similar argument as in the proof
of Azmoodeh, Peccati and Poly (2014), Proposition 5, the latter equation can be turned into a
linear recurrent relation between the cumulants of F of order up to d +1. Combining this with
the knowledge that the d + 1 first cumulants characterise all the cumulants of F and hence
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the distribution F . Indeed, all the distributions in the second Wiener chaos are determined by
their moments/cumulants Nourdin and Peccati (2012), Proposition 2.7.13, item 3. �

Proof of Lemma 2.1. (⇒). Let us introduce two differential operators characterized by their
symbols in Fourier domain. For smooth enough test functions, f ,

Ad(f )(x) = 1

2π

∫
R

F(f )(ξ)
(
Ad(iξ)

)
exp(ixξ) dξ,

Bd ′(f )(x) = 1

2π

∫
R

F(f )(ξ)
(
Bd ′(iξ)

)
exp(ixξ) dξ,

with F(f )(ξ) = ∫
R

f (x) exp(−ixξ) dx. Integrating against smooth test functions the differ-
ential equation satisfied by the characteristic function φF , we have, for the left-hand side∫

R

F(φ)(ξ)Ad(iξ)
d

dξ

(
φF (ξ)

)
dξ =

∫
R

F
(
Ad(f )

)
(ξ)

d

dξ

(
φF (ξ)

)
dξ

= −
∫
R

d

dξ

(
F
(
Ad(f )

)
(ξ)
)
φF (ξ) dξ

= i

∫
R

F
(
xAd(f )

)
(ξ)φF (ξ) dξ,

where we have used the standard fact d/dξ(F(f )(ξ)) = −iF(xf )(ξ). Similarly, for the
right-hand side,

RHS = i

∫
R

F(f )(ξ)
(
Bd ′(iξ)

)
φF (ξ) dξ = i

∫
R

F
(
Bd ′(f )

)
(ξ)φF (ξ) dξ.

Thus, ∫
R

F
(
xAd(f ) −Bd ′(f )

)
(ξ)φF (ξ) dξ = 0

for all f ∈ S(R). Going back in the space domain, we obtain the claim.
(⇐). We denote by S ′(R) the space of tempered distributions, that is, the topological dual

space of the Schwarz space. Let Y be a real valued random variable such that E[|Y |] < +∞
and

E
[
YAd(f )(Y ) −Bd ′(f )(Y )

]= 0, f ∈ S(R). (3.5)

Since E[|Y |] < +∞, the characteristic function of Y is continuously differentiable on the
whole real line. Working similarly as in the first part of the proof (from space domain to
Fourier domain), identity (3.5) leads to

Ad(iξ)
d

dξ
(φY )(ξ) = iBd ′(iξ)φY (ξ), ξ ∈ R. (3.6)

We also have φY (0) = 1. Without loss of generality, one can assume that Ad(0) = 0. Indeed,
if Ad(0) = 0, then, thanks to (3.6), one has Bd ′(0) = 0. Then, 0 is a root with the same
multiplicity for the real polynomials Ad and Bd ′ . Therefore, the previous differential equation
boils down to

Ãd(iξ)
d

dξ
(φY )(ξ) = iB̃d ′(iξ)φY (ξ), ξ ∈ R.

with Ãd(·) and B̃d ′(·) real polynomials such that Ãd(0) = 0. Thus, by Cauchy–Lipschitz
theorem in a neighborhood I0 of 0 Teschl (2012), Theorem 2.2, φY (ξ) = φF (ξ), for all ξ ∈ I0.
Now, the unique solution of the first order linear differential equation (3.6) in I0 is analytic
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in I0 which implies that φY and φF are analytic in I0. Theorem B, page 225 of Loeve (1977)
concludes the proof of the lemma. �

Proof of Theorem 2.2. Let r1 =∑d
k=1 λkmkαkck . The CF of random variables as in (2.13)

is

φF (ξ) = e−iξr1

d∏
j=1

(1 − iξλj cj )
−mjαj .

Taking derivatives with respect to ξ one sees that

φ′
F (ξ) = −i

(
r1 +

d∑
j=1

λkmkαkck

1 − iξλkck

)
φF (ξ)

which, after straightforward simplifications, becomes (we denote νj = 1/(cjλj ) and mα =
(m1α1, . . . ,mdαd))

d∏
k=1

(νk − iξ)φ′
F (ξ) = −i

{
r1

d∏
k=1

(νk − iξ) −
d∑

k=1

mkαk

d∏
l=1,l =k

(νl − iξ)

}
φF (ξ).

We may apply Lemma 2.1 and all that remains is to compute explicitly the coefficients of the
polynomials on either side of the above, that is, in Ad and Bd . First of all, let us consider the
following polynomial in R[X]:

P(x) =
d∏

j=1

(νj − x) = (−1)d
d∏

j=1

(x − νj ).

We denote by p0, . . . , pd the coefficients of
∏d

j=1(X − νj ) in the basis {1,X, . . . ,Xd}. Vieta
formula readily give:

∀k ∈ {0, . . . , d}, pk = (−1)d+ked−k(ν1, . . . , νd).

It follows that the Fourier symbol of Ad is given by:

d∏
k=1

(νk − iξ) = P(iξ) =
d∑

k=0

(−1)ked−k(ν1, . . . νd)(iξ)k.

Thus, we have, for f smooth enough:

Ad(f )(x) =
d∑

k=0

(−1)ked−k(ν1, . . . , νd)f (k)(x).

Let us proceed similarly for the operator Bd,m,ν . We denote by Pk the following polynomial
in R[X] (for any k ∈ {1, . . . , d}):

Pk(x) = (−1)d−1
d∏

l=1,l =k

(x − νl).

A similar argument provides the following expression:

Pk(x) =
d−1∑
l=0

(−1)led−1−l(νk)x
l,
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where νk = (ν1, . . . , νk−1, νk+1, . . . , νd). Thus, the symbol of the differential operator Bd is
given by:

d∑
k=1

mkαk

d∏
l=1,l =k

(νl − iξ) =
d−1∑
l=0

(−1)l

(
d∑

k=1

mkαked−1−l(νk)

)
(iξ)l.

Thus, we have:

Bd(f )(x) =
d−1∑
l=0

(−1)l

(
d∑

k=1

mkαked−1−l(νk)

)
f (k)(x).

Consequently, we obtain:

E

[
(F + r1)

d∑
k=0

(−1)ked−k(ν1, . . . , νd)f (k)(F )

−
d−1∑
l=0

(−1)l

(
d∑

k=1

mkαked−1−l(νk)

)
f (k)(F )

]
= 0.

Finally, it is easy to see that

∀k ∈ {0, . . . , d},
(

d∏
j=1

cjλj

)
ek(ν1, . . . , νd) = ed−k(λ1c1, . . . , λdcd)

and the conclusion follows. �

Proof of Proposition 2.2. In order to lighten the notations, we consider the target law rep-
resented by F =∑d

i=1 λi(N
2
i − 1), with λj = λi if i = j and {N1, . . . ,Nd} is a collection of

i.i.d. standard normal random variables. By (2.3), we have, for any smooth functions:

A∞f (x) :=
d+1∑
l=2

(bl − al−1x)f (d+2−l)(x) − ad+1xf (x).

By a re-indexing argument, we have:

A∞f (x) :=
d∑

k=1

(bd+2−k − ad−k+1x)f (k)(x) − ad+1xf (x).

As a warm up, we start by computing ad+1 and ad−k+1. We have, by definition:

ad+1 = P (d+1)(0)

(d + 1)!2d
= 1

2d
,

where we have used the definition of the polynomial P(X). Moreover, we have:

ad−k+1 = P (d+1−k)(0)

(d + 1 − k)!2d−k
= (−1)k

2d−k
ek(λ1, . . . , λd),

where we have used the fact that P (d+1−k)(0) is equal to (d + 1 − k)! times the (d − k)th
coefficient of the polynomial

∏
(X − λj ). Now, let us compute bd+2−k . We have, for k ∈

{1, . . . , d}:

bd+2−k =
d+1∑

r=d+2−k

ar

(r + k − d − 1)!κr+k−d(F∞)
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= 2k−d
d+1∑

r=d+2−k

P (r)(0)

r!
d∑

j=1

λr+k−d
j

= 2k−d
d+1∑

r=d+2−k

(−1)d+r−1ed−r+1(λ1, . . . , λd)

d∑
j=1

λr+k−d
j

= (−1)k+1ek−1(λ1, . . . , λd)

d∑
j=1

λ2
j + · · · + (−1)e1(λ1, . . . , λd)

d∑
j=1

λk
j

+ e0(λ1, . . . , λd)

d∑
j=1

λk+1
j .

Now the trick is to note that λjel−1((λj )) = el(λ1, . . . , λd) − el((λj )). Thus, we have:

(−1)e1(λ1, . . . , λd)

d∑
j=1

λk
j + e0(λ1, . . . , λd)

d∑
j=1

λk+1
j = −

d∑
j=1

λk
j e1
(
(λj )

)
.

Using the previous equality recursively, we obtain:

bd+2−k = 2k−d

[
(−1)k+1ek−1(λ1, . . . , λd)

d∑
j=1

λ2
j + (−1)k

d∑
j=1

λ3
j ek−2

(
(λj )

)]

= 2k−d(−1)k

[
d∑

j=1

λ2
j

(−ek−1(λ1, . . . , λd)

+ ek−1(λ1, . . . , λd) − ek−1
(
(λj )

))]

= 2k−d(−1)k+1
d∑

j=1

λ2
j ek−1

(
(λj )

)

= 2k−d(−1)k+1
d∑

j=1

λj

(
ek(λ1, . . . , λd) − ek

(
(λj )

))
.

Wrapping everything up together, this ends the proof of the proposition. �
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