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Abstract. We consider estimation of the multicomponent stress-strength re-
liability under progressive Type II censoring under the assumption that stress
and strength variables follow Burr XII distributions with a common shape pa-
rameter. Maximum likelihood estimates of the reliability are obtained along
with asymptotic intervals when common shape parameter may be known or
unknown. Bayes estimates are also derived under the squared error loss func-
tion using different approximation methods. Further, we obtain exact Bayes
and uniformly minimum variance unbiased estimates of the reliability for the
case common shape parameter is known. The highest posterior density in-
tervals are also obtained. We perform Monte Carlo simulations to compare
the performance of proposed estimates and present a discussion based on this
study. Finally, two real data sets are analyzed for illustration purposes.

1 Introduction

At recent past, the problem of making inference upon stress-strength reliability has gained
special attention among researchers. If X and Y respectively, denote strength and stress vari-
ables then the probability R = P(X > Y) denotes the stress-strength reliability. Thus, a sys-
tem operates successfully provided the corresponding strength remains more than the stress
applied on it. Initial attempts to study estimation problems related to stress-strength reliabil-
ity were made by Birnbaum et al. (1956) and Church and Harris (1970). One may also refer
to Nadar, Kızılaslan and Papadopoulos (2014), Kızılaslan (2017), Najarzadegan et al. (2016),
Gunasekera (2015), Basirat, Baratpour and Ahmadi (2015) and Dey, Mazucheli and Anis
(2017) for recent developments on stress-strength parameter estimation under the complete
sampling situations. Note that a multicomponent system having k independent and identically
distributed strength variables X1, . . . ,Xk and a common random stress Y imposed on each
unit functions properly provided at least s (≤ k) out of k strength variables exceed the random
stress Y . This is known as the s-out-of-k : M model. Inference upon multicomponent relia-
bility is quite useful in many practical studies of interest such as bridge structures, commu-
nication systems, military operations etc. A motor vehicle with ten tires has, in general, two
additional tires assembled for the replacement purposes. Such motor vehicles can run prop-
erly on roads as long as 10-out-of-12 : M tires work well. We mention that examples with
similar nature abound in many industrial experiments where efficient estimation of stress-
strength reliability is required, see, for instance, Dey, Mazucheli and Anis (2017), Kızılaslan
(2017), Nadar, Kızılaslan and Papadopoulos (2014), among others. The problem of estimat-
ing reliability for various lifetime distributions has been studied by several researchers by as-
suming single component stress-strength systems, see, for example, Enis and Geisser (1971),
Downtown (1973), Awad and Gharraf (1986). In multicomponent situation, Bhattacharyya
and Johnson (1974) initially made inference upon the system reliability assuming exponen-
tial distributions. Authors obtained maximum likelihood and uniformly minimum variance
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unbiased estimates and compared their performance numerically. The related Bayesian in-
ference for this problem is discussed in Draper and Guttman (1978). A rich literature exists
on the estimation problems related to multicomponent stress-strength reliability. However,
such problems have not been investigated much in presence of some censoring. Kohansal
(2017) discussed that deriving inference for the multicomponent reliability in presence of
some prespecified censoring may not be unrealistic in many practical studies of life testing
experiments. Study of an excessive drought scenario in a particular region is an example of
such situation. If the water capacity of a reservoir in a particular area in May, at least one year
out of the next 5 years, is more than the amount of water achieved in November of the previ-
ous year, then claim can be that there will be no excessive drought afterwards. In many such
studies, it is not unreasonable to assume that observed data from both the populations may
be censored in nature. In many life testing experiments, censoring plays an important role
in making inference on various unknown quantities such as the system reliability. Kohansal
(2017) considered estimation of multicomponent stress strength reliability for Kumarswamy
distribution under progressive censoring. The author applied different methods of estimation
to estimate the reliability. A numerical study is performed to compare the performance of
proposed estimates and illustrative discussions are presented based on this study.

In literature, various types of censoring have been introduced in which Type I and Type II
are the most widely used censoring schemes. In Type I censoring, a test stops at a prespecified
time point and observations are not recorded after this time. On the other hand in Type II
censoring, a test stops when a prefixed number of observations has been recorded. Note that
in these two censoring schemes in between removal of live test units from the experiment is
not allowed. Progressive Type II censoring is kind of a generalization of Type II censoring
in which in between removal of live units is allowed. In this censoring, a total of N test
units is subjected to some life testing experiment and each item contains K components.
A progressive Type II censored sample of size n can be observed as follows. After the first
failure, R1 number of live units from the remaining N − 1 surviving units are removed from
the experiment at random and also S1 number of components are removed from the remaining
K − 1 components. At the second failure, R2 number of live units from the remaining N −
R1 − 2 units are removed from the experiment again at random and at the same time S2
number of components from the remaining K −S1 −2 components are removed as well. The
test stops when nth failure time is observed along with k prefixed components and remaining
surviving units Rn = N − n − R1 − · · · − Rn−1 are removed along with Sk = K − k − S1 −
· · · − Sk−1 components. We refer to Balakrishnan and Aggarwala (2000) for further details
and applications of progressive censoring in life testing experiments.

In this paper, we obtain various inference upon multicomponent stress-strength reliability
assuming Burr XII distributions under progressive Type II censoring. In Section 2, we briefly
introduce the Burr XII distribution. The maximum likelihood estimation and asymptotic con-
fidence interval of reliability system are discussed in Section 3 under progressive Type II
censoring when the common shape parameter is unknown. The corresponding Bayes esti-
mates and HPD intervals are also obtained in this section. Further in Section 4, the uniformly
minimum variance unbiased estimator and Bayes estimator of the stress-strength reliability
are derived when the common shape parameter is known. In Section 5, we perform Monte
Carlo simulations to compare the performance of studied estimators. Two real data sets are
analyzed in Section 6 for illustration purposes. Finally, we present some concluding remarks
in Section 7.

2 Model description

Burr (1942) studied different forms of cumulative distribution functions which are useful in
various reliability and life testing experiments. The Burr XII distribution is one of the most
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widely applied model in reliability analysis and related areas of studies including financial,
mortality and industrial experiments, forest ecology, income distributions etc. One may refer
to Rastogi and Tripathi (2012), Zimmer, Keats and Wang (1998), Wingo (1993), Aslam,
Azam and Jun (2016), Maurya et al. (2017), Raqab and Kundu (2005) and Surles and Padgett
(1998) for some further applications of this distribution in many practical studies of interest.
Probability density function of this distribution is given by

f (x;α,β) = αβxβ−1(1 + xβ)−(α+1)
, x > 0, α > 0, β > 0, (1)

and the distribution function is

FX(x;α,β) = 1 − (1 + xβ)−α
, x > 0, α > 0, β > 0, (2)

where α and β both are shape parameters. We denote this distribution by Burr(α,β). Dif-
ferent shapes of density and hazard rate functions can be obtained for varying values of
parameters. In fact, the hazard function is either monotonically decreasing or remains uni-
modal depending on parameter values. The stochastic behavior of Burr XII distribution is
quite similar to some known models like lognormal, gamma, and Weibull. Burr XII model
is also widely used for deriving inference under acceptance sapling plans and quality con-
trols. Several authors have studied this distribution assuming different sampling situations.
Papadopoulos (1978) obtained Bayes estimates of unknown parameters and reliability char-
acteristics under the squared error loss function (see also, Moore and Papadopoulos (2000)).
A rich collection of inferential results exists for the Burr XII model assuming single compo-
nent system. Rao, Aslam and Kundu (2015) analyzed the Burr XII model for multicompo-
nent system under the complete sample case. We consider estimation of the reliability when
observed data are progressive Type II censored. In this paper, we obtain various estimates
of multicomponent stress-strength reliability Rs,k = P [at least s of (X1, . . . ,Xk) exceeds Y ]
under the considered censoring scheme. Suppose that (Xi1, . . . ,Xik), i = 1, . . . , n, denotes
a progressively censored sample taken from the Burr(α1, β) distribution using the censor-
ing scheme (K, k,R1, . . . ,Rk) and also (Y1, . . . , Yn) be another such sample drawn from the
Burr(α2, β) distribution using the censoring scheme (N,n,S1, . . . , Sn). The reliability in a
multicomponent stress-strength model is then obtained as

Rs,k = P
(
at least s of the (X1, . . . ,Xk) exceed Y

)

=
k∑

i=s

(
k

i

)∫ ∞
−∞
[
1 − FX(y)

]i[
FX(y)

]k−i
dFY (y), (3)

where X1,X2, . . . ,Xk are independent and identically distributed random variables with dis-
tribution function FX(·). We next consider estimation of Rs,k when the common shape pa-
rameter β is unknown.

3 Estimation of Rs,k when β is unknown

3.1 Maximum likelihood estimation

In this section, we obtain maximum likelihood estimator of the stress-strength reliability Rs,k

under progressive censoring. Let X ∼ Burr(α1, β) and Y ∼ Burr(α2, β) be independently
distributed random variable with unknown shape parameters α1, α2 and a common shape
parameter β . Then using equations (1) and (2) in (3), the reliability of multicomponent stress-
strength model for the Burr XII distribution is obtained as

Rs,k =
k∑

i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)jα2

α1(i + j) + α2
. (4)
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We first obtain MLEs of parameters α1, α2 and β using progressive Type II censored samples.
Suppose that N systems are put on a test each with K components. Then n systems each with
k components are observed. Thus, strength and stress samples are respectively, observed as⎛

⎜⎝
X11 X12 . . . X1k

...
...

. . .
...

Xn1 Xn2 . . . Xnk

⎞
⎟⎠ and

⎡
⎢⎣

Y1
...

Yn

⎤
⎥⎦ .

The likelihood function α1, α2 and β is now given by

L(α1, α2, β | data) = c1

n∏
i=1

(
c2

k∏
j=1

f (xij )
[
1 − F(xij )

]Rj

)
f (yi)

[
1 − F(yi)

]Si , (5)

where

c1 = N(N − S1 − 1) · · · (N − S1 − · · · − Sn−1 − n + 1),

c2 = K(K − R1 − 1) · · · (K − R1 − · · · − Kk−1 − k + 1).

The corresponding log-likelihood function is

l(α1, α2, β | data) = nk logα1 + n logα2 + n(k + 1) logβ

+ (β − 1)

n∑
i=1

k∑
j=1

(
n∑

i=1

logyi + logxij

)

− (α2 + 1)

n∑
i=1

log
(
1 + y

β
i

)− (α1 + 1)

n∑
i=1

k∑
j=1

log
(
1 + x

β
ij

)

− α2

n∑
i=1

Si log
(
1 + y

β
i

)− α1

n∑
i=1

k∑
j=1

Rj log
(
1 + x

β
ij

)+ L, (6)

where L is the constant term. By partially differentiating (6) with respect to α1, α2 and β , we
obtain likelihood equations as:

∂l

∂α1
= nk

α1
−

n∑
i=1

k∑
j=1

(Rj + 1) log
(
1 + x

β
ij

)= 0, (7)

∂l

∂α2
= n

α2
−

n∑
i=1

(Si + 1) log
(
1 + y

β
i

)= 0, (8)

∂l

∂β
= n(k + 1)

β
+
(

n∑
i=1

logyi +
n∑

i=1

k∑
j=1

logxij

)
−

n∑
i=1

(α2(Si + 1) + 1)y
β
i logyi

(1 + y
β
i )

−
n∑

i=1

k∑
j=1

(α1(Rj + 1) + 1)x
β
ij logxij

(1 + x
β
ij )

= 0. (9)

We have from (7) and (8), α̂1(β) = nk∑n
i=1(Rj+1) log(1+x

β
ij )

and α̂2(β) = n∑n
i=1(Si+1) log(1+y

β
i )

.

Further for n > 2 and k > 2, the MLE of β is the solution to the equation H(β) = 0, where

H(β) = n(k + 1)

β
+

n∑
i=1

log(yi) − n

∑n
i=1(Si + 1)

y
β
i logyi

(1+y
β
i )∑n

i=1(Si + 1) log(1 + y
β
i )

−
n∑

i=1

y
β
i logyi

(1 + y
β
i )
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+
n∑

i=1

k∑
j=1

log(xij ) − nk

∑n
i=1

∑k
j=1(Rj + 1)

x
β
ij logxij

(1+x
β
ij )∑n

i=1
∑k

j=1(Rj + 1) log(1 + x
β
ij )

−
n∑

i=1

k∑
j=1

x
β
ij logxij

(1 + x
β
ij )

.

From Soliman (2005) and Maurya et al. (2017), we further have

lim
β→0

H(β) = +∞, lim
β→+∞H(β) < 0,

and

H ′(β) < 0,

for all β > 0. Now following Maurya et al. (2017), we see that maximum likelihood estimator
of β satisfying H(β) = 0 exists and is unique as well. Thus, respective maximum likelihood
estimates α̂1, α̂2 and β̂ of α1, α2 and β can be computed from above equations using some
numerical method. The corresponding maximum likelihood estimate R̂s,k of Rs,k is now
obtained as, by using the invariant property of MLE,

R̂s,k =
k∑

i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j α̂2

α̂1(i + j) + α̂2
.

3.1.1 Asymptotic confidence interval. In this section, asymptotic interval of R̂s,k is obtained
using the asymptotic distribution of MLE θ̂ = (α1, α2, β). The expected Fisher information
matrix is given by M(θ) = E(I (θ)), where I (θ) = [Iij ] = [− ∂2l

∂θi ∂θj
] with elements being

I11 = nk

α2
1

, I22 = n

α2
2

, I12 = 0 = I21,

I13 =
k∑

i=1

n∑
j=1

(Rj + 1)x
β
ij logxij

(1 + x
β
ij )

= I31, I23 =
n∑

i=1

(Si + 1)y
β
i logyi

(1 + y
β
i )

= I32,

I33 = n(k + 1)

β2 +
n∑

i=1

(α2(Si + 1) + 1)y
β
i (logyi)

2

(1 + y
β
i )2

+
n∑

i=1

k∑
j=1

(α1(Rj + 1) + 1)x
β
ij (logxij )

2

(1 + x
β
ij )

2
.

Observe that MLE of R̂s,k is asymptotically normal with mean Rs,k and the corresponding
variance is given by

σ 2
Rs,k

=
(

∂Rs,k

∂α1

)2
M−1

11 +
(

∂Rs,k

∂α2

)2
M−1

22 + 2
(

∂Rs,k

∂α1

)(
∂Rs,k

∂α2

)
M−1

12 ,

where

∂Rs,k

∂α1
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j+1 α2(i + j)

(α1(i + j) + α2)2 ,

∂Rs,k

∂α2
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j

α1(i + j)

(α1(i + j) + α2)2 .

Thus 100(1 − ξ)% confidence interval of Rs,k is of the form (R̂s,k ± qξ/2σ̂Rs,k
) where qξ/2

denotes the upper (ξ/2)th quantile of the standard normal distribution.
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3.2 Bayesian estimation

In this section, we obtain point and interval estimates of Rs,k using the Bayesian approach.
We assume that parameters α1, α2 and β are a priori distributed as gamma G(ai, bi), i =
1,2,3, distributions, respectively. The corresponding joint prior density is then given by

g(α1, α2, β) ∝ α
a1−1
1 e−b1α1α

a2−1
2 e−b2α2βa3−1e−b3β, ai, bi > 0; i = 1,2,3.

Subsequently, the joint posterior distribution of α1, α2 and β given the observed data is ob-
tained as

π(α1, α2, β | data) = L(α1, α2, β | data)g(α1, α2, β)∫∞
0
∫∞

0
∫∞

0 L(α1, α2, β | data)g(α1, α2, β) dα1 dα2 dβ
. (10)

We compute Bayes estimate of Rs,k under the square error loss function. Note that the desired
estimate turns out to be the posterior mean of Rs,k . We observe that this posterior mean
involves the ratio of two integrals which cannot be simplified analytically due to intractable
nature of the corresponding posterior distribution. However, in such situations one may apply
the Lindley approximation method (see, Lindley (1980)), Tierney and Kadane (TK) method
(see, Tierney and Kadane (1986)) and Metropolis–Hastings (MH) algorithm (see, Metropolis
et al. (1953) and Hastings (1970)) to compute the Bayes estimate R̃B

s,k of Rs,k .

3.2.1 Lindley method. In this section, we obtain an explicit expression for the Bayes esti-
mate of multicomponent reliability using the Lindley method. In this approach, we obtain
Taylor series expansion of the function involved in (10) about the maximum likelihood es-
timator (see, Sinha (1986)). Using this technique, the approximate Bayes estimate of R̃s,k

under the squared error loss function is obtained as

R̃LA
s,k = u + (u1p1 + u2p2 + u3p3 + p4 + p5)

+ 0.5
[
(σ11l111 + 2σ12l121 + 2σ13l131 + 2σ23l231

+ σ22l221 + σ33l331)(u1σ11 + u2σ12 + u3σ13)

+ (σ11l112 + 2σ12l122 + 2σ13l132 + 2σ23l232

+ σ22l222 + σ33l332)(u1σ21 + u2σ22 + u3σ23)

+ (σ11l113 + 2σ12l123 + 2σ13l133 + 2σ23l233

+ σ22l223 + σ33l333)(u1σ31 + u2σ32 + u3σ33)
]
, (11)

where

pi = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1,2,3,

p4 = u12σ12 + u13σ13 + u23σ23,

p5 = 0.5(u11σ11 + u22σ22 + u33σ33).

We also have ρ1 = a1−1
α1

−b1, ρ2 = a2−1
α2

−b2, ρ3 = a3−1
β

−b3 and σik denotes element of the

matrix [−lik]−1, i, k = 1,2,3. Note that u = R̂s,k and other expressions in (11) are given in
Appendix A. Sometimes if the number of parameters are relatively large then finding higher
order derivatives are computationally intensive. In such situations, we can use the TK method
to determine the given posterior expectation.
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3.2.2 Tierney and Kadane method. Here we obtain Bayes estimator of Rs,k using the
Tierney and Kadane (1986) method. Note that Bayes estimator is posterior expectation of
the stress-strength reliability. Let I (x, y) denotes the posterior expectation of a parametric
function u(α1, α2, β) with respect to the posterior distribution π(data | α1, α2, β) such that

I =
∫∞

0
∫∞

0
∫∞

0 u(α1, α2, β)el(data|α1,α2,β)+ρ(α1,α2,β) dα1 dα2 dβ∫∞
0
∫∞

0
∫∞

0 el(data|α1,α2,β)+ρ(α1,α2,β) dα1 dα2 dβ
. (12)

We mention that l(data | α1, α2, β) denotes the log-likelihood function and ρ(α1, α2, β) =
logg(α1, α2, β). Let (α̂1δ, α̂2δ, β̂δ) and (α̂1δ�, α̂2δ�, β̂δ�) respectively, maximize functions

δ(α1, α2, β) = l(α1, α2, β) + ρ(α1, α2, β)

n
and

δ�
u(α1, α2, β) = δ(α1, α2, β) + logu(α1, α2, β)

n
.

Then using the TK method we express the estimate I as

I =
√

|��
u|

|�| exp
[
n
{
δ�
u(α̂1δ�, α̂2δ�, β̂δ�) − δ(α̂1δ, α̂2δ, β̂δ)

}]
, (13)

where |�| and |��
u| are determinant of negatives of inverse hessian of δ(α1, α2, β) and

δ�
u(α1, α2, β) computed at (α̂1δ, α̂2δ, β̂δ) and (α̂1δ�, α̂2δ�, β̂δ�) respectively. The related com-

putations of |�| and |��
u| are provided in Appendix B. Bayes estimates of multicomponent

reliability can be evaluated easily using both the approaches as discussed above. However,
these methods are not useful in finding credible intervals of the reliability. So next we discuss
Metropolis–Hastings (MH) algorithm which can be used to obtain both Bayes estimates and
credible intervals.

3.2.3 Metropolis–Hastings algorithm. We use the Metropolis–Hastings algorithm (see,
Metropolis et al. (1953) and Hastings (1970)) to compute the Bayes estimate and credible
intervals of Rs,k . It is seen that marginal posterior distributions of α1 and α2 given β and
observed data turn out to be gamma distributions respectively. However, the corresponding
marginal distribution of β appears in an unknown form. Thus, we have

α1 | β,data ∼ Gα1

(
nk + a1, b1 +

n∑
i=1

k∑
j=1

(Rj + 1) log
(
1 + x

β
ij

))
,

α2 | β,data ∼ Gα2

(
n + a2, b2 +

n∑
i=1

(Si + 1) log
(
1 + x

β
ij

))
,

and

π(β | α1, α2,data) ∝ βn(k+1)+a3−1e−βb3

(
n∏

i=1

y
β−1
i

(
1 + y

β
i

)−1

)(
n∏

i=1

k∏
j=1

x
β−1
ij

(
1 + x

β
ij

)−1

)
.

We can simulate α1 and α2 from the given gamma posterior distributions, however β cannot
be simulated directly. To simulate samples from the posterior distribution of β , we use the
MH algorithm with a normal proposal distribution. The following steps are required to obtain
samples and desired estimates.

Step 1: Choose an initial guess (α10, α20, β0) of (α1, α2, β).
Step 2: Set t = 1.
Step 3: Simulate β(t) from π(β | α1(t−1), α2(t−1),data).
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Step 4: Simulate α1(t) from Gα1(nk + a1, b1 +∑n
i=1

∑k
j=1(Rj + 1) log(1 + x

β
ij )).

Step 5: Simulate α2(t) from Gα2(n + a2, b2 +∑n
i=1(Si + 1) log(1 + y

β
i )).

Step 6: Compute R(t)s,k =∑k
i=s

∑k−i
j=0

(
k

i

)(
k − i

j

)
(−1)j

α2(t)

(α1(t)(i+j)+α2(t))
.

Step 7: Set t = t + 1.
Step 8: Repeat steps 3–7, M times.
Bayes estimate of stress-strength reliability under the square error loss is now obtained as

R̃MH
s,k = 1

M

M∑
i=1

R(t)s,k.

We have employed the method of Chen and Shao (1999) to construct the 100(1 − ξ)% HPD
interval of Rs,k .

4 Estimation of Rs,k when β is known

In this section, we obtain maximum likelihood and Bayes estimators of the system reliability
under the assumption that common shape parameter β is known. We also derive the exact
expression for Bayes estimate and obtain uniformly minimum variance unbiased estimator as
well. For comparison purposes, approximate Bayes estimates are also discussed.

4.1 Maximum likelihood estimator of Rs,k

Here we obtain maximum likelihood estimator of Rs,k based on progressive Type II censored
data. The corresponding likelihood function is defined in equation (5). The log-likelihood
function of α1 and α2 is given by

l(α1, α2 | β,data) = nk logα1 + n logα2 − (α1 + 1)

n∑
i=1

k∑
j=1

log
(
1 + x

β
ij

)

− α2

n∑
i=1

Si log
(
1 + y

β
i

)− α1

n∑
i=1

k∑
j=1

Rj log
(
1 + x

β
ij

)+ C, (14)

where C is the constant term. By partially differentiating (14) with respect to α1 and α2, the
likelihood equations are obtained as

∂l

∂α1
= nk

α1
−

n∑
i=1

k∑
j=1

(Rj + 1) log
(
1 + x

β
ij

)= 0,

∂l

∂α2
= n

α2
−

n∑
i=1

(Si + 1) log
(
1 + y

β
i

)= 0.

Subsequently, MLEs of unknown parameters turn out to be

α̂1 = nk∑n
i=1

∑k
j=1(Rj + 1) log(1 + x

β
ij )

, α̂2 = n∑n
i=1(Si + 1) log(1 + y

β
i )

.

In sequel, MLE of the system reliability Rs,k is obtained as

R̂s,k =
k∑

i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j

α̂2

(α̂1(i + j) + α̂2)
.
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The asymptotic distribution of R̂s,k is normal with mean Rs,k and variance

σ 2
Rs,k

=
(

∂Rs,k

∂α1

)2 α2
1

nk
+
(

∂Rs,k

∂α2

)2 α2
2

n
,

where (
∂Rs,k

∂α1
)2 and (

∂Rs,k

∂α2
)2 are computed in Section (3.1). Thus 100(1 − ξ)% confidence

interval of Rs,k is obtained as (R̂s,k ± qξ/2σ̂Rs,k
) where qξ/2 is the upper (ξ/2)th quantile of

the standard normal distribution. In next section, we derive the uniformly minimum variance
unbiased estimator (UMVUE) of Rs,k .

4.1.1 UMVUE of Rs,k . Here uniformly minimum variance unbiased estimator of Rs,k is
developed using progressive Type II censored data when the common parameter β is known.
The corresponding likelihood function is obtained in equation (5) and the corresponding log-
likelihood is similar to the function as given in equation (14) with β being known. We observe
from equation (14) that

U =
n∑

i=1

(Si + 1) log
(
1 + y

β
i

)
and V =

n∑
i=1

n∑
j=1

Rj log
(
1 + x

β
ij

)
,

are the complete sufficient statistics for α1 and α2 when β is known. Further Y ∗
i = log(1 +

y
β
i ), i = 1,2, . . . , n, denotes a progressive Type II censored sample from the exponential

distribution with mean α−1
2 . Next, we consider the following transformation

W1 = NY ∗
1 ,

W2 = (N − S1 − 1)
(
Y ∗

2 − Y ∗
1
)
,

...

Wn = (N − S1 − · · · − Sn−1 − n + 1)
(
Y ∗

n − Y ∗
n−1

)
,

and observe that W1,W2, . . . ,Wn are independent and identically distributed as exponential
distribution with mean α−1.

2 . Also note that U =∑n
i=1 Wi =∑n

i=1(Si + 1)Y ∗
i has a gamma

distribution with density function given as

fU(u) = αn
2un−1e−α2u


n
, u > 0.

Further considering X∗
ij = − log(1 + X

β
ij ), i = 1, . . . , n, j = 1, . . . , k and V =∑n

i=1
∑k

j=1(Rj + 1)X∗
ij , we obtain the conditional distribution of Y ∗

1 given U = u as

fY1∗|U=u(y) = N(n − 1)(u − Ny)n−2

un−1 , 0 < y < u/N,

and the conditional distribution of X∗
11 given V = v is given by

fX∗
11|V =v(x) = K(nk − 1)(v − Kx)nk−2

vnk−1 , 0 < x < v/K.

Theorem 4.1. The UMVUE φ̂(α1, α2) of φ(α1, α2) = α2
α2+(i+j)α1

, on the basis of statistics U

and V , is obtained as

R̂B
s,k =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 −
n−1∑
l=0

(−1)l
(

v

u(i + j)

)l
(n−1

l

)
(nk+l−1

l

) , if v < u(i + j),

nk−1∑
l=0

(−1)l
(

u(i + j)

v

)l
(nk−1

l

)
(n+l−1

l

) , if v > u(i + j).



354 R. K. Maurya and Y. M. Tripathi

Proof. Recall that Y ∗
1 and X∗

11 are exponentially distributed with mean (Nα2)
−1 and

(Kα1)
−1 respectively. Thus,

ψ
(
X∗

11, Y
∗
1
)=

{
1, if KX∗

11 > (i + j)NY ∗
1 ,

0, if KX∗
11 < (i + j)NY ∗

1 ,
(15)

is an unbiased estimator of φ(α1, α2) and so

φ̂(α1, α2) = E
[
ψ
(
X∗

11, Y
∗
1
) | U = u,V = v

]= ∫ ∫
A

fX∗
11|V =v(x)fY1

∗|U=u(y) dx dy (16)

where A = {(x, y) : 0 < x < v/K,0 < y < u/N,Ny(i + j) < kx}. For v < u(i + j), we use
the Lemma 1 of Basirat, Baratpour and Ahmadi (2015) and then integral (16) reduces to:

φ̂(α1, α2) = N(n − 1)K(nk − 1)

un−1vnk−1

∫ v/k

0

∫ Kx/(N(i+j))

0
(u − Ny)n−2(v − Kx)nk−2 dy dx

= 1 − K(nk − 1)

un−1vnk−1

∫ v/K

0
(v − Kx)nk−2

(
u − Kx

i + j

)n−1
dx

{
put : Kx

v
= t

}

= 1 − (nk − 1)

∫ 1

0
(1 − t)nk−2

(
1 − vt

u(i + j)

)n−1
dt

= 1 −
n−1∑
l=0

(−1)l
(

v

u(i + j)

)l
(n−1

l

)
(nk+l−1

l

) .

Proceeding similarly, we have φ̂(α1, α2) =∑nk−1
l=0 (−1)l(

u(i+j)
v

)l
(nk−1

l

)
(n+l−1

l

) for v > u(i + j).

Finally, UMVUE of Rs,k is obtained as

R̃UMV
s,k =

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j φ̂(α1, α2).

�

4.2 Bayesian estimation of Rs,k

In this section, we compute Bayes estimate of the reliability using progressive Type II cen-
sored data when the parameter β is known. We assume that α1 and α2 are statistically inde-
pendent and a priori distributed as gamma G(a1, b1) and G(a2, b2) distributions, respectively.
The joint posterior density of α1 and α2 given the observed data is obtained as

π(α1, α2 | β,data) = (b1 + V )nk+a1(b2 + U)n+a2


(nk + a1)
(n + a2)
α1

nk+a1−1α2
n+a2−1e−α1(b1+V )−α2(b2+U).

Then Bayes estimate of the reliability under the square error loss function turns out to be

R̂B
s,k =

∫ ∞
0

∫ ∞
0

Rs,kπ(α1, α2 | β,data) dα1 dα2

=
k∑

i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j

∫ ∞
0

∫ ∞
0

α2

α2 + α1(i + j)
π(α1, α2 | β,data) dα1 dα2.
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This can be rewritten as (see, Nadar and Kızılaslan (2016))

R̂B
s,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j

(1 − z)n+a2(n + a2)

u
2F1(w,n + a2 + 1;w + 1, z),

if |z| < 1,

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j

n + a2

(1 − z)nk+a1w
2F1

(
w,nk + a1 + 1;w + 1,

z

1 − z

)
,

z < −1,

where w = nk + n + a1 + a2 and z = 1 − (U+b2)(i+j)
V +b1

. We also note that

2F1(α1, α2, β, z) = 1

B(α2, β − α2)

∫ 1

0
tα2−1(1 − t)β−α2−1(1 − tz)−α1 dt, |z| < 1,

is the hypergeometric series.
Thus in this case closed form expression of Bayes estimate for the reliability is obtained.

In general, it is relatively difficult to obtain closed form expression for such estimate. In
such situations, we can use Lindley method, TK method and importance sampling procedure.
For comparison purposes, we also obtain Bayes estimate of Rs,k using these approximation
procedures.

4.2.1 Lindley method. In case the common shape parameter β is known, the Bayes estimate
of Rs,k using the Lindley method leads to the following expression

I = u + (u1p1 + u2p2 + p3) + 0.5
[
P(u1σ11 + u2σ12) + Q(u1σ21 + u2σ22)

]
, (17)

where

pi = ρ1σi1 + ρ2σi2, i = 1,2,

p3 = 0.5(u11σ11 + u12σ12 + u21σ21 + u22σ22),

P = l111σ11 + l121σ12 + l211σ21 + l221σ22,

Q = l112σ11 + l122σ12 + l212σ21 + l222σ22.

Also note that ρ1 = a1−1
α1

− b1, ρ2 = a2−1
α2

− b2 and σij is the element of the matrix [−lij ]−1,
i, j = 1,2. For our case u(α1, α2) = Rs,k . We mention that each expression listed above is
computed at the MLE (α̂1, α̂2).

4.2.2 Tierney and Kadane method. In this section, Bayes estimator of the reliability is ob-
tained using the TK method when samples are progressive Type II censored. We define fol-
lowing functions

δ(α1, α2) = l(α1, α2 | β,data) + ρ(α1, α2)

n
and δ�

u(α1, α2) = δ(α1, α2) + logu(α1, α2)

n
.

Then approximate the estimate I as

I =
√

|��
u|

|�| exp
[
n
{
δ�
u(α̂1δ�, α̂2δ�) − δ(α̂1δ, α̂2δ)

}]
, (18)

where |�| and |��
u| denote the determinant of the negatives of inverse hessian of δ(α1, α2)

and δ�
u(α1, α2) evaluated at (α̂1δ, α̂2δ) and (α̂1δ�, α̂2δ�), respectively.
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4.2.3 MCMC method. Note that the marginal posterior distributions of α1 and α2 are of the
following form

α1 | data ∼ Gamma(nk + a1, b1 + V ),

α2 | data ∼ Gamma(n + a2, b2 + U),

where U and V are defined in Section 4.1.1. We generate samples from these distributions
using the Gibbs sampling. The desired steps are as follows:

Step 1: Choose an initial guess (α10, α20) of (α1, α2).
Step 2: Set t = 1.
Step 3: Generate α1(t) from Gα1(nk + a1, b1 +∑n

i=1
∑n

j=1(Rj + 1) log(1 + x
β
ij )).

Step 4: Generate α2(t) from Gα2(n + a2, b2 +∑n
i=1(Si + 1) log(1 + y

β
i )).

Step 5: Compute R(t)s,k =∑k
i=s

∑k−i
j=0

(k
i

)(k−i
j

)
(−1)j

α2(t)

(α1(t)(i+j)+α2(t))
.

Step 6: Set t = t + 1.
Step 7: Repeat steps 3–6, M times.
We use these replicates to obtain estimate of Rs,k under the squared error loss function as

R̃MH
s,k = 1

M

M∑
i=1

R(t)s,k.

We have employed the method of Chen and Shao (1999) to compute the 100(1 − ξ)% HPD
interval of Rs,k .

5 Simulation study

In this section, we conduct a Monte Carlo simulation study to compare the performance of
different methods such as MLE, UMVUE and Bayes estimates computed under progressive
Type II censoring. We compare the performance of these estimates in terms of their mean
square error (MSE) and bias values. The comparison is made on the basis of 5000 replica-
tions of each estimate. We have performed all computations on R statistical software. We
arbitrarily take true parameter values of Burr XII distributions as (α1, α2, β) = (1.5,1,2).
Then we use the following algorithm to simulated data for various censoring schemes (see
also, Balakrishnan and Sandhu (1995)).

• Generate a given number of k independent observations (D1, . . . ,Dk) from the uniform
U(0,1) distribution.

• Define Ei = D
1/(i+∑k

j=k−i+1 Rj )

i , i = 1,2, . . . , k.
• Consider Ui:k:K = 1−(EkEk−1 . . .Ek−i+1) for i = 1,2, . . . , k. Then U1:k:K,U2:k:K, . . . ,

Uk:k:K denotes a progressive Type II censored sample from the uniform U(0,1) distribution.
• We now consider Xi:k:K = F−1

X (Ui:k:K) where F−1
X (·) is inverse of the Burr XII cumu-

lative distribution function. Then X1:k:K,X2:k:K, . . . ,Xk:k:K denotes a progressive censored
sample for the strength variable in a single component system. In a similar manner, we can
simulate multicomponent progressive censored data by considering n out of N systems cou-
pled with k out of K components. Progressively censored data for the stress variable can
be generated similarly. We also mention that mean square error of an estimator R̂ of the
reliability R is computed as n−1∑n

i=1(R̂ − Ri)
2.

Bayes estimates of the system reliability are computed using gamma prior distributions
where hyperparameters are taken as a1 = 3, b1 = 2, a2 = 2, b2 = 2, a3 = 2, b3 = 1. In Table 1,
we have tabulated different censoring schemes such as R1, . . . ,R8 for strength variables and
S1, . . . , S8 for stress variables. These censoring schemes are tabulated taking different values
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Table 1 Censoring scheme for different (N,n,K,k)

(K, k) C.S (N,n) C.S

(8,4) R1 (4,0∗3) (15, 10) S1 (5,0∗9)

R2 (0∗3,4) S2 (0∗9,5)

R3 (0∗2,4,0) S3 (0∗4,5,0∗5)

(10,6) R4 (4,0∗5) (20, 15) S4 (5,0∗19)

R5 (0∗5,4) S5 (0∗19,5)

R6 (0∗3,4,0∗3) S6 (0∗7,5,0∗7)

(15,10) R7 (5,0∗9) (25, 15) S7 (10,0∗14)

R8 (0∗5,5) S8 (0∗14,10)

R9 (0∗5,5,0∗4) S9 (0∗7,10,0∗7)

Table 2 ML and MH estimates of Rs,k when the common parameter β is unknown

s = 1 s = 2

(N,n,K,k) C.S Rt R̂ML R̃MH Rt R̂ML R̃MH

(15, 10, 8, 4) (R1, S1) 0.6844 0.6931 0.6844 0.4740 0.4938 0.4743
0.0106 0.0002 0.0125 0.0001

(R2, S2) 0.7559 0.6846 0.5485 0.4753
0.0093 0.0002 0.0110 0.0002

(R3, S3) 0.7367 0.6844 0.5327 0.4754
0.0088 0.0002 0.0109 0.0003

(20, 15, 10, 6) (R4, S4) 0.7493 0.7398 0.7482 0.5823 0.5773 0.5832
0.0073 0.0003 0.0098 0.0002

(R5, S5) 0.7998 0.7496 0.6455 0.5826
0.0054 0.0002 0.0086 0.0003

(R6, S6) 0.7774 0.7491 0.6142 0.5812
0.0054 0.0003 0.0073 0.0003

(25, 15, 15, 10) (R7, S7) 0.8156 0.8004 0.8191 0.6927 0.6819 0.6979
0.0074 0.0002 0.0102 0.0002

(R8, S8) 0.8341 0.8164 0.7176 0.6937
0.0029 0.0003 0.0050 0.0002

(R9, S9) 0.8216 0.8124 0.7058 0.6913
0.0048 0.0002 0.0076 0.0001

of (N,n,K, k) where N denotes total number of systems required for the experiment, K

denotes number of components in each system and n is the total number of observed system
with k components observed in each system. In simulation, we have taken two different
values 1 and 2 of s which means, we obtain estimate of the system reliability either when
at least one component survives or at least two components survive the given stress level.
In Table 2, we have tabulated MLE (R̂ML

s,k ) and MH (R̃MH
s,k ) estimates of Rs,k along with

MSE values when the shape parameter β is unknown. In this table, Rt denotes the true value
of Rs,k corresponding to a particular censoring scheme. Also for each method, the upper
value denotes the estimated value of reliability and immediate lower value is the associated
MSE. Similarly in Table 3, we have computed Lindley (R̃LA

s,k ) and TK (R̃TK
s,k ) estimates along

with their MSEs. From Tables 2–3, we observe that Bayes estimates of the reliability, in
general, perform better than MLE as far as MSE and bias values are concerned. In fact, the
MH procedure provides relatively better estimates followed by TK and Lindley methods,
respectively. We also note that MSEs tend to decrease as the effective sample size increases.
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Table 3 Lindley and TK estimates of Rs,k when the common parameter β is unknown

s = 1 s = 2

(N,n,K,k) C.S Rt R̃LA R̃TK Rt R̃LA R̃TK

(15, 10, 8, 4) (R1, S1) 0.6844 0.6917 0.6795 0.4740 0.4632 0.4458
1.493 × 10−5 1.425 × 10−5 4.665 × 10−5 1.19 × 10−5

(R2, S2) 0.7541 0.6434 0.5588 0.4448
6.377 × 10−5 1.555 × 10−5 2.748 × 10−5 2.626 × 10−5

(R3, S3) 0.7392 0.6524 0.5312 0.4394
6.178 × 10−5 1.606 × 10−5 1.837 × 10−5 3.228 × 10−5

(20, 15, 10, 6) (R4, S4) 0.7493 0.7416 0.7407 0.5823 0.5493 0.5634
9.075 × 10−6 2.663 × 10−6 5.310 × 10−6 1.949 × 10−6

(R5, S5) 0.7989 0.7257 0.6602 0.5626
6.147 × 10−6 1.410 × 10−6 4.084 × 10−6 9.338 × 10−6

(R6, S6) 0.7746 0.7299 0.6298 0.5592
2.185 × 10−6 5.287 × 10−6 6.762 × 10−6 3.042 × 10−6

(25, 15, 15, 10) (R7, S7) 0.8156 0.8020 0.8011 0.6927 0.6844 0.6882
3.200 × 10−7 2.831 × 10−7 6.739 × 10−7 9.125 × 10−7

(R8, S8) 0.8278 0.7941 0.6891 0.6858
2.972 × 10−7 1.339 × 10−7 4.112 × 10−7 9.550 × 10−7

(R9, S9) 0.8131 0.7982 0.6883 0.6862
3.901 × 10−7 9.046 × 10−7 4.948 × 10−7 7.433 × 10−7

Table 4 Interval estimates of Rs,k when the common parameter β is unknown

(N,n,K,k) C.S s = 1 Rt AS HPD s = 2 Rt AS HPD

(15, 10, 8, 4) (R1, S1) 0.6844 0.4196 0.1363 0.4740 0.6750 0.1339
0.918 0.998 0.982 0.993

(R2, S2) 0.3576 0.1351 0.6164 0.1334
0.897 0.997 0.995 0.998

(R3, S3) 0.3822 0.1347 0.6502 0.1311
0.930 0.999 0.993 0.995

(20, 15, 10, 6) (R4, S4) 0.7493 0.2697 0.1275 0.5823 0.4264 0.1426
0.867 0.996 0.944 0.997

(R5, S5) 0.2395 0.1267 0.4065 0.1409
0.841 0.998 0.966 0.998

(R6, S6) 0.2584 0.1269 0.4263 0.1407
0.886 0.994 0.976 0.997

(25, 15, 15, 10) (R7, S7) 0.8156 0.1909 0.1070 0.6927 0.3027 0.1209
0.729 0.998 0.839 0.999

(R8, S8) 0.1837 0.1031 0.3016 0.1187
0.863 0.997 0.944 0.999

(R9, S9) 0.1953 0.1017 0.3169 0.1151
0.812 0.999 0.905 0.995

We have also compared different interval estimates in terms of average length (AL) and
coverage probabilities (CPs). Note that CP of an interval denotes the proportion that associ-
ated confidence interval contains the true unknown parameter. In Table 4, we have tabulated
AL and CPs of asymptotic (AS) and HPD intervals. In this table for each censoring scheme
and for each method, the first value denotes AL and immediate lower value denotes the cor-
responding CP. From this table, it is observed that average length of asymptotic confidence
interval tend to remain wider than the corresponding HPD interval. Further average length of
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Table 5 UMVUE and exact Bayes estimates of Rs,k when the common parameter β is known

s = 1 s = 2

(N,n,K,k) C.S Rt R̃UMV R̃EB Rt R̃UMV R̃EB

(15, 10, 8, 4) (R1, S1) 0.6844 0.8256 0.6917 0.4740 0.6336 0.4913
0.0276 0.0002 0.0390 0.0052

(R2, S2) 0.5934 0.6901 0.3891 0.4850
0.0217 0.0074 0.0186 0.0003

(R3, S3) 0.7307 0.6886 0.5266 0.4707
0.0144 0.0077 0.0169 0.0009

(20, 15, 10, 6) (R4, S4) 0.7493 0.8481 0.7605 0.5823 0.7135 0.6037
0.0361 0.0074 0.1415 0.0161

(R5, S5) 0.6668 0.7540 0.4416 0.5901
0.0973 0.0075 0.4039 0.0054

(R6, S6) 0.7877 0.7524 0.6622 0.5872
0.0494 0.0048 0.3679 0.0086

(25, 15, 15, 10) (R7, S7) 0.8156 0.8912 0.8321 0.6927 0.7983 0.7190
0.0677 0.0006 0.0246 0.0024

(R8, S8) 0.7201 0.8264 0.5833 0.7174
0.0124 0.0016 0.1217 0.0089

(R9, S9) 0.8428 0.8210 0.7378 0.7013
0.0065 0.0002 0.0144 0.0003

both the intervals tend to decrease as the effective sample size increases. The coverage prob-
abilities of both intervals are quite satisfactory and remain in reasonable range of the nominal
level.

We finally consider the case where common shape parameter β is known. We simulate
stress and strength variables for (α1, α2) value as suggested above when β = 2. In Table 5,
we have presented UMVUE and exact Bayes estimate of Rs,k along with respective MSEs
using various censoring schemes. Lindley and TK estimates along with their MSEs are listed
in Table 6 and similarly in Table 7, we have presented MLE and MCMC estimates. From
these tables, we observe that maximum likelihood estimates of the reliability show good
behavior compared to the corresponding UMVUE estimates. However, Bayes estimates show
superior performance than these two estimates. We further observe that TK estimates have
an advantage over Lindley estimates. Also proposed approximate Bayes estimates remain
marginally close to the Exact Bayes estimates. In fact, MH and TK procedures provide quite
good results in this regard. We also note that MSEs of all the proposed estimates tend to
decrease with an increase in effective sample size.

In Table 8, we have presented average lengths and coverage probabilities of asymptotic
and HPD intervals for different censoring schemes. From this table, we observe that gener-
ally average length of HPD intervals tend to remain shorter than the corresponding asymptotic
intervals. Further average lengths of both the intervals tend to decrease when effective sam-
ple size increases. It is also seen that coverage probabilities of both the intervals are quite
satisfactory.

6 Data analysis

In this section, we discuss a pair of real data sets for illustration purposes.

6.1 Real data 1

In this example, one of our primary interest is to build a situation regarding the excessive
drought. If the water capacity of a reservoir in a specific region in May, at least one year
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Table 6 Lindley and TK estimates of Rs,k when the common parameter β is known

s = 1 s = 2

(N,n,K,k) C.S Rt R̃LA
s,k R̃TK

s,k Rt R̃LA
s,k R̃TK

s,k

(15, 10, 8, 4) (R1, S1) 0.6844 0.6742 0.6902 0.4740 0.5271 0.4896
6.679 × 10−5 2.792 × 10−5 4.653 × 10−5 6.827 × 10−5

(R2, S2) 0.6762 0.6888 0.5284 0.4817
3.426 × 10−5 1.886 × 10−5 1.010 × 10−5 5.141 × 10−5

(R3, S3) 0.6782 0.6875 0.5281 0.4810
1.866 × 10−5 2.214 × 10−5 2.231 × 10−5 4.019 × 10−5

(20, 15, 10, 6) (R4, S4) 0.7494 0.7379 0.7551 0.5823 0.648 0.5947
5.462 × 10−6 8.585 × 10−6 7.646 × 10−6 2.490 × 10−5

(R5, S5) 0.7395 0.7558 0.6495 0.5917
2.787 × 10−6 2.486 × 10−6 2.038 × 10−6 5.149 × 10−6

(R6, S6) 0.7418 0.7556 0.6483 0.5903
3.454 × 10−6 7.965 × 10−6 4.131 × 10−6 2.443 × 10−6

(25, 15, 15, 10) (R7, S7) 0.8156 0.8012 0.8181 0.6927 0.8404 0.7014
1.375 × 10−7 3.659 × 10−7 2.009 × 10−7 6.890 × 10−6

(R8, S8) 0.8028 0.8177 0.8419 0.7017
7.462 × 10−6 1.643 × 10−7 6.784 × 10−6 3.633 × 10−7

(R9, S9) 0.8014 0.8165 0.8398 0.6904
2.749 × 10−7 1.228 × 10−7 2.231 × 10−7 5.543 × 10−7

Table 7 ML and MCMC estimates of Rs,k when the common parameter β is known

s = 1 s = 2

(N,n,K,k) C.S Rt R̂ML R̃MH Rt R̂ML R̃MH

(15, 10, 8, 4) (R1, S1) 0.6844 0.7323 0.6835 0.4740 0.5128 0.4736
0.0103 1.125 × 10−5 0.0109 1.025 × 10−5

(R2, S2) 0.7193 0.6834 0.5199 0.4733
0.0107 1.1000 × 10−5 0.0123 1.091 × 10−5

(R3, S3) 0.7045 0.6836 0.5083 0.4733
0.0112 1.099 × 10−5 0.0118 1.0623 × 10−5

(20, 15, 10, 6) (R4, S4) 0.7494 0.7856 0.7486 0.5823 0.6241 0.5817
0.0068 1.595 × 10−5 0.0084 1.907 × 10−5

(R5, S5) 0.7790 0.7486 0.6175 0.5818
0.0064 1.672 × 10−5 0.0087 2.051 × 10−5

(R6, S6) 0.7503 0.7484 0.6083 0.5817
0.0066 1.786 × 10−5 0.0079 2.101 × 10−5

(25, 15, 15, 10) (R7, S7) 0.8156 0.8559 0.8148 0.6927 0.7444 0.6912
0.0047 1.753 × 10−5 0.0080 2.684 × 10−5

(R8, S8) 0.8467 0.8144 0.7384 0.6918
0.0048 1.776 × 10−5 0.0076 2.617 × 10−5

(R9, S9) 0.8442 0.8147 0.7347 0.6919
0.0053 1.742 × 10−5 0.0078 2.654 × 10−5

out of the next 5 years, is more than the amount of water achieved in November of the
previous year, the claim will be that there will be no excessive drought afterwards. For this
purpose, we try to analyze the monthly data from Shasta Reservoir in California, (see also,
Kızılaslan and Nadar (2016) and Kohansal (2017)). This data set is available on the website
“http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA”. The data describe, from the flood

http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
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Table 8 Interval estimates of Rs,k when the common parameter β is known

s = 1 s = 2

(N,n,K,k) C.S Rt AS HPD Rt AS HPD

(15, 10, 8, 4) (R1, S1) 0.6844 0.4232 0.0713 0.4740 0.6823 0.0700
0.937 0.989 0.993 0.981

(R2, S2) 0.4255 0.0715 0.6811 0.0702
0.927 0998 0.996 0.947

(R3, S3) 0.4213 0.0715 0.6873 0.0703
0.928 0.976 0.992 0.975

(20, 15, 10, 6) (R4, S4) 0.7494 0.2731 0.0685 0.5823 0.4397 0.0760
0.876 0.983 0.968 0.968

(R5, S5) 0.2768 0.0685 0.4389 0.0759
0.879 0.985 0.970 0.991

(R6, S6) 0.2749 0.0686 0.4374 0.0759
0.892 0.993 0.977 0.985

(25, 15, 15, 10) (R7, S7) 0.8156 0.1995 0.0625 0.6927 0.317 0.0762
0.836 0.917 0.892 0.998

(R8, S8) 0.1992 0.0628 0.3179 0.0762
0.806 0.998 0.898 0.987

(R9, S9) 0.1989 0.0625 0.3168 0.0760
0.809 0.997 0.903 0.991

management perspective, the amount of water discharged in rivers, amount of water storage
in the reservoirs, precipitation accumulation, and water content in snow pack. The maximum
and the minimum water levels of the reservoir are generally observed in May and November
respectively. Kızılaslan and Nadar (2016) and Nadar and Kızılaslan (2016) have studied such
data in different context. We aim to make inference in view to take precautions of extreme
drought situations under progressive Type II censoring. In complete sample case, with k = 5
and s = 1, Y1 denotes the capacity of November 1970 and X11, . . . ,X15 denote capacities of
September during 1971-1975. Similarly let Y2 denotes the capacity of November 1976 and
X21, . . . ,X25 denote capacities of September during 1977-1981. This process is continued up
to 2017. Thus, N (= 8) data are obtained for Y . For computational simplifications, we divided
each data point by 4,552,000 which is the total capacity of Shasta reservoir. The transformed
data sets are given below as:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.719442 0.717597 0.728603 0.803669 0.784161
0.138533 0.753054 0.690092 0.729504 0.544859
0.794552 0.711797 0.434490 0.705470 0.463141
0.460452 0.359703 0.294343 0.369772 0.681406
0.689022 0.678561 0.507104 0.755947 0.730997
0.483226 0.561995 0.694063 0.479537 0.666704
0.412817 0.304148 0.389707 0.729082 0.733984
0.418714 0.254192 0.352043 0.617617 0.742939

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.767728
0.343146
0.724319
0.400454
0.443879
0.633937
0.686972
0.563329

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Table 9 Goodness of fit for the real data 1

Data X Data Y

PDF MLEs K-S p-value MLEs K-S p-value

Burr XII α̂ = 7.1409, β = 4.1848 0.2244 0.0299 α̂ = 9.8633, β = 4.7597 0.1901 0.8863
Burr III α̂ = 0.0614, β = 26.6416 0.3009 0.0011 α̂ = 0.0721, β = 23.2187 0.3576 0.2017
IER α̂ = 1.6056, β = 0.2620 0.2521 0.0099 α̂ = 4.3115, β = 0.5583 0.2094 0.8082

Table 10 Estimates of Rs,k for the complete data 1

MLEs R̂ML
s,k R̃LA

s,k R̃TK
s,k R̃MH

s,k AS HPD

α̂1 = 3.6209 α̂2 = 3.7801
β̂ = 2.2269

0.8436 0.8420 0.8614 0.8877 (0.4259, 1.2612) (0.8842, 0.8909)

We also verify whether Burr XII distributions can be used to analyze these two data sets.
We fit the given data sets using Burr XII distributions and for comparison purposes, we also
consider Burr III distribution and inverted Rayleigh (IER) distribution. We have computed
MLEs of unknown parameters of all the competing models in Table 9 and have also re-
ported values of Kolmogorov–Smirnov (K-S) statistic along with associated p-values. Based
on these estimates, we observe that Burr XII distributions fit the data reasonably good. In
Table 10, we have presented MLEs and Bayes estimates of the multicomponent reliability
along with 95% asymptotic and HPD intervals for the complete data case. Bayes estimates
are computed with respect to the noninformative prior distribution. It is seen that different
estimates of the multicomponent reliability marginally remain close to each other. Next we
compute different estimates of the reliability under progressive Type II censoring by arbitrar-
ily considering two different schemes given below as:

Scheme 1: R = (1,0,0,0,0), S = (2,0,0,0,0,0,0) (N = 8, K = 5, n = 6, k = 4, s = 1),
Scheme 2: R = (0,0,0,2), S = (0,0,0,4) (N = 8, K = 5, n = 4, k = 3, s = 1).
Corresponding to the first censoring scheme the observed data are obtained as:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.717597 0.728603 0.803669 0.784161
0.359703 0.294343 0.369772 0.681406
0.678561 0.507104 0.755947 0.730997
0.561995 0.694063 0.479537 0.666704
0.304148 0.389707 0.729082 0.733984
0.254192 0.352043 0.617617 0.742939

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.767728
0.400454
0.443879
0.633937
0.686972
0.563329

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The estimated values of Rs,k using maximum likelihood and Bayesian approaches are listed
in Table 11. From this table, we observe that these estimates relatively remain close to each
other. The 95% asymptotic confidence interval and HPD interval of system reliability are also
reported in this table. We see that length of noninformative HPD interval is shorter than the
corresponding asymptotic interval. We also note that results are very much consistent with
the simulation study.

Similarly for the second censoring scheme the observed data are:

X =

⎡
⎢⎢⎣

0.719442 0.717597 0.728603
0.138533 0.753054 0.690092
0.794552 0.711797 0.434490
0.460452 0.359703 0.294343

⎤
⎥⎥⎦ and Y =

⎡
⎢⎢⎣

0.767728
0.343146
0.724319
0.400454

⎤
⎥⎥⎦



Burr XII distribution 363

Table 11 Estimates of Rs,k under censoring scheme 1 for the real data 1

MLEs R̂ML
s,k R̃LA

s,k R̃TK
s,k R̃MH

s,k AS HPD

α̂1 = 3.1876 α̂2 = 2.4934
β̂ = 2.3547

0.7324 0.7269 0.7248 0.7327 (0.1858, 1.2790) (0.7179, 0.7476)

Table 12 Estimates of Rs,k under censoring scheme 2 for the real data 1

MLEs R̂ML
s,k RLA

s,k RTK
s,k RMH

s,k AS HPD

α̂1 = 2.4323 α̂2 = 2.8435
β̂ = 2.3988

0.7906 0.7907 0.7909 0.7910 (0.1855, 1.3958) (0.7784, 0.8035)

Estimated values of the system reliability along with confidence intervals are listed in Ta-
ble 12. We draw similar conclusions from this table as well.

6.2 Real data 2

In this example, we analyze another data which is initially discussed in Lyu et al. (1996) and
one may also refer to “www.cse.cuhk.edu.hk/~lyu/book/reliability/DATA/CH4/SS3.DAT”
for some more information on the data which represent failure times of certain software
model. Here X11, . . . ,X15 denote failure times when 120–124 indexing unit fails and Y1 is
the failure time when 125th unit fails. Next X21, . . . ,X25 denote failure times for 126-130
units and Y2 is failure time for 131st units. This process is continued up to the failure of 167th
unit. We consider 8 systems each with 5 components. The complete data set is observed as:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0096 0.0036 0.01200 1.0752 1.6488
5.4600 1.1976 0.01680 0.1428 1.5264
4.7568 0.0912 0.03840 0.3372 1.5408
14.7636 2.9400 1.53360 1.4160 1.3236
1.1004 0.0024 5.93592 1.8036 14.4912
2.1240 0.0096 2.34720 0.1296 0.0012
7.9716 7.8276 0.00360 0.0036 0.0048
6.7380 5.2896 16.94160 0.5292 6.9864

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0037
2.9736
1.4952
0.5508
3.3420
1.9572
0.0108
0.0816

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We divided each data point by 5000 for computational simplifications. We fit the given
data set using the Burr XII distribution along with Lomax model and inverted exponentiated
Pareto distribution (IEPD). We have computed MLEs of unknown parameters of proposed
distributions in Table 13 and have also reported values of K-S statistic with corresponding
p-values. From this table, we observe that the Burr XII distributions fits the data reasonably
good. We mention that censoring schemes defined for the previous data are used for the real
data 2 as well. The observed data under the first censoring scheme are given as:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0036 0.01200 1.0752 1.6488
2.9400 1.53360 1.4160 1.3236
0.0024 5.93592 1.8036 14.4912
0.0096 2.34720 0.1296 0.0012
7.8276 0.00360 0.0036 0.0048
5.2896 16.94160 0.5292 6.9864

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0037
0.5508
3.3420
1.9572
0.0108
0.0816

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

http://www.cse.cuhk.edu.hk/~lyu/book/reliability/DATA/CH4/SS3.DAT
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Table 13 Goodness of fit for the real data 2

Data X Data Y

PDF MLEs K-S p-value MLEs K-S p-value

Burr XII α = 1.3772, β = 0.5518 0.2256 0.03409 α = 1.6727, β = 0.6254 0.2492 0.6172
Lomax α = 0.3157, β = 33.2103 0.2794, 0.0038 α = 0.5076, β = 10.7780 0.2634 0.5503
IEPD α = 0.6556, β = 0.4095 0.2912 0.0023 α = 0.9175, β = 0.4951 0.25662, 0.5995

Table 14 Estimates of Rs,k for the complete data 2

MLEs R̂ML
s,k R̃LA

s,k R̃TK
s,k R̃MH

s,k AS HPD

α̂1 = 1.239 α̂2 = 1.6258
β̂ = 0.73436

0.89163 0.8878 0.8817 0.8924 (0.7563, 1.0269) (0.8724, 0.9102)

Table 15 Estimates of Rs,k under censoring scheme 1 for the real data 2

MLEs R̂ML
s,k R̃LA

s,k R̃TK
s,k R̃MH

s,k AS HPD

α̂1 = 1.1474 α̂2 = 2.0395
β̂ = 0.57406

0.91713 0.9117 0.9115 0.8905 (0.76803, 1.0662) (0.8819, 0.9016)

Table 16 Estimates of Rs,k under censoring scheme 2 for the real data 2

MLEs R̂ML
s,k RLA

s,k RTK
s,k RMH

s,k AS HPD

α̂1 = 1.2305 α̂2 = 0.8676
β̂ = 0.5396

0.64889 0.6569 0.6518 0.6749 (0.3006, 0.9971) (0.5999, 0.7675)

The data sets corresponding to the second censoring scheme are given as:

X =

⎡
⎢⎢⎣

0.0096 0.0036 0.01200
5.4600 1.1976 0.01680
4.7568 0.0912 0.03840
14.7636 2.9400 1.53360

⎤
⎥⎥⎦ and Y =

⎡
⎢⎢⎣

0.0037
2.9736
1.4952
0.5508

⎤
⎥⎥⎦ .

In Table 14, we have presented MLEs and Bayes estimates of the multicomponent relia-
bility along with 95% asymptotic and HPD intervals for the complete data. Bayes estimates
are computed with respect to the noninformative prior distribution. We observe that tabu-
lated estimates of the multicomponent reliability remain marginally close to each other. We
also compute different estimates of the multicomponent reliability under progressive Type II
censoring with schemes as given for the real data 1. In Tables 15 and 16, we have tabulated
various estimates of the reliability under censoring schemes 1 and 2, respectively. It is ob-
served that tabulated estimates of the reliability remain arbitrarily close to each other. Also
length of noninformative HPD intervals are relatively shorter than corresponding asymptotic
intervals. We note that these inferences are very much consistent with the simulation study.
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7 Conclusions

In this article, we have obtained various point and interval estimates of the multicomponent
reliability Rs,k assuming Burr XII distributions under progressive Type II censoring. In fact,
we provided maximum likelihood and several Bayesian estimates of this parametric function
under the assumptions that the common shape parameter may be known or unknown. We used
Lindly method, Tierney and Kadane method and Metropolis Hasting algorithm to obtain de-
sired Bayes estimates of Rs,k under different sampling situations. Additionally UMVUE and
exact Bayes estimates are also computed when the common parameter is known. We con-
structed asymptotic and HPD intervals of the reliability using progressively censored sam-
ples. By means of a simulation study, we observed that Bayes estimates in general perform
better than the corresponding MLEs as far MSE and bias values are concerned. Also asymp-
totic confidence intervals in general are wider than the corresponding HPD intervals. We also
observed that proposed asymptotic and HPD intervals show satisfactory coverage probabil-
ities. Overall, better estimation results for the system reliability may be obtained with the
known common shape parameter.
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k∑
j=1

logxij −
n∑

i=1

yi

)
= 0.
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Finally, |�| can be computed using the following expressions,

∂2δ

∂α2
1

= −(nk + a1 − 1)

nα2
1

,

∂2δ

∂α2
2

= −(n + a2 − 1)

nα2
2

− 1

n

n∑
i=1

(Si + 1)y
β
i logyi

(1 + y
β
i )

,

∂2δ

∂β2 = −1

n

(
n∑

i=1

k∑
j=1

(
α1(Rj + 1) + 1

)xβ
ij (logxij )

2

(1 + x
β
ij )

2
+

n∑
i=1

(
α2(Si + 1) + 1

)yβ
i (logyi)

2

(1 + y
β
i )2

)

− (n(k + 1) + a3 − 1)

nβ2 ,

∂2δ

∂α1 ∂α2
= ∂2δ

∂α2 ∂α1
= 0,

∂2δ

∂α1 ∂β
= ∂2δ

∂β ∂α1
= −1

n

n∑
i=1

k∑
j=1

(Rj + 1)x
β
ij logxij

(1 + x
β
ij )

,

∂2δ

∂α2 ∂β
= ∂2δ

∂β ∂α2
= −1

n

n∑
i=1

(Si + 1)y
β
i logyi

(1 + y
β
i )

.

Next, we observe that |��
u| depends on u(α1, α1, β) and we take Rs,k = u(α1, α2, β) for

computing the desired Bayes estimate. Thus we have,

δ�
u(α1, α2, β) = δ(α1, α2, β) + 1

n
logu(α1, α2, β).

Then we compute (α̂1δ�, α̂2δ�, β̂δ�) by solving following system of equations

∂δ�
u

∂α1
= ∂δ

∂α1
+ 1

n

∂

∂α1
logu(α1, α2, β) = 0,

∂δ�
u

∂α2
= ∂δ

∂α2
+ 1

n

∂

∂α2
logu(α1, α2, β) = 0,

∂δ�
u

∂β
= ∂δ

∂β
+ 1

n

∂

∂β
logu(α1, α2, β) = 0.

Proceeding similarly, we are able to compute |�∗
u| from the second order partial derivatives.

The Bayes estimate of Rs,k is now obtained as

R̃TK
s,k =

√
|��

u|
|�| exp

[
n
{
δ�
u(α̂1δ�, α̂2δ�, β̂δ�) − δ(α̂1δ, α̂2δ, β̂δ)

}]
.
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