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A note on the “L-logistic regression models: Prior sensitivity
analysis, robustness to outliers and applications”

Saralees Nadarajah and Yuancheng Si
School of Mathematics, University of Manchester

Abstract. Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019),
455–479] introduced the L-logistic distribution, studied its properties includ-
ing estimation issues and illustrated a data application. This note derives a
closed form expression for moment properties of the distribution. Some com-
putational issues are discussed.

1 Introduction

Da Paz, Balakrishnan and Bazan (2019) introduced the L-logistic distribution. Its probability
density and cumulative distribution functions are specified by

f (x) = b(1 − m)bmbxb−1(1 − x)b−1

[(1 − m)bxb + mb(1 − x)b]2

and

F(x) =
[
1 + mb(1 − x)b

xb(1 − m)b

]−1
,

respectively, for 0 < x < 1, 0 < m < 1 and b > 0.
Da Paz, Balakrishnan and Bazan (2019) derived properties of the L-logistic distribution,

including quantile function, mode of its probability density function, moments, skewness and
kurtosis. But no closed form was stated for the moments. It was expressed as the following
integral:

E
(
Xt ) =

∫ 1

0

[
1 + 1 − m

m

(
1 − x

x

)1/b]−t

dx. (1)

Da Paz, Balakrishnan and Bazan (2019) stated that “The integral in (1) cannot be expressed
in an analytical form”.

Moments are perhaps the most important properties of any distribution. For example, the
first four moments can be used to describe data fairly well. They are also useful in estimation
and inference. Hence, it is important to have closed form expressions for the moments.

The aim of this note is to show that (1) can be expressed in closed form, involving the
multivariate Wright generalized hypergeometric function, formally defined by

p�q

[
(α1,A1), . . . , (αp,Ap)

(β1,B1), . . . , (βq,Bq)

∣∣∣∣ z
]

=
∞∑

n=0

∏p
j=1 �(αj + Ajn)∏q
k=1 �(βk + Bkn)

zn

n! (2)

for −∞ < z < ∞, where −∞ < αj < ∞, −∞ < βk < ∞, Aj �= 0 and Bk �= 0 for j =
1,2, . . . , p and k = 1,2, . . . , q , see Wright (1935), Mathai and Saxena (1978), Srivastava,
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Gupta and Goyal (1982), Kilbas, Srivastava and Trujillo (2006, equation (1.9)) and Mathai,
Saxena and Haubold (2010). The series in (2) converges for when

� = 1 +
q∑

j=1

Bj −
p∑

j=1

Aj ≥ 0. (3)

In (2), �(·) denotes the gamma function defined by

�(a) =
∫ ∞

0
ta−1 exp(−t) dt.

A related function is the beta function defined by

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt.

They are related by B(a, b) = �(a)�(b)/�(a + b).
The multivariate Wright generalized hypergeometric function has been applied in many

areas: asymptotic analysis for the symbol error rate of single- and multiple-branch MRC and
EGC receivers (El Ayadi and Ismail, 2014); analysis of effective capacity over generalized
fading channels (Ji et al., 2014); expressions for the symbol error rate and capacity of the
H -function fading channel (Alhennawi et al., 2016); effective rate analysis of wireless com-
munication systems over MISO fading channels (You et al., 2017); to mention just a few.
Various software for computing the multivariate Wright generalized hypergeometric function
have been developed, see the cited papers and references therein.

Section 2 gives a closed form expression for (1). Some computational issues associated
with this expression are discussed in Section 3.

2 Main result

Theorem 1 expresses the moments of the L-logistic distribution in terms of the multivariate
Wright generalized hypergeometric function.

Theorem 1. Let X denote a random variable having the L-logistic distribution. Then its t th
moment can be expressed as

E
(
Xt ) = 1

�(t)
3�0

⎡
⎣ (t,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦ , (4)

where c = 1−m
m

.

Proof. Using the Taylor expansion, we can express (1) as

E
(
Y t ) =

∫ 1

0

∞∑
k=0

(−t

k

)
ck

(
1 − x

x

)k/b

dx

=
∞∑

k=0

(−t

k

)
ck

∫ 1

0

(
1 − x

x

)k/b

dx

=
∞∑

k=0

(−t

k

)
ckB

(
1 − k

b
,1 + k

b

)

=
∞∑

k=0

(−t

k

)
ck�

(
1 − k

b

)
�

(
1 + k

b

)
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=
∞∑

k=0

(−t)(−t − 1) · · · (−t − k + 1)

k! ck�

(
1 − k

b

)
�

(
1 + k

b

)

=
∞∑

k=0

(−1)kt (t + 1) · · · (t + k − 1)

k! ck�

(
1 − k

b

)
�

(
1 + k

b

)

=
∞∑

k=0

(−c)k�(t + k)

�(t)k! �

(
1 − k

b

)
�

(
1 + k

b

)
.

The result now follows from the definition in (2). The proof is complete. �

The condition for convergence in (3) holds for all values of t > 0, 0 < m < 1 and b > 0.
Hence, (4) is a valid expression for all values of t > 0, 0 < m < 1 and b > 0.

It follows that the mean, variance, skewness and kurtosis of X are

E(X) = 3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦ ,

Var(X) = 3�0

⎡
⎣ (2,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

−
⎧⎨
⎩3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

⎫⎬
⎭

2

,

Skewness(X) =
[

1

2
3�0

⎡
⎣ (3,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

− 3 3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

× 3�0

⎡
⎣ (2,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

+ 2

⎧⎨
⎩3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

⎫⎬
⎭

3] / [
Var(X)

]3/2

and

Kurtosis(X) =
[

1

6
3�0

⎡
⎣ (4,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

− 2 3�0

⎡
⎣ (1,1),

(
1,−1

b

)
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(
1,

1

b
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∣∣∣∣∣∣ − c

⎤
⎦

× 3�0

⎡
⎣ (3,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦
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+ 6

⎧⎨
⎩3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

⎫⎬
⎭

2

× 3�0

⎡
⎣ (2,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

− 3

⎧⎨
⎩3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦

⎫⎬
⎭

4] / [
Var(X)

]2
.

3 Computational issues

An in-built routine for computing the Fox H function can be found in Mathematica. The
routine is named FoxH and its source code is in http://community.wolfram.com/groups/-/
m/t/57378 Using the relationship between Wright generalized hypergeometric and Fox H

functions, we note that the following line can be used to compute (4):(
1/Gamma[t]) ∗ FoxH

[
a, b, (1 − m)/m

]
,

where a is a list containing {1 − t,1}, {0,−1/b}, {0,1/b} and b is a list containing {0,1}.
This one line command is an efficient way to compute (4). It avoids the need for numerical

integration to compute the moments. Numerical integration needs coding, it wastes time and
effort. The one line command can be employed to compute the moments directly without
any effort. For example, FoxH[{{0,1}, {0,−1/b}, {0,1/b}}, {{0,1}}, (1 − m)/m] will com-
pute the mean of the L-logistic distribution. FoxH[{{−1,1}, {0,−1/b}, {0,1/b}}, {{0,1}},
(1 − m)/m] will compute the second moment of the L-logistic distribution. FoxH[{{−2,1},
{0,−1/b}, {0,1/b}}, {{0,1}}, (1 − m)/m] will compute the third moment of the L-logistic
distribution, and so on.

Another advantage is that Mathematica like other algebraic manipulation packages allows
for arbitrary precision. That is, the moments can be computed accurately to any desired level
of accuracy. Numerical integration in the R software for example can be prone to roundoff
errors.

The values of E(X), E(X2), Var(X), Skewness(X) and Kurtosis(X) computed using the
one line command are given in Table 1. The values of m and b selected are those in Table 1
of Da Paz, Balakrishnan and Bazan (2019). We see that the reported values of E(X), E(X2)

and Var(X) are the same as those reported in Table 1 in Da Paz, Balakrishnan and Bazan
(2019) up to three decimal places.

The closed form expression in Section 2 can also be used for estimation purposes. Sup-
pose x1, x2, . . . , xn is a random sample assumed to follow the L-logistic distribution. Then

Table 1 Values of mean, variance, skewness and kurtosis

m b E(X) E(X2) Var(X) Skewness(X) Kurtosis(X)

0.2 1 0.2827975 0.1448017 0.06482725 1.008756 3.06419
0.2 3 0.2157058 0.05631151 0.009782524 1.192609 5.60486
0.5 1 0.5 0.3333333 0.08333333 0 1.8
0.5 3 0.5 0.268711 0.01871102 0 2.99388
0.8 1 0.7172025 0.5792067 0.06482725 −1.008756 3.06419
0.8 3 0.7842942 0.6248999 0.009782524 −1.192609 5.604859

http://community.wolfram.com/groups/-/m/t/57378
http://community.wolfram.com/groups/-/m/t/57378
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estimates of m and b can be obtained by solving the equations

3�0

⎡
⎣ (1,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦ = 1

n

n∑
j=1

xj

and

3�0

⎡
⎣ (2,1),

(
1,−1

b

)
,

(
1,

1

b

)
———–

∣∣∣∣∣∣ − c

⎤
⎦ = 1

n

n∑
j=1

x2
j .

Once again the in-built routine FoxH can be used to solve the equations.
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