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Abstract. Consider two parallel systems, say A and B, with respective life-
times T1 and T2 wherein independent component lifetimes of each system
follow exponentiated generalized gamma distribution with possibly different
exponential shape and scale parameters. We show here that T2 is smaller than
T1 with respect to the usual stochastic order (reversed hazard rate order) if
the vector of logarithm (the main vector) of scale parameters of System B

is weakly weighted majorized by that of System A, and if the vector of ex-
ponential shape parameters of System A is unordered mojorized by that of
System B. By means of some examples, we show that the above results can
not be extended to the hazard rate and likelihood ratio orders. However, when
the scale parameters of each system divide into two homogeneous groups,
we verify that the usual stochastic and reversed hazard rate orders can be
extended, respectively, to the hazard rate and likelihood ratio orders. The es-
tablished results complete and strengthen some of the known results in the
literature.

1 Introduction

Assume that a manufacturer produces a particular system whose components are ordered
from different vendors. Sometimes, these components are expensive or they are not available
in a specific time. In such cases, the manufacturer can replace the components of the sys-
tem by new components that are cheaper or are available. But, this replacement may affect
some lifetime characteristics of the system such as mean time to failure, survival function,
hazard rate function, etc. So, to determine the influence of this replacement on the life char-
acteristics of the system, a tool is needed and the theory of stochastic ordering is found to be
useful for this purpose. Stochastic orderings also play an important role in other fields such as
management science, financial economics, insurance, actuarial science, operations research,
queuing theory and survival analysis. Interested readers may refer to the books by Müller
and Stoyan (2002), Shaked and Shanthikumar (2007) and Belzunce, Martínez-Riquelme and
Mulero (2016) for elaborate discussions on various stochastic orderings and their applica-
tions.

Recently, various ordering results have been established for comparisons of lifetime char-
acteristics of two parallel systems consisting of heterogeneous component. The existing re-
sults are commonly based on comparisons of a parameter vector of the systems in some
mathematical sense; see Balakrishnan and Zhao (2013a) for more details on this topic. How-
ever, there exists some situations in which the heterogeneity in the component lifetimes is due
to difference in more than one parameter. For example, consider two parallel systems with
their component lifetimes following the generalized exponential (GE) distribution with pos-
sibly different exponential shape and scale parameters. In this case, the including parameters
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can be represented in the matrix format and the ordering results can be obtained by compar-
ison of these matrices in some mathematical sense, as discussed by Balakrishnan, Haidari
and Masoumifard (2015). Next, assume that the component lifetimes of two parallel systems
follow gamma distribution with possibly different shape and scale parameters. Now, we have
two parameter vectors for each system. Zhao, Hu and Zhang (2015) considered this case and
established some ordering results based on comparisons between the vectors of shape pa-
rameters and the vectors of scale parameters separately. The heterogeneity of two parameters
of the lifetimes allow us to compare more systems in contrast with the case in which the
lifetimes differ in one parameter.

In this paper, we follow the above framework and compare the lifetimes of parallel systems
with respect to some known stochastic orderings. It is assumed here that the component
lifetimes of each system follow the exponentiated generalized gamma distribution differing in
two parameters. The ordering results established here are based on the concepts of weighted
and unordered majorization orders, which to the best of the author’s knowledge, have not
utilized so far in comparison of reliability systems. Furthermore, these results reinforce and
extend some previous ones in the literature.

The rest of this paper is organized as follows. In Section 2, we present definitions and
notions of some concepts including stochastic orders, exponentiated generalized gamma dis-
tribution, and weighted and unordered majorization orders. Some useful results, which are
fundamental for the main results of the paper, are also stated there. Section 3 contains main
results concerning the comparison of two parallel systems with independent heterogeneous
exponentiated generalized gamma components. Finally, some discussions on the ordering
results established in Section 3 are presented in Section 4.

2 Preliminaries

Here, we present some definitions along with some useful results which play important roles
in the sequel.

2.1 Definitions and notions

The first definition briefly reviews some stochastic orders. Interested readers may refer to
Shaked and Shanthikumar (2007) and Belzunce, Martínez-Riquelme and Mulero (2016) for
elaborate discussions on stochastic orders and their applications.

Definition 1. Suppose X1 and X2 are two positive absolutely continuous random variables
with corresponding distribution functions FX1 and FX2 , survival functions F̄X1 and F̄X2 ,
density functions fX1 and fX2 , hazard rate functions rX1 and rX2 , and reversed hazard rate
functions r̃X1 and r̃X2 , respectively. Then,

(i) X1 is said to be smaller than X2 in the likelihood ratio order, denoted by X1 ≤lr X2, if
fX2(t)/fX1(t) is increasing in t ∈ R+;

(ii) X1 is said to be smaller than X2 in the reversed hazard rate order, denoted by X1 ≤rh X2,
if FX2(t)/FX1(t) is increasing in t ∈ R+, or equivalently, r̃X1(t) ≤ r̃X2(t) for all t ∈ R+;

(iii) X1 is said to be smaller than X2 in the hazard rate order, denoted by X1 ≤hr X2, if
F̄X2(t)/F̄X1(t) is increasing in t ∈ R+, or equivalently, rX2(t) ≤ rX1(t) for all t ∈R+;

(iv) X1 is said to be smaller than X2 in the usual stochastic order, denoted by X1 ≤st X2, if
F̄X1(t) ≤ F̄X2(t) for all t ∈ R+.

It is well known that the likelihood ratio order implies the hazard rate and reversed hazard
rate orders, and both of these orders result in the usual stochastic order.
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Let Pn denotes the set of all permutations of (1, . . . , n). For any π = (π1, . . . , πn) ∈ Pn,
set

Dπ
n = {

(x1, . . . , xn) ∈ Rn : xπ1 ≥ · · · ≥ xπn

}
,

Gπ
n = {

(x1, . . . , xn) ∈ Rn : xπ1 ≥ · · · ≥ xπn > 0
}
.

For the special case of π = (1, . . . , n), the spaces Dπ
n and Gπ

n are denoted by Dn and Gn,
respectively. In the next definition, we state the weighted majorization orders.

Definition 2. Consider two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn and suppose
that p = (p1, . . . , pn) is a vector with positive components. Then,

(i) u is said to be p-majorized by v on Dπ
n (Gπ

n ), denoted by u≺pv on Dπ
n (Gπ

n ), if
u,v ∈ Dπ

n (Gπ
n ),

∑i
j=1 pπj

uπj
≤ ∑i

j=1 pπj
vπj

for i = 1, . . . , n − 1, and
∑n

j=1 pπj
uπj

=∑n
j=1 pπj

vπj
;

(ii) u is said to be weakly p-majorized by v on Dπ
n (Gπ

n ), denoted by u≺w
pv on Dπ

n (Gπ
n ), if

u,v ∈Dπ
n (Gπ

n ) and
∑n

j=i pπj
uπj

≥ ∑n
j=i pπj

vπj
for i = 1, . . . , n.

It is easy to observe that the p-majorization order implies the weak p-majorization order.
Note that, we always have

(uwa, . . . , uwa) ≺p (u1, . . . , un), uwa =
∑n

i=1 piui∑n
i=1 pi

.

The classic majorization and weak majorization orders, denoted respectively by ≺ and
w≺, are

special cases of the above weighted versions of majorization when p1 = · · · = pn. Interested
readers may refer to Cheng (1977) for a comprehensive discussion on the weighted versions
of majorization order and their properties.

Below, the concept of unordered majoriation order is presented.

Definition 3. Consider two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn. If∑k
i=1 ui ≤ ∑k

i=1 vi for k = 1, . . . , n − 1, and
∑n

i=1 ui = ∑n
i=1 vi , then u is said to be un-

ordered majorized by v, denoted by u
uo≺ v.

Indeed, to compare vectors in the classic majorization order, it is necessary to arrange
their components whereas this arrangement is unnecessary in unordered majorization order.
For the case of monotone vectors, it can be easily seen that there exists a connection between
the unordered majorization and classic majorization orders. Except this case, there does not
exist a connection between the two vector orders. For example, setting u = (3,0.1,9,7) and

v = (11.1,0.2,2,5.8), one can easily observe that u
uo≺ v while the classic majorization order

does not hold between the two vectors. On the other hand, taking u = (8,2,5.5,4.6) and

v = (9,0.1,5,6), it then readily follows that u ≺ v, however, we have u �uo≺ v and v �uo≺ u. For
more details on the unordered and classic majorization orders along with their applications,
see Parker and Ram (1997) and Marshall, Olkin and Arnold (2011).

2.2 Exponentiated generalized gamma distribution

A random variable X is said to have the exponentiated generalized gamma (EGG) distribution
with shape parameters α, ν and τ , and scale parameter λ (denote by X ∼ EGG(α, ν, τ, λ)) if
its cumulative distribution function is given by

F(t;α, ν, τ, λ) =
[∫ t

0

ν(λt)τ

�(τ
ν
)

uτ−1e−(λu)ν
]α

,

t ∈R+, α ∈R+, ν ∈ R+, τ ∈ R+, λ ∈ R+.



Application of weighted and unordered majorization orders 153

We call the parameter α as the exponential parameter. Many well-known distributions are
sub-models of the EGG distribution. For τ = ν, it becomes the exponentiated Weibull dis-
tribution proposed by Mudholkar and Srivastava (1993). If ν = τ = 1, it reduces to the GE
distribution introduced by Gupta and Kundu (1999). When ν = 1, it reduces to exponenti-
ated gamma distribution initiated by Gupta, Gupta and Gupta (1998). If τ = ν and α = 1,
the two-parameter Weibull distribution is obtained, while for τ = ν = α = 1 the exponential
distribution is deduced. The EGG distribution has a flexible hazard rate function that admits
increasing, decreasing, bathtub and upside-down bathtub shapes. For more details on some
general properties of the EGG distribution and its applications, one may refer to Cordeiro,
Ortega and Silva (2009).

2.3 Some useful results

The following lemma deals with the preservation of the unordered majorization order by
weighted sum functions.

Lemma 1 (Marshall, Olkin and Arnold (2011, p. 639)). Consider the real vectors u =
(u1, . . . , un) and v = (v1, . . . , vn), and assume that (w1, . . . ,wn) ∈ Dn. If u

uo≺ v, then we
have

∑n
i=1 wiui ≤ ∑n

i=1 wivi .

It is interesting to find specific conditions under which those functions preserving the
weighted majorization order can be determined. In the following, we discuss this problem
by recalling a general statement. Consider the function φ : Rn × R+n → R satisfying the
following properties:

φ(u;p) = φ
(
uπ ;pπ )

for all u ∈ Rn,p ∈ R+n
and π ∈ Pn, (2.1)

u ≺p v on Dn ⇒ φ(u;p) ≤ φ(v;p). (2.2)

If u≺pv on Dπ
n , it then easily follows that uπ≺pπ vπ on Dn, and hence by (2.1) and (2.2) we

have

φ(u;p) = φ
(
uπ ;pπ ) ≤ φ

(
vπ ;pπ ) = φ(v;p).

Thus, if the function φ is permutation invariant (the property given in (2.1)) and preserves
the p-majorization order on Dn, then it also preserves the p-majorization order on Dπ

n for
all π ∈ Pn. This statement allows us to consider the preserving property of the permuta-
tion invariant functions only on the space Dn. Let us now consider a special case in which
φ(u;p) = ∑n

i=1 piϕ(ui), where ϕ is a real-valued function on a sub-interval I of R. It is clear
that φ is permutation invariant. The next theorem gives sufficient conditions for preserving
the p-majorization and weakly p-majorization orders by the mentioned function φ.

Theorem 1 (Pečarić, Proschan and Tong (1992, p. 323)). Let u = (u1, . . . , un) be a vec-
tor in Rn, and that p = (p1, . . . , pn) be a vector with positive components. Set φ(u;p) =∑n

i=1 piϕ(ui), where ϕ is a real-valued continuous function on a sub-interval I of R.

(i) If ϕ is a convex function on I , then φ preserves the p-majorization order on Dn;
(ii) If ϕ is a decreasing convex function on I , then φ preserves the weakly p-majorization

order on Dn.

Remark 1. In view of the proof of Theorem 1, one can easily find that its results remain true
if the spaces Rn and Dn are replaced by R+n and Gn, respectively.
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It should be noted here that the weighted majorization order allows us to compare only
similarly ordered vectors. Cheng (1977) presented an example to show that when two vectors
(u1, . . . , un) and (v1, . . . , vn) are ordered in different direction and (u1, . . . , un) ≺(p1,...,pn)

(v1, . . . , vn), then the inequality
∑n

i=1 p1m(ui) ≤ ∑n
i=1 pim(vi) can either be true or false

for every convex function m. However, according to Theorem 1, the mentioned inequality
holds for every convex function m if the vector (u1, . . . , un) and (v1, . . . , vn) are similarly
ordered.

In the case of differentiable functions, we have the following theorem to check the preser-
vation property of the weighted majorization order.

Theorem 2 (Cheng (1977, p. 25)). Consider the differentiable function φ : Rn ×R+n → R

satisfying (2.1). Then, (2.2) is satisfied iff for all u ∈ Rn and all i, j = 1, . . . , n,

(ui − uj )

(
1

pi

∂φ(u,p)

∂ui

− 1

pj

∂φ(u,p)

∂uj

)
≥ 0. (2.3)

Remark 2. The result of Theorem 2 remains true if the spaces Rn and Dn are replaced
respectively, by the spaces R+n and Gn. Now, assume that B ⊂R+ and consider the differen-
tiable function φ :Rn ×Bn →R satisfying

φ(u;p) = φ
(
uπ ;pπ )

for all u ∈ Rn,p ∈ Bn and π ∈ Pn.

In view of the proof of Theorem 2, one can observe that its sufficient part still holds, that is,
the function φ preserves the p-majorization order if (2.3) holds.

We now present a series of lemmas pertinent to the hazard rate and likelihood ratio orders
established in the next section.

Lemma 2. Suppose the functions d, l1, l2 :R+ →R+ are defined as

d(y) = e−yν

∫ 1
0 z

τ
ν
−1e−yνz dz

, l1(y) = yν + d(y), l2(y) = d(y)l′1(y),

where ν ∈ R+ and τ ∈ R+. Then,

(i) d(y) is decreasing in y ∈ R+ for all ν ∈ R+ and τ ∈ R+;
(ii) l1(y) is increasing in y ∈ R+ for all ν ∈ R+ and τ ∈ R+;

(iii) l2(y) is decreasing in y ∈ R+ for all 0 < τ ≤ ν ≤ 1.

Proof.

(i) Taking f (y) = e−y/(
∫ 1

0 z
τ
ν
−1e−yz dz), y ∈ R+, we can observe that d(y) = f (yν), x ∈

R+. Therefore, it immediately follows, for y ∈ R+, that d ′(y) = νyν−1f ′(yν). Misra and
Misra (2013) showed that f (y) is decreasing in y ∈ R+ for any ν ∈ R+ and τ ∈ R+,
thus completing the proof of Part (i);

(ii) Assume that g(y) = y + e−y/(
∫ 1

0 z
τ
ν
−1e−yz dz), y ∈ R+. We then easily have l1(y) =

g(yν), y ∈ R+. Based on Lemma 3.3 of Zhao and Balakrishnan (2015), we know that
g(y) is increasing in y ∈ R+ for any ν ∈ R+ and τ ∈ R+, and the desired result then
follows;

(iii) Based on the proofs of Parts (i) and (ii), we can write l2(y) = νyν−1ε(yν), y ∈ R+,
where ε(y) = f (y)g′(y). We know from Lemma 3.5 of Zhao and Balakrishnan (2015)
that ε(y) is non-negative and decreasing in y ∈ R+ for 0 < τ ≤ ν. On the other hand,
for 0 < ν ≤ 1, yν−1 is non-negative and decreasing in y ∈ R+. By combining the above
observations, the required result is obtained. �
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Lemma 3. Assume that yi ∈ R+ and γi ≥ 1 for i = 1,2. Then, for 0 < τ ≤ ν, the following
inequality holds:

γ1d(y1) + γ2d(y2)

1 − [ρ(y1)]γ1[ρ(y2)]γ2
≥ l1(ymin),

where ymin = min{y1, y2}, ρ(y) = ∫ 1
0

yτ

�( τ
ν
)
u

τ
ν
−1e−yνu du for y ∈ R+, and the functions d and

l1 are as defined in Lemma 2.

Proof. For yi ∈ R+, i = 1,2, we have

δ1d(y1) + δ2d(y2)

1 − [ρ(y1)]δ1[ρ(y2)]δ2
≥ δ1d(y1) + δ2d(y2)

δ1(1 − ρ(y1)) + δ2(1 − ρ(y2))

≥ δ1d(y1) + δ2d(y2)

δ1
d(y1)
l1(y1)

+ δ2
d(y2)
l1(y2)

≥ min
{
l1(y1), l1(y2)

} = l1(ymin),

wherein the first inequality obtains from Weierstrass inequality (Mitrinović, Pec̆arić and Fink
(1993, p. 71)), the second inequality follows by using an argument similar to that utilized in
the proof of Proposition 3 of Balakrishnan and Zhao (2013b), the third inequality holds based
on inequality (8.1) of Mitrinović, Pec̆arić and Fink (1993, p. 340), and finally the equality
follows from Part (ii) of Lemma 2. �

Lemma 4. Suppose the function ϒ :R2 × [1,∞)2 →R+ is defined as

ϒ(y; δ) = [ρ(ey1)]δ1[ρ(ey2)]δ2(δ1d(ey1) + δ2d(ey2))

1 − [ρ(ey1)]δ1[ρ(ey2)]δ2
,

where 0 < τ ≤ ν, y = (y1, y2) and δ = (δ1, δ2). If y∗ ≺δ y on D2, then we have ϒ(y; δ) ≤
ϒ(y∗; δ).

Proof. It is easy to observe that ϒ is permutation invariant. Further, after some computations,
we have

∂ϒ(y; δ)
∂y1

= (1 − A)A2(
δ1ν d

(
ey1

)[
δ1d

(
ey1

) + δ2d
(
ey2

) − l1
(
ey1

)
A

] + δ1τ d
(
ey1

)
A

)
and

∂ϒ(y; δ)
∂y2

= (1 − A)A2(
δ2ν d

(
ey2

)[
δ1d

(
ey1

) + δ2d
(
ey2

) − l1
(
ey2

)
A

] + δ2τ d
(
ey2

)
A

)
,

where A = 1 − [ρ(ey1)]δ1[ρ(ey2)]δ2 . Hence, we obtain

1

δ1

∂ϒ(y; δ)
∂y1

− 1

δ2

∂ϒ(y; δ)
∂y2

sgn= τA
(
d
(
ey1

) − d
(
ey2

))

+ ν
{
d
(
ey1

)[
δ1d

(
ey1

) + δ2d
(
ey2

) − l1
(
ey1

)
A

]
− d

(
ey2

)[
δ1d

(
ey1

) + δ2d
(
ey2

) − l1
(
ey2

)
A

]}
= �1 + �2, say,
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where a
sgn= b means that a and b have the same sign. Assume that y1 ≤ y2. Based on Part

(i) of Lemma 2, it readily follows that �1 ≥ 0. On the other hand, from Parts (i) and (ii) of
Lemma 2 and the result in Lemma 3, we find that

�2 ≥ νd
(
ey2

)[
δ1d

(
ey1

) + δ2d
(
ey2

) − l1
(
ey1

)
A

]
− d

(
ey2

)[
δ1d

(
ey1

) + δ2d
(
ey2

) − l1
(
ey2

)
A

]
= νAd

(
ey2

)(
l1

(
ey2

) − l1
(
ey1

))
≥ 0.

These findings result in

(y1 − y2)

(
1

δ1

∂ϒ(y; δ)
∂y1

− 1

δ2

∂ϒ(y; δ)
∂y2

)
≤ 0,

and the conclusion is now obtained from Remark 2. �

Lemma 5. Suppose the function ψ :R+2 ×R+2 →R+ is defined as

ψ(y; δ) = δ1d(y1) + δ2d(y2)

δ1d(y1)l1(y1) + δ2d(y2)l1(y2)
,

where 0 < τ ≤ ν ≤ 1, y = (y1, y2) and δ = (δ1, δ2). If y∗ ≺δ y on G2, then we have
ψ(y∗; δ) ≤ ψ(y; δ).

Proof. It is clear that ψ is permutation invariant. Moreover, the derivatives of ψ(y1, y2;
δ1, δ2) with respect to y1 and y2 are, respectively,

∂ψ(y; δ)
∂y1

= δ1(δ2d
′(y1)d(y2)(l1(y2) − l1(y1)) − l2(y1)(δ1d(y1) + δ2d(y2)))

(δ1d(y1)l1(y1) + δ2d(y2)l1(y2))2

and

∂ψ(y; δ)
∂y2

= δ2(δ1d
′(y2)d(y1)(l1(y1) − l1(y2)) − l2(y2)(δ1d(y1) + δ2d(y2)))

(δ1d(y1)l1(y1) + δ2d(y2)l1(y2))2 .

From these observations, we have

(y1 − y2)

(
1

δ1

∂ψ(y; δ)
∂y1

− 1

δ2

∂ψ(y; δ)
∂y2

)

sgn= (y1 − y2)
(
l1(y2) − l1(y1)

)(
δ1d

′(y2)d(y1) + δ2d
′(y1)d(y2)

)
(2.4)

+ (y1 − y2)
(
l2(y2) − l2(y1)

)(
δ1d(y1) + δ2d(y2)

)
.

Let us assume that y1 ≥ y2. Based on Parts (i) and (ii) of Lemma 2, it immediately follows that
d ′(yi) ≤ 0 for i = 1,2, and l1(y1) ≥ l1(y2) for any ν ∈ R+ and τ ∈ R+. These observations
show that the first term on the right-hand side of (2.4) is non-negative. On the other hand,
using Part (iii) of Lemma 2, we find that l2(y2) ≥ l2(y1) for any 0 < τ ≤ ν ≤ 1. Thus, the
second term on the right-hand side of (2.4) is also non-negative. The conclusion now follows
from Remark 2. �

Suppose X1, . . . ,Xn, Z1, . . . ,Zn and Y1, . . . , Yn are three sets of independent positive
random variables such that

Xi ∼ [
F(λix)

]αi , Zi ∼ [
F(μix)

]αi , Yi ∼ [
F(μix)

]βi , (2.5)
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where for i = 1, . . . , n, αi ∈ R+, βi ∈R+, λi ∈R+,μi ∈ R+ and F (the baseline distribution)
is an absolutely continuous distribution function centered on R+ with the corresponding re-
versed hazard rate function r̃ . Set α = (α1, . . . , αn), β = (β1, . . . , βn), λ = (λ1, . . . , λn) and
μ = (μ1, . . . ,μn). For every vector x = (x1, . . . , xn) ∈ R+n, set logx = (logx1, . . . , logxn).

In the upcoming theorems, we discuss the usual stochastic and reversed hazard rate orders
between the largest order statistics Xn:n and Yn:n by using the concepts of weighted and
unordered majorization orders.

Theorem 3. Assume that t r̃(t) is decreasing in t ∈ R+. If logμ ≺w
α logλ on Dn and α

uo≺ β ,
then we have Yn:n ≤st Xn:n.

Proof. Assume that logμ ≺w
α logλ on Dn and α

uo≺ β . Setting λ∗
i = logλi and μ∗

i =
logμi , i = 1, . . . , n, it then follows that μ∗ ≺w

α λ∗ on Dn. Note that the function ϕ(λ∗) =
log[F(xeλ∗

)] is increasing in λ∗ for each fixed x ∈ R+. On the other hand, because t r̃(t) is
decreasing in t ∈ R+, it follows that ϕ(λ∗) is concave in λ∗ for each fixed x ∈ R+. Now,
based on the above observations, Par(ii) of Theorem 1 and Remark 1, we find that

n∑
i=1

αi log
[
F

(
xeμ∗

i
)] ≥

n∑
i=1

αi log
[
F

(
xeλ∗

i
)]

for all x ∈ R+,

and so Zn:n ≤st Xn:n. Further, taking ui = αi , vi = βi and wi = logF(μix), i = 1, . . . , n, in
Lemma 1, we find Yn:n ≤st Zn:n, thus completing the proof of the theorem. �

Theorem 4. Assume that t r̃(t) is decreasing and convex in t ∈ R+. If μ ≺w
α λ on Gn and

α
uo≺ β , then we have Yn:n ≤rh Xn:n.

Proof. Assume that μ ≺w
α λ on Dn and α

uo≺ β . Setting ui = αi , vi = βi and wi =
−μir̃(μix), i = 1, . . . , n, in Lemma 1, it readily follows from the decreasing property of
t r̃(t) that Yn:n ≤rh Zn:n. Therefore, the desired result obtains if we show that Zn:n ≤rh Xn:n.
The reversed hazard rate function of Xn:n and Zn:n can be rewritten respectively as

r̃Xn:n(x) = 1

x

n∑
i=1

αiφ(λix) and r̃Zn:n(x) = 1

x

n∑
i=1

αiφ(μix), x ∈ R+,

where φ(t) = t r̃(t), t ∈ R+. Because t r̃(t) is decreasing and convex in t ∈ R+, then we easily
observe that φ(t) is also decreasing and convex in t ∈ R+. Now, from Part (ii) of Theorem 1
and Remark 1, we find that r̃Zn:n(x) ≤ r̃Xn:n(x) for all x ∈ R+, as required. �

Let us now assume that μ1 = · · · = μk = μ and μk+1 = · · · = μn = μ́, where k ∈
{1, . . . , n − 1}. Set

δ1 =
k∑

i=1

αi, δ2 =
n∑

i=k+1

αi, ξ1 =
k∑

i=1

βi, ξ2 =
n∑

i=k+1

βi.

Below, the random variables Zn:n and Yn:n are compared in the sense of the likelihood ratio
order by means of the unordered majorization order. For this purpose, the following lemma
is needed.

Lemma 6. Consider the real functions h, h1 and h2 on R+ such that h(x) > h2(x) ≥
h1(x) > 0 for all x ∈ R+. If h2(x)/h1(x) and h(x)/h1(x) are, respectively, increasing and
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decreasing in x ∈ R+, then the ratio

h(x) − h1(x)

h(x) − h2(x)

is increasing in x ∈R+.

Proof. We can easily observe that

h(x) − h1(x)

h(x) − h2(x)
= 1 + m1(x)m2(x),

where

m1(x) = h2(x)

h1(x)
− 1 and m2(x) = 1

h(x)
h1(x)

− m1(x) − 1
.

From the assumptions, it immediately follows that both functions m1 and m2 are non-negative
and increasing, thus completing the proof of the lemma. �

Theorem 5. Assume that both functions t r̃(t) and t r̃ ′(t)/r̃(t) are decreasing in t ∈ R+. If

(μ, μ́) ∈ G2 and (δ1, δ2)
uo≺ (ξ1, ξ2), then we have Yn:n ≤lr Zn:n.

Proof. From the assumption (δ1, δ2)
uo≺ (ξ1, ξ2), we have δ1 ≤ ξ1 and δ1 + δ2 = ξ1 + ξ2 = c.

Under this setting, we can write the ratio of the density functions of Zn:n and Yn:n as

fZn:n(x)

fYn:n(x)
= c(x)

FZn:n(x)

FYn:n(x)
, x ∈ R+,

where

c(x) = cμ́r̃(μ́x) − δ1(μ́r̃(μ́x) − μr̃(μx))

cμ́r̃(μ́x) − ξ1(μ́r̃(μ́x) − μr̃(μx))

= h(x) − h1(x)

h(x) − h2(x)
, x ∈ R+.

Using the facts t r̃(t) is decreasing in t ∈ R+ and (μ, μ́) ∈ G2, we find that μ́r̃(μ́x) −
μr̃(μx) ≥ 0 for all x ∈ R+. Now, based on this fact and the assumption δ1 ≤ ξ1, it follows
that FZn:n(x)/FYn:n(x) is increasing in x ∈ R+. Thus, the desired result follows if c(x) is in-
creasing in x ∈ R+. The assumptions δ1 ≤ ξ1 and 0 < ξ1 < c immediately imply that h(x) >

h2(x) ≥ h1(x) > 0 for all x ∈ R+. Also, h1(x)/h(x) = (δ1/c)(1 − μr̃(μx)/(μ́r̃(μ́x))) is
increasing in x ∈ R+ by the assumptions that (μ, μ́) ∈ G2 and t r̃ ′(t)/r̃(t) is decreasing in
t ∈ R+. Finally, it is evident that h2(x)/h1(x) = ξ1/δ1 is increasing in x ∈ R+. Now, from
the above observations and the result in Lemma 6, it follows that c(x) is increasing in x ∈ R+,
as required. �

3 Main ordering results for the comparison of two parallel systems

Suppose we have two parallel systems, say A and B , with their component lifetimes be-
ing independent random variables X1, . . . ,Xn and Y1, . . . , Yn, respectively, satisfying Xi ∼
EGG(αi, ν, τ, λi) and Yi ∼ EGG(βi, ν, τ,μi) for i = 1, . . . , n. Clearly, the lifetimes of Sys-
tems A and B correspond to Xn:n = max{X1, . . . ,Xn} and Yn:n = max{Y1, . . . , Yn}, re-
spectively. In this section, we obtain some sufficient conditions to compare the lifetimes
of Systems A and B with respect to the usual stochastic, reversed hazard rate, hazard
rate and likelihood ratio orders. Set απ = (απ1, . . . , απn) and βπ = (βπ1, . . . , βπn), where
π = (π1, . . . , πn) ∈Pn. In what follows, we adopt the above setting.

To prove the main results, we need the following lemma.
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Lemma 7. Assume that r̃ is the reversed hazard rate function of the generalized gamma
distribution with shape parameters ν and τ , and scale parameter 1. Then:

(i) t r̃(t) is decreasing in t ∈ R+ for all ν ∈ R+ and τ ∈ R+, and is convex in t ∈ R+ for all
0 < ν ≤ 1 and τ ∈R+ (Khaledi, Farsinezhad and Kochar (2011));

(ii) t r̃ ′(t)/r̃(t) is decreasing in t ∈ R+ for all 0 < τ ≤ ν (Kochar and Torrado (2015)).

Below, we present a theorem concerning the usual stochastic order between the lifetimes
of Systems A and B .

Theorem 6. If logμ
w≺α logλ on Dn and α

uo≺ β , then for all ν ∈ R+ and τ ∈ R+, we have
Yn:n ≤st Xn:n.

Proof. By taking the baseline distribution in Theorem 3 as the generalized gamma, the re-
quired result follows immediately from Part (i) of Lemma 7. �

Khaledi, Farsinezhad and Kochar (2011) established the result in Theorem 6 for the special
case when αi = βi = 1, i = 1, . . . , n, that is, the case in which the component lifetimes have
the generalized gamma distribution with possibly different scale parameters.

Remark 3. The result of Theorem 6 is restricted to the weak weighted majorization order
only on the space Dn. However, we can extend its result to the more general case as follows.

Assume that logμ
w≺α logλ on Dπ

n , where π = (π1, . . . , πn) ∈ Pn, and απ uo≺ βπ . Then, for
any ν ∈ R+ and τ ∈ R+, we have Yn:n ≤st Xn:n.

We now explain the result given in Theorem 6 by means of a numerical example. Assume
that n = 4, ν = 0.4, τ = 0.8, α = (1,3,5,0.6), β = (4.6,4.4,0.5,0.1), λ = (9,6,1,0.7)

and μ = (8,5,0.8,0.75). Then, we have logμ
w≺α logλ on D4 and α

uo≺ β , which according
to Theorem 6, imply that Y4:4 ≤st X4:4. To see this result graphically, we plot the survival
functions of Systems A and B in Figure 1 under the above setting.

Next theorem enables us to to compare the lifetimes of Systems A and B with respect to
the reversed hazard rate order.

Theorem 7. If μ
w≺α λ on Gn and α

uo≺ β , then for any 0 < ν ≤ 1 and τ ∈ R+, we have
Yn:n ≤rh Xn:n.

Figure 1 Plots of survival functions of Systems A and B for n = 4, ν = 0.4, τ = 0.8, α = (1,3,5,0.6),
β = (4.6,4.4,0.5,0.1), λ = (9,6,1,0.7) and μ = (8,5,0.8,0.75).



160 A. Haidari, A. T. Payandeh Najafabadi and N. Balakrishnan

Figure 2 Plots of reversed hazard rate functions of Systems A and B for n = 4, ν = 0.5, τ = 2,
α = (4,0.8,3.3,5), β = (1,3,2.1,7), λ = (2,11,12,13) and μ = (5,6,10,14).

Proof. By assuming the baseline distribution in Theorem 4 as the generalized gamma, the
proof readily obtains and Part (i) of Lemma 7. �

The result of Theorem 7 extends that of Misra and Misra (2013) which is established in
the generalized gamma framework, that is, the case when αi = βi = 1 for i = 1, . . . , n.

Remark 4. The result in Theorem 7 can be extended as follows. Assume that μ
w≺α λ on Gπ

n ,

where π = (π1, . . . , πn) ∈ Pn, and απ uo≺ βπ . Then, for any 0 < ν ≤ 1 and τ ∈ R+, we have
Yn:n ≤rh Xn:n.

Next example illustrates the result of Remark 4. Set n = 4, ν = 0.5, τ = 2, α =
(4,0.8,3.3,5), β = (1,3,2.1,7), λ = (2,11,12,13) and μ = (5,6,10,14). Setting π =
(4,3,2,1), we can observe that μ

w≺α λ on Gπ
4 and απ uo≺ βπ , which according to Remark 4,

result in Y4:4 ≤rh X4:4. We plot the reversed hazard rate functions of Systems A and B in
Figure 2 to observe the established result graphically.

A natural question which arises here is whether the results in Theorems 6 and 7 can be ex-
tended, respectively, to the hazard rate and likelihood ratio orders. Unfortunately, the answer
is no as shown in the following examples. Set n = 3, ν = 0.5, τ = 0.2, α = β = (4.5,2,3),
λ = (9,3.5,0.1) and μ = (10,2.9,0.3). We then find

F̄X3:3(4)

F̄Y3:3(4)
= 1.13809,

F̄X3:3(5)

F̄Y3:3(5)
= 1.14207,

F̄X3:3(15)

F̄Y3:3(15)
= 1.12199.

This observation means that the ratio of the survival functions of X3:3 and Y3:3 is not
monotone, i.e., the lifetimes of Systems A and B can not be compared in the sense of the

hazard rate order. However, logμ
w≺α logλ on D3 and α

uo≺ β . Let us now assume that n = 3,
ν = 0.5, τ = 0.1, α = (0.1,0.6,0.4), β = (0.7,0.2,0.2), λ = (7,6,1) and μ = (100,20,1).
Then, it can be checked that μ

w≺α λ on G3 and α
uo≺ β , while

fX3:3(0.3)

fY3:3(0.3)
≈ 2.92344,

fX3:3(0.4)

fY3:3(0.4)
≈ 2.95206,

fX3:3(0.6)

fY3:3(0.6)
≈ 2.91266.
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Therefore, the ratio of the density functions of X3:3 and Y3:3 is not monotone. So, the likeli-
hood ratio order does not hold between the lifetimes of Systems A and B .

A natural way to extend the result in Theorem 6 (Theorem 7) to the hazard rate order (the
likelihood ratio order) is that we reduce the heterogeneity of the scale parameters. To this
end, from now on, we assume that

λ1 = · · · = λk = λ, λk+1 = · · · = λn = λ́,

μ1 = · · · = μk = μ, μk+1 = · · · = μn = μ́,

where k ∈ {1, . . . , n − 1}. Set δ1 = ∑k
i=1 αi , δ2 = ∑n

i=k+1 αi , ξ1 = ∑k
i=1 βi , and ξ2 =∑n

i=k+1 βi . Further, suppose Z1, . . . ,Zn is a set of independent random variables such
that Zi ∼ EGG(αi, ν, τ,μ) and Zj ∼ EGG(αj , ν, τ, μ́) for i = 1, . . . , k and j = k +
1, . . . , n.

Before discussing the hazard rate and likelihood ratio orders between the lifetimes of Sys-
tem A and B , we prove a useful lemma.

Lemma 8.

(i) Assume that δi ≥ 1, i = 1,2. If (logμ, log μ́) ≺(δ1,δ2) (logλ, log λ́) on D2, then for 0 <

τ ≤ ν, we have Zn:n ≤hr Xn:n;
(ii) If (μ, μ́) ≺(δ1,δ2) (λ, λ́) on G2, then for 0 < τ ≤ ν ≤ 1, we have Zn:n ≤lr Xn:n;

(iii) If λ́ = μ́ and λ́ ≤ μ ≤ λ, then for any ν ∈ R+ and τ ∈R+, we have Zn:n ≤lr Xn:n.

Proof.

(i) The hazard rate functions of Xn:n and Zn:n can be rewritten, respectively, as

rXn:n(x) = 1

x
ϒ

(
elogλx, elog λ́x; δ1, δ2

)
and

rZn:n(x) = 1

x
ϒ

(
elogμx, elog μ́x; δ1, δ2

)
, x ∈ R+,

where the function ϒ is defined in Lemma 4. Clearly, we have (logμx, log μ́x) ≺(δ1,δ2)

(logλx, log λ́x) on D2 for all x ∈ R+, and so the required result follows from
Lemma 4;

(ii) Assume that (μ, μ́) ≺(δ1,δ2) (λ, λ́). The ratio of the density functions of Xn:n and Zn:n
can be written as

fXn:n(x)

fZn:n(x)
= s(x)

FXn:n(x)

FZn:n(x)
, x ∈R+,

where

s(x) =
δ1e

−(λx)ν∫ x
0 zτ−1e−(λz)ν dz

+ δ2e
−(λ́x)ν∫ x

0 zτ−1e−(λ́z)ν dz

δ1e
−(μx)ν∫ x

0 zτ−1e−(μz)ν dz
+ δ2e

−(μ́x)ν∫ x
0 zτ−1e−(μ́z)ν dz

.

According to Theorem 4 and Part (i) of Lemma 7, it immediately follows that
FXn:n(x)/FZn:n(x) is increasing in x ∈ R+. Further, taking derivative of s(x) with re-
spect to x, we find after some algebraic computations that s′(x) ≥ 0 for all x ∈ R+
iff

ψ(μx, μ́x; δ1, δ2) ≤ ψ(λx, λ́x; δ1, δ2), for all x ∈ R+, (3.1)

where the function ψ is as defined in Lemma 5. Now, the inequality in (3.1) follows
immediately from Lemma 5 which results in s(x) is increasing in x ∈ R+;
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(iii) The proof is similar to that of Theorem 3.1 in Zhao and Balakrishnan (2015). �

Next Theorem gives some sufficient conditions to compare the lifetimes of Systems A and
B in the sense of the hazard rate and likelihood ratio orders.

Theorem 8.

(i) Assume that μ ≤ λ and δi ≥ 1 for i = 1,2. If (logμ, log μ́)
w≺(δ1,δ2) (logλ, log λ́) on D2

and (δ1, δ2)
uo≺ (ξ1, ξ2), then for 0 < τ ≤ ν, we have Yn:n ≤hr Xn:n;

(ii) Assume that μ ≤ λ, (μ, μ́)
w≺(δ1,δ2) (λ, λ́) on G2 and (δ1, δ2)

uo≺ (ξ1, ξ2). Then for 0 < τ ≤
ν ≤ 1, we have Yn:n ≤lr Xn:n.

Proof.

(i) Suppose (logμ, log μ́)
w≺(δ1,δ2) (logλ, log λ́) on D2 and (δ1, δ2)

uo≺ (ξ1, ξ2). Because the
likelihood ratio order implies the hazard rate order, it follows from Theorem 5 and Part
(ii) of Lemma 7 that

(δ1, δ2)
uo≺ (ξ1, ξ2) ⇒ Yn:n ≤hr Zn:n, for 0 < τ ≤ ν.

The required result now follows if we could show that Zn:n ≤hr Xn:n. Based on the
existing assumptions, we have λ́ ≤ μ́ ≤ μ ≤ λ and μδ1μ́δ2 ≥ λδ1 λ́δ2 . If μδ1μ́δ2 = λδ1 λ́δ2 ,
we then have from Part (i) of Lemma 8 that Zn:n ≤hr Xn:n for 0 < τ ≤ ν. Let us now
assume that μδ1μ́δ2 > λδ1 λ́δ2 . Set

λ0 =
(

μ

λ

) δ1
δ2

μ́,

and suppose W1, . . . ,Wn are independent random variables with Wi ∼ EGG(αi, ν, τ, λ)

and Wj ∼ EGG(αj , ν, τ, λ0) for i = 1, . . . , k and j = k + 1, . . . , n. It is easy to observe
that λ́ ≤ λ0 ≤ μ́ ≤ λ and (logμ, log μ́) ≺(δ1,δ2) (logλ, logλ0) on D2. Therefore, we can
conclude from Part (i) of Lemma 8 that Zn:n ≤hr Wn:n. On the other hand, because the
likelihood ratio order implies the hazard rate order, it follows from Part (iii) of Lemma 8
that Wn:n ≤hr Xn:n for 0 < τ ≤ ν, thus completing the proof of the theorem;

(ii) The proof is obtained by virtue of Part (ii) of Lemma 8 and an argument similar to the
one used in Part (i). �

In the following, we present some examples to illustrate the result of Theorem 8. At first,
set n = 4, k = 1, α = (1.1,2,0.2,4), β = (1.2,1,1.5,3.6), (λ, λ́) = (8,2) and (μ, μ́) =
(6,3). We then observe that (δ1, δ2) = (1.1,6.2) and (ξ1, ξ2) = (1.2,6.1). It can be easily

checked that (log 6, log 3)
w≺(1.1,6.2) (log 8, log 2) on D2, (1.1,6.2)

uo≺ (1.2,6.1) and μ ≤ λ.
Hence, from Part (i) of Theorem 8, it follows that Y4:4 ≤hr X4:4. The graphs of the hazard
rate functions of Systems A and B are plotted in Figure 3. Let us now set n = 5, k = 3,
α = (0.4,0.4,1,5,5.7), β = (3,0.8,3.6,1.2,3.9), (λ, λ́) = (20,0.1) and (μ, μ́) = (18,2). It
can be easily seen that δ1 = 1.8, δ2 = 10.7, ξ1 = 7.4 and ξ2 = 5.1. Since (20,0.1)

w≺(1.8,10.7)

(18,2) on G2, (1.8,10.7)
uo≺ (7.4,5.1) and μ ≤ λ, we can conclude from Part (ii) of Theorem 8

that Y5:5 ≤lr X5:5.

Remark 5. Note that, if μ ≤ λ, one can easily see that
(
(logμ)1k, (log μ́)1n−k

) w≺α
(
(logλ)1k, (log λ́)1n−k

)
on Dn ⇔ (logμ, log μ́) ≺(δ1,δ2) (logλ, log λ́) on D2
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Figure 3 Plots of hazard rate functions of Systems A and B for n = 4, k = 1, α = (1.1,2,0.2,4),
β = (1.2,1,1.5,3.6), (λ, λ́) = (8,2) and (μ, μ́) = (6,3).

and

(μ1k, μ́1n−k)
w≺α (λ1k, λ́1n−k)

on Gn ⇔ (μ, μ́) ≺(δ1,δ2) (λ, λ́) on G2,

where 1r is a r-dimensional vector with all values being 1. According to these observations,
we find that the results in Theorem 8 extend those of Zhao and Balakrishnan (2015) from the
gamma framework to the exponentiated generalized gamma framework. Further, it is easy to
verify that

(α1, . . . , αn)
uo≺ (β1, . . . , βn) ⇒ (δ1, δ2)

uo≺ (ξ1, ξ2).

Therefore, the result in Theorem 8 remains true under the unordered majorization order be-
tween the vectors of exponential parameters.

4 Discussion

In Theorem 7, we have observed that the restriction 0 < ν ≤ 1 is appeared in the comparison
of the lifetimes of Systems A and B , with respect to the reversed hazard rate order. We shall
now present a numerical example to show that the mentioned restriction is necessary for
the revered hazard order to hold. Set n = 3, ν = 2, τ = 0.2, α = (5,4,9), β = (6,3.5,8.5),
λ = (10,1,1) and μ = (7,5,2). The reversed hazard rate functions of Systems A and B are
plotted in Figure 4 to see that the lifetimes of Systems A and B can not be compared in the

reversed hazard rate order. Although, one can easily check that μ
w≺α λ on G3 and α

uo≺ β .
In the following, we find a different condition to compare the lifetimes of the two

Systems in the reversed hazard rate order, without any restriction on the shape parame-
ter ν. Let X∗

1, . . . ,X∗
n and Y ∗

1 , . . . , Y ∗
n be two sets of independent random variables with

X∗
i ∼ EGG(αi,1, τ

ν
, λν

i ) and Y ∗
i ∼ EGG(βi,1, τ

ν
,μν

i ), i = 1, . . . , n. Set λν = (λν
1, . . . , λ

ν
n)

and μν = (μν
1, . . . ,μ

ν
n). Now, if μν w≺α λν on Gn and α

uo≺ β , then from Theorem 7, it readily
follows for ν ∈ R+ and τ ∈ R+ that Y ∗

n:n ≤rh X∗
n:n. Now, from this observation and The-

orem 1.B.43 of Shaked and Shanthikumar (2007, p. 38), we have Y ∗ 1
ν

n:n ≤rh X∗ 1
ν . But, it is

easy to observe that Y ∗ 1
ν

n:n
st= Yn:n and X∗ 1

ν

n:n
st= Xn:n, where the notation st= means equality in

distribution. Thus, the following theorem is established.
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Figure 4 Plots of reversed hazard rate functions of Systems A and B for n = 3, ν = 2, τ = 0.2, α = (5,4,9),
β = (6,3.5,8.5), λ = (10,1,1) and μ = (7,5,2).

Theorem 9. If μν w≺α λν on Gn and α
uo≺ β , then for ν ∈ R+ and τ ∈ R+, we have Yn:n ≤rh

Xn:n.

Next, we discuss the connection between the weighted orderings μ
w≺α λ and μν w≺α λν . Set

φ(x) = xν , x ∈ R+, 0 < ν ≤ 1. Clearly, φ(x) is increasing and concave in x ∈ R+. Assume

that μ
w≺α λ on Gn. Then, we easily have μr

w≺αr λr on Gn−r+1, where αr = (αr, . . . , αn),
λr = (λr , . . . , λn) and μr = (μr, . . . ,μn) for r = 1, . . . , n. From the above observations
and Remark 1, it follows for 0 < ν ≤ 1 that

∑n
i=r αiφ(λi) ≤ ∑n

i=r αiφ(μi) or equivalently∑n
i=r αiλ

ν
i ≤ ∑n

i=r αiμ
ν
i , r = 1, . . . , n. Therefore, we have the following implication:

μ
w≺α λ on Gn ⇒ μν w≺α λν on Gn, for 0 < ν ≤ 1. (4.1)

Consequently, based on (4.1), it readily follows that Theorem 9 contains less restricted con-
dition than Theorem 7 and allows us to compare more parallel systems, with respect to the
reversed hazard rate order for the case when 0 < ν < 1. We shall now illustrate this finding
by a numerical example. Set n = 4, ν = 0.5, τ = 0.8, α = (4,0.8,3.3,5), β = (1,3,2.1,7)

λ = (
√

2,
√

11,
√

12,
√

13) and μ = (
√

5,
√

6,
√

10,
√

14). It is therefore easy to check that

λ
w

⊀α μ, however, one can observe that μν w≺α μν on G4. Thus, since α
uo≺ β , we find from

Theorem 9 that X4:4 ≤rh X4:4, while this ordering result can not be concluded from Theo-
rem 7.

Now, for k ∈ {1, . . . , n − 1}, set

λ1 = · · · = λk+1 = λ, λk+1 = · · · = λn = λ́,

μ1 = · · · = μk = μ, μk+1 = · · · = μn = μ́

Based on Part (ii) of Theorem 8, we have Y ∗
n:n ≤lr X∗

n:n when (μν, μ́ν)
w≺(δ1,δ2) (λν, λ́ν) on

G2 and (δ1, δ2)
uo≺ (ξ1, ξ2) for 0 < τ ≤ ν. Using this observation and Theorem 1.C.8 of Shaked

and Shanthikumar (2007, p. 46), it follows that Y ∗ 1
ν

n:n ≤lr X∗ 1
ν

n:n or equivalently Yn:n ≤lr Xn:n.
This result is stated in the following theorem.

Theorem 10. Assuming μ ≤ λ, if (μν, μ́ν)
w≺(δ1,δ2) (λν, λ́ν) on G2 and (δ1, δ2)

uo≺ (ξ1, ξ2),
then for 0 < τ ≤ ν, we have Yn:n ≤lr Xn:n.
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According to (4.1), for 0 < ν ≤ 1, we have

(μ, μ́)
w≺(δ1,δ2) (λ, λ́)

on G2 ⇒ (
μν, μ́ν) w≺(δ1,δ2)

(
λν, λ́ν)

on G2,

(4.2)

which results in, for 0 < τ ≤ ν ≤ 1, Theorem 10 contains less restricted condition than Part
(ii) of Theorem 8 for the likelihood ratio order between the lifetimes of Systems A and B to
hold.

5 Conclusions

Let X1, . . . ,Xn and Y1, . . . , Yn, representing the component lifetimes of two parallel systems,
be two sets of independent random variables such that

Xi ∼ EGG(αi, ν, τ, λi), Yi ∼ EGG(βi, ν, τ,μi), i = 1, . . . , n.

We have established here that

α
uo≺ β and logμ

w≺α logλ

on Dn =⇒ Yn:n ≤st Xn:n, ν ∈ R+, τ ∈ R+,
(5.1)

α
uo≺ β and μν w≺α λν

on Gn =⇒ Yn:n ≤rh Xn:n, ν ∈ R+, τ ∈R+.
(5.2)

By means of two counterexamples, we have showed that the results in (5.1) and (5.2) can not
reinforce, respectively, to the hazard rate and likelihood ratio orders. So, to achieve the hazard
rate and likelihood ratio orders, we have reduced the heterogeneity of the scale parameters
λi ’s and μi’s. For k ∈ {1, . . . , n − 1}, taking

λ1 = · · · = λk, λk+1 = · · · = λn, μ1 = · · · = μk, μk+1 = · · · = μn

and

δ1 =
k∑

i=1

αi, δ2 =
n∑

i=k+1

αi, ξ1 =
k∑

i=1

βi, ξ2 =
n∑

i=k+1

βi,

we have obtained the following result for the hazard rate order to hold:

(δ1, δ2)
uo≺ (ξ1, ξ2) and (logμ1, logμn)

w≺(δ1,δ2) (logλ1, logλn)

on D2 ⇒ Yn:n ≤hr Xn:n, 0 < τ ≤ ν,
(5.3)

wherein μ ≤ λ and δi ≥ 1. Also, it is proved for μ ≤ λ that

(δ1, δ2)
uo≺ (ξ1, ξ2) and

(
μν

1,μ
ν
n

) w≺(δ1,δ2) (λ1, λn)

on G2 ⇒ Yn:n ≤lr Xn:n, 0 < τ ≤ ν.
(5.4)

The ordering results in (5.1)–(5.4) complete and strengthen some of the known results in the
literature.
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