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Abstract. In this paper, we present a novel methodology to perform
Bayesian model selection in linear models with heavy-tailed distributions.
We consider a finite mixture of distributions to model a latent variable where
each component of the mixture corresponds to one possible model within the
symmetrical class of normal independent distributions. Naturally, the Gaus-
sian model is one of the possibilities. This allows for a simultaneous analysis
based on the posterior probability of each model. Inference is performed
via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings
steps for a class of parameters. Simulated examples highlight the advantages
of this approach compared to a segregated analysis based on arbitrarily cho-
sen model selection criteria. Examples with real data are presented and an
extension to censored linear regression is introduced and discussed.

1 Introduction

Statistical practitioners generally use model selection criteria in order to select a best model
in different applications. However, model selection has been shown not to be an easy task and
each criterion performs better under different situations. For more complex models, it is not
clear which criterion is preferable (Carlin, 2006; Chen, 2006; Gelman, Hwang and Vehtari,
2014). Recently, Gelman, Hwang and Vehtari (2014) studied and compared different model
criteria and concluded that “The current state of the art of measurement of predictive model
fit remains unsatisfying”. From their study, it is clear that different criteria—Akaike informa-
tion criterion (AIC), Deviance information criterion (DIC), Widely Applicable Information
Criterion (WAIC), fail in selecting the most adequate model under a variety of circumstances
(see Appendix B for a description of some criteria). For example, settings with strong prior
information or when the posterior distribution is not well summarized by its mean or in a
spatial or network setup (for more details, see Gelman, Hwang and Vehtari, 2014). Other
authors also comment about the model selection problem, e.g., “In summary, model choice
is to Bayesians what multiple comparisons is to frequentists: a really hard problem for which
there exist several potential solutions, but no consensus choice” (Carlin, 2006), “we saw that
no single measure is dominant in all three cases. The L-measure performed better when the
true model becomes more complex and BIC performed better when the true model is more
parsimonious.” (Chen, 2006).

Under the Bayesian paradigm, a more robust and elegant solution is available, at least in
theory, by considering one “full model” that embeds all the individual models of interest.
More specifically, this means that a multinomial random variable (r.v.) with each category
corresponding to one of the individual models is specified. This way, model selection may
be performed based on the posterior distribution of this r.v., that is, the posterior probabil-
ity of each model. Nevertheless, this approach may be challenging in some cases, specially
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when the individual models have different dimensions and distinct parameter. Available solu-
tions may need to rely on complicated reversible jump MCMC (Markov chain Monte Carlo)
algorithms and, therefore, other model criteria may be preferred.

A simple and generally efficient solution may be obtained when a mixture distribution
can be adopted for one of the model’s component (parameter or latent variable) in a way
that each mixture component corresponds to one of the individual models (see, for example,
Gonçalves, Gamerman and Soares, 2013, George and McCulloch, 1993). This would typi-
cally lead to a simple and efficient solution, allowing for model selection to be based on the
models’ posterior probability.

We consider a model selection problem concerning the specification of the error distribu-
tion in linear regression models. In particular, we consider different heavy-tailed distributions
and the traditional Gaussian specification. Existing solutions use model selection criteria ar-
bitrarily chosen (see Lachos, Ghosh and Arellano-Valle, 2010; Basso et al., 2010; Cabral,
Lachos and Prates, 2012) and, therefore, motivates the development of a more robust method-
ology.

The distributions of random errors and other random variables are routinely assumed to
be Gaussian. However, the normality assumption is doubtful and lacks robustness especially
when the data contain outliers or show a significant violation of normality. Thus, previous
works have shown the importance of considering more general structures than the Gaus-
sian distribution for this component, such as heavy-tailed distributions (Fernandez and Steel,
1999; Galea, Paula and Uribe-Opazo, 2003; Rosa, Padovani and Gianola, 2003; Galea, Paula
and Cysneiros, 2005; Garay et al., 2015). These structures provide appealing robust and
adaptable models, for example, the Student-t linear mixed model presented by Pinheiro, Liu
and Wu (2001), who showed that it performed well in the presence of outliers. Furthermore,
the scale mixtures of normal (SMN) distributions have also been applied into a wide variety of
regression models (see Lange and Sinsheimer, 1993; Osorio, Paula and Galea, 2007; Lachos,
Angolini and Abanto-Valle, 2011). It is one of the most important subclasses of the ellipti-
cal symmetric distributions. The SMN distribution class contains many heavier-than-normal
tailed members, such as Student-t, Slash, power exponential and contaminated normal. Re-
cently, Lin and Cao (2013) (see also Lachos, Angolini and Abanto-Valle, 2011) investigated
the inference of a measurement error model under the SMN distributions and demonstrated
its robustness against outliers through extensive simulations.

As defined by Andrews and Mallows (1974), a continuous random variable Y has a SMN
distribution if it can be expressed as follows:

Y = μ + κ1/2(U)W,

where μ is a location parameter, W is a normal random variable with zero mean and variance
σ 2, κ(U) is a positive weight function, U is a mixing positive random variable with density
h(· | ν) and ν is a scalar or parameter vector indexing the distribution of U . As in Lange and
Sinsheimer (1993) and Choy and Chan (2008), we restrict our attention to the case where
κ(U) = 1/U , that is, the normal independent (NI) class of distributions. Thus, Y | U = u ∼
N (μ,u−1σ 2) and the marginal probability density function (pdf) of Y is given by

f
(
y | μ,σ 2, ν

) =
∫ ∞

0
φ

(
(y − μ)/

√
u−1σ 2

)
h(u | ν) du. (1)

Note that when U = 1, we retrieve the normal distribution. Following the steps of Basso et al.
(2010), we have the following properties for the SMN family:

(a) If E[κ1/2(U)] < ∞, then E[Y ] = μ.
(b) If E[κ(U)] < ∞, then Var[Y ] = σ 2k2.
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(c) If E[κ2(U)] < ∞, then the excess kurtosis coefficient is given by

γ2 = E[Y − E[Y ]]4

(Var[Y ])2 − 3 = 3k4

k2
2

− 3,

where km = E[κm/2(U)].
Apart from the normal model, we explore two different types of heavy-tailed densities

based on the choice of h(· | ν).

• The Student-t distribution, Y ∼ T (μ,σ 2, νt ).
The use of the Student-t distribution as an alternative robust model to the normal distribu-
tion has frequently been suggested in the literature (Lange, Little and Taylor, 1989). For
the Student-t distribution with location μ, scale σ and degrees of freedom νt , the pdf can
be expressed as

f (y | μ,σ, νt ) =
∫ ∞

0
φ

(
(y − μ)/

√
u−1σ 2

)
fG

(
u

∣∣∣ νt

2
,
νt

2

)
du,

where fG(· | a, b) is the Gamma density function with shape and rate parameters given by
a and b, respectively. That is, Y ∼ T (μ,σ 2, νt ) is equivalent to the following hierarchical
form:

Y | μ,σ 2, νt , u ∼ N
(
μ,u−1σ 2)

, U | νt ∼ G(νt/2, νt/2).

For the Student-t distribution, we have that

km =
(

νt

2

)m
2 �(νt−m

2 )

�(νt

2 )
,

therefore, the Student-t has variance σ 2 νt

νt−2 , for νt > 2, and excess kurtosis 6
νt−4 , for

νt > 4.
• The Slash distribution, Y ∼ S(μ,σ 2, νs).

This distribution presents heavier tails than those of the normal distribution and it includes
the normal case when νs ↑ ∞. Its pdf is given by

f (y | μ,σ, νs) = νs

∫ 1

0
uνs−1φ

(
(y − μ)/

√
u−1σ 2

)
du.

Thus, the Slash distribution is equivalent to the following hierarchical form:

Y | μ,σ 2, νs, u ∼N
(
μ,u−1σ 2)

, U | νs ∼ B(νs,1),

where B(·, ·) denotes the beta distribution. For the Slash distribution we have that

km = 2νs

2νs − m
,

therefore, the Slash has variance σ 2 νs

νs−1 , for νs > 1, and excess kurtosis 3
νs(νs−2)

, for
νs > 2.

The SMN formulation described above is used in a linear regression approach by taking
μi = Xiβ where β is the vector of coefficients and Xi is the design matrix for the ith indi-
vidual, for i = 1, . . . , n.

The aim of this paper is to propose a general formulation to perform Bayesian model se-
lection for heavy-tailed linear regression models in a simultaneous setup. That is achieved
by specifying a full model which includes the space of all individual models under
consideration—specified using the SMN approach described above. This way, the model
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selection criterion can be based on the posterior probability of each model. A mixture dis-
tribution is adopted to one of the full model’s variable, with each component of the mixture
referring to one of the individual models. This approach has two main advantages when
compared to an ordinary analysis where each model is fitted separately and some model se-
lection criterion is used. Firstly, there is a significant gain in the computational cost since we
eliminate the need to fit all the individual models separately. Secondly, the proposed model
selection criterion is fully based on the Bayesian Paradigm, meaning that the model choice
is based on the posterior probability of each model. This is more robust when compared to
some other arbitrarily chosen model selection criteria, such as DIC, expected AIC (EAIC),
extended Bayes information criterion (EBIC) (Spiegelhalter et al., 2002), conditional predic-
tive ordinate (CPO) (Geisser and Eddy, 1979) and WAIC (Watanabe, 2010). The examples
presented in the paper are meant to provide empirical evidence for this argument. The pos-
terior distribution of the unknown quantities has a significant level of complexity which
motivates the derivation of a MCMC algorithm to obtain a sample from this distribution.

This paper is organised as follows: Section 2 presents the general model; Section 3 presents
a MCMC algorithm to make inference for the proposed model; a variety of simulated exam-
ples are presented in Section 4 and the analysis of two real data sets is shown in Section 5.
Finally, Section 6 discusses some extensions of the proposed methodology.

2 Linear regression model with heavy-tailed mixture structured errors

Model selection is an important and complex problem in statistical analysis and the Bayesian
approach is particularly appealing to solve it. In particular, the use of mixtures is a nice way to
pose and solve the problem, whenever possible. It allows for an analysis where all models are
considered and compared in a simultaneous setup without the need of complicated reversible
jump MCMC algorithms. Note that, from (1), each model is determined by the distribution
of the scale factor u, which suggests that a mixture distribution could be used for this latent
variable. We present a general finite mixture model framework capable of capturing different
behavior of the response and indicate which individual distribution is preferred.

2.1 The model

Define the n-dimensional response vector Y, the n × q design matrix X, the q-dimensional
coefficient vector β and two K-dimensional vectors γ = (γ1 · · ·γK)′ and p = (p1 · · ·pK)′.
Finally, let diag(u−1) be a n-dimensional diagonal matrix with ith diagonal u−1

i , i = 1, . . . , n.
We propose the following general model:

(Y|Zj = 1,U = u) ∼ Nn

(
Xβ, σ 2γj diag

(
u−1))

, (2)

(Ui |Zj = 1)
iid∼ Fj (νj ), i = 1, . . . , n, (3)

Z ∼ Mult(1,p1, . . . , pK), (4)

γj = gj (νj ), j = 1, . . . ,K, (5)

where Mult is the Multinomial distribution and each Fj represents a positive distribution
controlled by parameter(s) νj , which may need to be truncated to guarantee that Yi has finite
variance under each Fj .

The particular structure chosen for the variance in (2) was thought of so that, for each j ,
the variance of the model is the same—σ 2. This is achieved through specific choices for the
functions γj and allows us to treat σ 2 as a common parameter to all of the individual models.
Otherwise we would need one scale parameter for each model. Therefore, in our approach,
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since we have a common μ and σ 2, the models will mainly differ from each other in terms
of tail behavior which will favor the model selection procedure.

Note that each component from the mixture distribution of ui corresponds to one of the
models being considered. Model selection is made through the posterior distribution of Z.
A subtle but important point here is the fact that there is no i index for Zj . This means that
we assume that all the observations come from the same model, which poses the inference
problem in the model selection framework.

Another advantage of the simultaneous approach is that it allows the use of Bayesian model
averaging (see Raftery, Madigan and Volinsky, 1995). This is particularly useful in cases
where more than one model have a significant posterior probability. Note that the models we
consider can be quite similar in some situations—specially for higher values of the degrees
of freedom (df) parameters.

2.2 Prior distributions

The Bayesian model is fully specified by (2)–(5) and the prior distribution for the parameter
vector θ = (β, σ 2,p, ν), for ν = (ν1, . . . , νK). Due to the complexity of the proposed model,
the prior distribution plays an important role on the model identifiability and selection process
and, for that reason, needs to be carefully specified.

Prior specification firstly assumes independence among all the components of θ . Secondly,
standard priors β ∼Nq(μ0, τ

2
0 Iq) and σ 2 ∼ IG(a0, b0) are adopted.

The prior distributions of the tail behavior parameters ν require special attention. This
type of parameter is known to be hard to estimate (see Steel and Fernandez, 1999) and the
most promising solutions found in the literature tackle the problem through special choices of
prior distributions (see Fonseca, Ferreira and Migon, 2008). Recently, Simpson et al. (2017)
proposed a general family of prior distributions for flexibility parameters which includes tail
behavior parameters.

In this paper, we adopt the penalised complexity priors (PC priors) from Simpson et al.
(2017). In a simple way, the PC priors have as main principle to prefer a simpler model and
penalise the more complex one. To do so, the Kullback–Leibler divergence (KLD) (Kullback
and Leibler, 1951) is used to define a measure of information loss when a simpler model h

is used to approximate a more flexible model f (·|νj ). The measure d(f ‖ h)(νj ) = d(νj ) =√
2KLD(f ‖ h) is defined to be a measure of complexity of model f (·|νj ) in comparison

to h. Further, a density function π(d(νj )) = λ exp(−λd(νj )) is set for the measure d(νj ).
Finally, the prior distribution of νj is given by

π(νj ) = λ exp
(−λd(νj )

)∣∣∣∣∂d(νj )

∂νj

∣∣∣∣, j = 1, . . . ,K.

Note that this is a proper probability distribution (which implies in a proper posterior), since it
is a transformation from the proper prior adopted for d(νj ). Martins and Rue (2013) showed
that in a practical way, for the Student-t regression model, the PC prior can behave very
similar to the Jeffrey’s priors constructed by Fonseca, Ferreira and Migon (2008). Another
interesting practical usage of this prior is that the selection of an appropriate λ is done by
allowing the researcher to control the prior tail behavior of the model. For example, for the
Student-t distribution the user must select ν� and ξ such that P(νj < ν�) = ξ , in other words,
how much mass probability ξ is assigned to νj ∈ (2, ν�) (where j defines the Fj distribution
such that the response follows a Student-t distribution). Clearly, the same procedure applies
for any other distribution in the NI family that has a flexibility parameter. For more details on
the PC priors, see Simpson et al. (2017).

The prior distribution for p also requires special attention. Note that even in the ex-
treme (unrealistic) case where Z is observed, it does not provide much information about
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p, in fact, it is equivalent to the information contained in a sample of size one from a
Mult(1,p1, . . . , pK) distribution. The fact that Z is unknown aggravates the problem. A sim-
ple and practical way to understand the consequences of this is given by the following lemma,
which is a generalisation of Lemma 1 from Gonçalves, Gamerman and Soares (2013) where,
to the best of our knowledge, this problem was firstly encountered.

Lemma 1. For a prior distribution p ∼ Dir(α1, . . . , αK), the posterior mean of pj , ∀j , is

restricted to the interval (
αj

1+∑K
k=1 αk

,
αj+1

1+∑K
k=1 αk

).

Proof. See Appendix A. �

For example, if αj = 1, ∀j , then E[pj |y] ∈ (1/(K + 1),2/(K + 1)). This result indicates
that the estimation of Z may be compromised by unreasonable choices of the αj ’s.

A reasonable solution for this problem is to use a Dirichlet prior distribution with parame-
ters (much) smaller than 1, which makes it sparse. It is important, though, to choose reason-
able values for the αj ’s, in the light of Lemma 1. Gonçalves, Gamerman and Soares (2013)
claim that αj = 0.01, ∀j , leads to good results and, in the cases where prior information is
available, some of the αj ’s may be increased accordingly.

3 Bayesian inference

We derive a MCMC algorithm considering the three most common choices in the NI family—
Normal, Student-t, Slash. Nevertheless, based on the formulation presented in Section 2.1,
including other possibilities is straightforward. One should be careful, however, as it may
lead to serious identifiability issues due to similarities among the individual models. The
model is given by:

(Y|Zj = 1) ∼ Nn

(
Xβ, σ 2γj diag

(
u−1))

, (6)

Z ∼ Mult(1,p1,p2,p3), (7)

Ui
iid∼

⎧⎪⎪⎨⎪⎪⎩
δ1, if Z1 = 1,

G(νt/2, νt/2), if Z2 = 1, i = 1, . . . , n,

B(νs,1), if Z3 = 1,

(8)

γj =

⎧⎪⎪⎨⎪⎪⎩
1, if j = 1,

(νt − 2)/νt , if j = 1,

(νs − 1)/νs, if j = 1,

(9)

where δ1 is a degenerate r.v. at 1 and G and B are the Gamma and Beta distributions, re-
spectively. We impose that νt > 2 and νs > 1 so that Yi has finite variance (σ 2) under each
individual model.

Inference is performed via MCMC—a Gibbs sampling with Metropolis Hastings (MH)
steps for the df parameters. Details of the algorithm are presented below.

3.1 MCMC

We choose the following blocking scheme for the Gibbs sampler:

(p,Z,U), β, σ 2, (νt , νs). (10)

This blocking scheme minimises the number of blocks among the algorithms with only one
MH step (which is inevitable for the df parameters). The minimum number of blocks reduces
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the correlation among the components, which speeds the convergence of the chain. Moreover,
the most important and difficult step is the one that samples from (p,Z,U) and sampling
directly from its full conditional also favors the convergence properties of the chain.

The full conditional densities of (10) are all derived from the joint density of all random
components of the model.

π
(
Y,β, σ 2,p,Z,U,γ , νt , νs |X)

∝ π
(
Y|β, σ 2,Z,U,γ ,X

)
π(U|Z, νt , νs)

× π(Z|p)π(p)π(νt )π(νs)π(β)π
(
σ 2)

.

(11)

The first two terms on the right-hand side of (11) are given in Section 1, for each individual
model (Zj ). The remaining terms are given in Section 2.

The full conditional distributions of β and σ 2 are easily devised and given by:

(β|·) ∼ Nq

(
�β

((
τ 2

0 Iq

)−1
μ0 + (

√
u � X)′(

√
u � y)/

(
γjσ

2))
,�β

)
,

(
σ 2|·) ∼ IG

(
a0 + n/2, b0 +

n∑
i=1

ui(yi − Xi·β)2

2γj

)
,

where �β = ((τ 2
0 Iq)

−1 + (
√

u � X)′(
√

u � X)/(γjσ
2))−1,

√
u is the n-dimensional vector

with entries
√

ui , � is the Hadamard product which multiplies term by term of matrices with
the same dimension and Iq is the identity matrix with dimension q .

The df parameters are sampled in a MH step with the following transition distribution (at
the kth iteration):

q
(
νk
t , νk

s

) = q
(
νk
t

)
q
(
νk
s

)
, (12)

q
(
νk
t

) = (
(1 − Z2)1

(
νk
t = νk−1

t

) + Z2fN
(
νk
t ;νk−1

t , τ 2
t

))
, (13)

q
(
νk
s

) = (
(1 − Z3)1

(
νk
s = νk−1

s

) + Z3fN
(
νk
s ;νk−1

s , τ 2
s

))
, (14)

where fN (l;a, b) is the density of a normal distribution with mean a and variance b evaluated
at l. The respective acceptance probability of a move is

α(k − 1 → k) = min
{

1,Z1 + Z2
π(νk

t |·)
π(νk−1

t |·) + Z3
π(νk

s |·)
π(νk−1

s |·)
}
, (15)

where

π(νt |·) ∝ π(U|Z2 = 1, νt )π(νt ),

π(νs |·) ∝ π(U|Z3 = 1, νs)π(νs).

This result is obtained by adopting the following dominating measure for both the numerator
and the denominator of the acceptance probability: L2 ⊗ L ⊗ m if Z1 = 0 and L2 ⊗ m2 if
Z1 = 1, where m is the counting measure and Ld is the d-dimensional Lebesgue measure.
The detailed balance along with the fact that chain is irreducible, makes this a valid MH
algorithm (see Tierney, 1998).

Note that, once we have the output of the chain, estimates of the df parameters will be
based on samples of (νt |Z2 = 1) and (νs |Z3 = 1), which justifies the transition distributions
in (12)–(14).

From (11), the full conditional density of (p,Z,U) is

π(U,Z,p|·) ∝ π
(
y|β, σ 2,Z,U,γ ,X

)[ n∏
i=1

π(Ui |Z, νt , νs)

]
π(Z|p)π(p)

∝
[

n∏
i=1

π(Ui |·)
]
(r1p1)

Z1(r2p2)
Z2(r3p3)

Z3π(p).
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Defining w = ∑3
j=1 rjpj and wj = rjpj/w, for j = 1,2,3, we get

π(U,Z,p|·) ∝
[

n∏
i=1

π(Ui |·)
]
(w1)

Z1(w2)
Z2(w3)

Z3wπ(p). (16)

We can sample from (16) using the following algorithm.

1. Simulate p from a density π∗(p) ∝ wπ(p);
2. Simulate Z ∼ Mult(1,w1,w2,w3);
3. Simulate Ui from the density π(Ui |·),∀i;
4. OUTPUT (u, z,p).

Steps 2 and 3 are straightforward once we have that:

r1 =
n∏

i=1

exp
(
− 1

2γ1σ 2 ỹ2
i

)
;

r2 = (νt−2
νt

)−n/2(νt/2)nνt /2(�(νt+1
2 ))n

(�(νt

2 ))n
∏n

i−1(
ỹ2
i

2γ2σ
2 + νt

2 )(νt+1)/2
;

r3 =
(

νs − 1

νs

)−n/2(
�(νs + 1)

�(νs)
�(νs + 1/2)

)n n∏
i=1

[FG(1;νs + 1,
ỹ2
i

2γ3σ
2 )

(
ỹ2
i

2γ3σ
2 )νs+1/2

]
,

where ỹi = yi − Xi·β and FG(x;a, b) is the distribution function of a Gamma distribution
with parameters (a, b) evaluated at x. Moreover,

(Ui |Z1 = 1, ·) ∼ δ1;
(Ui |Z2 = 1, ·) ∼ G

(
(νt + 1)/2, ỹ2

i /
(
2γ2σ

2) + νt/2
);

(Ui |Z3 = 1, ·) ∼ G[0,1]
(
νs + 1, ỹ2

i /
(
2γ3σ

2))
,

where G[0,1] is a truncated Gamma distribution in [0,1].
Step 1 is performed via rejection sampling (RS) proposing from the prior π(p) and accept-

ing with probability w
maxj {rj } . Simulated studies indicated that the algorithm is computation-

ally efficient.
Monte Carlo estimates of the posterior distribution of Z (denoted by ρ), that is, the models’

posterior probabilities, based on a sample of size M , are given by

ρ̂j = ̂P(Zj = 1|y) = 1

M

M∑
m=1

1
(
Z

(m)
j = 1

)
, j = 1,2,3.

3.2 Practical implementation

The MCMC algorithm described in the previous section requires special attention to some
aspects to guarantee its efficiency.

An indispensable strategy consists of warming up the chain inside each of the heavy-tailed
models (Student-t and Slash). It contributes in several ways to the efficiency of the algorithm.

First, it contributes to the mixing of the chain among the different models. If the chain starts
at arbitrary values for the df parameters, it may move to high posterior density values for one
of them while the other is still at a low posterior density value. This will make moves from
the former model to the latter very unlike, jeopardising the convergence. More specifically,
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one may take the sample mean of the df parameters from their respective warm-up chains,
after discarding a burn-in, as the starting values for the full chain.

Secondly, the warm-up chains will achieve or approach local convergence (inside each
model). This will significantly speed the convergence of the full chain, which will have as
main purpose the convergence of the Z coordinate.

Finally, the warm-up chains are a good opportunity to tune the MH steps of the df pa-
rameters. Given the unidimensional nature of the step and the random walk structure, the
acceptance rates should be around 0.44 (see Roberts, Gelman and Gilks, 1997).

3.3 Prediction

An often common step in any regression analysis is prediction for a new configuration Xn+1
of the covariates. This procedure is straightforward in a MCMC context where a sample from
the posterior predictive distribution of Yn+1 can be obtained by adding two simple steps at
each iteration of the Gibbs sampler after the burn-in.

Let (Z(m),β(m), σ 2(m)
,γ (m), ν

(m)
t , ν

(m)
s ) be the state of the chain at the mth iteration after

the burn-in. Then, for each m = 1,2, . . . , firstly sample (u
(m)
n+1|Z(m), ν

(m)
t , ν

(m)
s ) from (8) and

finally sample

Y
(m)
n+1 ∼N

(
Xn+1β

(m), σ 2(m)(
Z′(m)

γ (m))(u(m)
n+1

)−1)
, (17)

where Z′(m) is a row vector and γ (m) is a column vector.
One can also consider the posterior predictive distribution of Yn+1 under one particular

model, for example, the one with the highest posterior probability. In that case, it is enough
to consider the sub-sample of the sample above corresponding to the chosen model.

4 Simulated examples

In this section, we introduce synthetic data examples to better understand the properties of the
proposed methodology. Our goal is twofold: to provide strong empirical evidence that, (1) as
long as information is available, the true model is selected using the proposed methodology
and (2) this selects the correct or more adequate model more often than some traditional
criteria.

We firstly present a study to see how well the proposed methodology correctly identifies
the true model. A second study shows the performance of the criteria when the model has
correlated covariates, which may cause problems in the estimate of the fixed effects and
variance parameter. Finally, a third synthetic data set is generated from a residual mixture
model to investigate if the model that better approximates the true mixture distribution is
chosen.

4.1 Study I

In this study, data is generated from one of the proposed distributions: Normal, Student-t
and Slash. We consider an intercept and two covariates, i.e. Xi· = (1,Xi1,Xi2), where Xi1
is a standard Normal random variable, Xi2 is a Bernoulli random variable with parameter
0.5 and i = 1, . . . , n. The regression coefficients are β� = (1,2,−2). Finally, for all models,
the variance σ 2 is set to 1. The synthetic data were generated from each of the following
distributions:

1. Normal;
2. Student-t with degrees of freedom νt = 15 and νt = 3;
3. Slash with degrees of freedom νs = 3.36 and νs = 1.25.



60 F. B. Gonçalves, M. O. Prates and V. H. Lachos

Different sample sizes n are also considered—100, 500, 1000 and 5000, giving a total of
20 scenarios. The degrees of freedom for the Slash were chosen to minimise the Kullback–
Leibler divergence between the Student-t with νt = 15 and νt = 3, respectively.

For each simulated scenario a Markov chain runs for 110k iterations, with a burn-in of
10k giving a total posterior chain of 100k iterations. Convergence is checked using Geweke’s
criterion (Geweke, 1992) since we only ran one chain. The same chain size, burn-in period
and convergence verification were performed for all the examples in the paper. Notice that
the parametrisation adopted allows some parameters to be estimated using the whole chain,
independently of the model that is visited in each iteration. This favors the chain convergence
and the Monte Carlo variance of the estimates of (β, σ 2).

The summary posterior results of one run are presented in Table 1. They show that as
the sample size increases the proposed methodology selects the correct model. Moreover, in
the case where data is generated from the Normal distribution, not only the correct model is
correctly chosen in all but one case, but also the estimated degrees of freedom of the Student-
t and of the Slash distributions are high—making these distributions similar to Gaussian.
Another important feature presented in the Table 1 is that the degrees of freedom parameter of
the generating model is well estimated. For the non-generating model, the degrees of freedom
parameter is reasonably estimated, in the sense of making the respective model as close as
possible to the true one. For example, when the data is generated from the Student-t with
νt = 15 the νs is estimated close to 3.36, which is the value that minimises the Kullback–
Leibler divergence between the two distributions. Table 1 also emphasises that, for small
sample sizes n = 100 or n = 500, there is not enough information about the tail behavior to
clearly distinguish among the models.

To check the capability of the proposed methodology in selecting the correct model, we
performed a Monte Carlo study with 50 replicates of each of the 20 generation schemes.
Table 2 presents the Mean Square Error (MSE) of the posterior estimates of the model pa-

Table 1 Results for Study I. Estimates (posterior mean) refer to one of the 50 replications

Model Sample size β� = (1,2,−2) σ 2 = 1 (νt , νs ) ρ = (ρ1, ρ2, ρ3)

Normal 100 (1.153,1.991,−2.305) 1.121 (10.62,2.09) (0.103,0.537,0.360)

500 (0.997,2.047,−2.065) 0.979 (29.47,4.43) (0.882,0.073,0.045)

1000 (1.004,1.981,−1.986) 0.999 (31.20,4.45) (0.644,0.280,0.076)

5000 (0.990,1.979,−1.965) 0.980 (44.25,5.32) (0.749,0.097,0.154)

Student-t 100 (1.236,1.829,−2.148) 1.267 (9.86,1.86) (0.044,0.439,0.517)

(νt = 15) 500 (1.074,2.029,−2.042) 1.038 (28.64,4.14) (0.777,0.151,0.072)

1000 (1.012,2.006,−1.991) 0.982 (21.24,3.72) (0.123,0.609,0.268)

5000 (1.014,2.000,−1.999) 0.993 (16.19,3.19) (0.000,0.807,0.193)

Student-t 100 (1.116,1.865,−2.045) 1.389 (3.22,1.22) (0.000,0.371,0.629)

(νt = 3) 500 (0.978,2.031,−1.923) 1.244 (3.36,1.20) (0.000,0.679,0.321)

1000 (1.001,2.005,−1.959) 0.861 (3.30,1.25) (0.000,0.990,0.010)

5000 (1.024,2.007,−2.035) 1.029 (2.95,–) (0.000,1.000,0.000)

Slash 100 (0.968,2.097,−1.902) 1.049 (17.37,2.76) (0.369,0.357,0.274)

(νs = 3.36) 500 (0.976,2.003,−2.039) 0.963 (19.90,3.30) (0.167,0.450,0.383)

1000 (1.004,1.997,−2.010) 1.015 (17.72,3.22) (0.020,0.626,0.354)

5000 (1.029,2.000,−2.044) 0.963 (22.61,3.65) (0.000,0.230,0.770)

Slash 100 (1.012,1.988,−1.957) 0.454 (18.04,2.75) (0.344,0.367,0.289)

(νs = 1.25) 500 (1.033,2.026,−2.015) 0.904 (3.91,1.29) (0.000,0.280,0.720)

1000 (1.012,2.012,−2.040) 0.839 (3.93,1.35) (0.000,0.561,0.439)

5000 (1.017,1.988,−2.011) 0.863 (–,1.30) (0.000,0.000,1.000)
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Table 2 Mean Square error estimates from the 50 replications for each parameter. PCS is the percentage of
correct selection in the 50 replications. The (×103) means that the reported value is MSE × 103

Model Sample size β(×103) σ 2(×103) νt or νs ρ PCS

Normal 100 (16.29, 10.15, 34.44) 32.12 – 0.303 80%
500 (3.24, 1.84, 7.23) 3.96 – 0.207 86%

1000 (2.24, 0.75, 5.03) 2.24 – 0.192 84%
5000 (0.40, 0.24, 0.66) 0.46 – 0.123 88%

Student-t 100 (26.04, 11.27, 44.80) 72.04 15.852 0.456 30%
(νt = 15) 500 (4.39, 2.42, 9.83) 5.91 45.564 0.288 64%

1000 (2.25, 0.82, 5.40) 2.84 36.736 0.284 68%
5000 (0.35, 0.18, 0.67) 0.46 11.580 0.131 80%

Student-t 100 (10.82, 6.26, 23.04) 97.85 71.458 0.365 32%
(νt = 3) 500 (2.81, 0.87, 4.82) 83.92 0.580 0.226 62%

1000 (0.95, 0.55, 1.98) 53.03 0.151 0.176 76%
5000 (0.16, 0.09, 0.42) 5.79 0.022 0.000 100%

Slash 100 (21.90, 10.93, 33.79) 45.65 1.625 0.557 10%
(νs = 3.36) 500 (2.71, 1.82, 5.89) 5.27 0.417 0.447 32%

1000 (1.49, 0.84, 3.35) 3.38 0.185 0.412 40%
5000 (0.42, 0.19, 0.74) 0.70 0.176 0.268 54%

Slash 100 (7.17, 5.37, 16.46) 86.38 0.056 0.259 62%
(νs = 1.25) 500 (2.46, 1.16, 3.94) 40.40 0.021 0.193 72%

1000 (0.95, 0.67, 1.58) 49.71 0.006 0.200 64%
5000 (0.24, 0.09, 0.56) 23.65 0.001 0.206 78%

rameters. The MSE of the ν parameters was calculated considering only the replications in
which the true model was selected. The MSE of ρ is the mean square error between the pos-
terior estimate of the true model’s probability and 1. From Table 2, we can see that, even for
small sample sizes, the MSE values of β and σ 2 indicate a very good recovery of the true
values. The MSE values of νt include some large values for small samples sizes when there
is not enough information to estimate precisely the degrees of freedom. The difference in
the magnitudes of νt and νs are explained by the difference in the scale of those parameters.
Finally, the last column of the table shows the percentage of times that the correct model was
selected (i.e., had the highest posterior probability).

4.2 Study II

This study investigates how the model selection procedure and the parameter estimation
is affected in the presence of correlated covariates. We generate data from a model with
ei ∼ T (0,1,3), β = (1,2,−2,1), Xi = (1,Xi1,Xi2,Xi3) and Xi3 = 2Xi2+N (0,0.5) which
induces an average correlation of 0.9 between the two covariates.

We reproduce 50 replicates of this scenario with different sample sizes n = 500, 1000,
2000 and 5000. Table 3 shows the percentage of times that the proposed methodology selects
each model and compares it with the other model selection criteria. All the criteria—WAIC,
CPO, DIC, EAIC and EBIC, selected the same model in all the replications. It is clear that
the traditional criteria have problems to distinguish between models with heavy tails even
when the sample size increases, whilst the proposed methodology performs a robust selection
specially for large sample sizes where tail information is more abundant.

Figure 1 shows some results regarding the estimation of the regression coefficients. They
are quite similar between the proposed methodology and the other model selection criteria.
The same, however, does not happen when we look at the estimates for the variance σ 2 (see
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Table 3 Percentage of the times each model was selected for different sample sizes in Study II

Proposed methodology WAIC/CPO/DIC/EAIC/EBIC

Sample size Normal Student-t Slash Normal Student-t Slash

500 0% 62% 38% 6% 42% 52%
1000 0% 62% 38% 0% 46% 54%
2000 0% 94% 6% 0% 58% 42%
5000 0% 100% 0% 0% 54% 46%

Figure 1 Study II—boxplots of the mean square error (mse) of the β estimates (posterior mean under the se-
lected model) for the 50 replicates for different sample sizes. Colour blue refers to the proposed methodology and
red to the other criteria. The black solid dots represent the mean.

Figure 2). The poor performance of the other criteria in selecting the correct model is clearly
reflected in the estimation of the variance, which is significantly overcome by the respective
estimates obtained with the proposed methodology.

4.3 Study III

In this study, the generating distribution for the error term is not a specific distribution as
in Sections 4.1 and 4.2, but a mixture of the Normal, Student-t and Slash distributions.
More specifically, we consider ei ∼ 0.1N (0,1) + 0.6T (0,1,4.00) + 0.3S(0,1,1.15), with
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Figure 2 Study II—boxplots of the mean square error (mse) of the σ 2 estimates (posterior mean under the
selected model) for the 50 replicates for different sample sizes. Colour blue refers to the proposed methodology
and red to the other criteria. The black solid dots represent the mean.

Table 4 Posterior results (mean) for Study III

Sample size β� = (1,2,−2) σ 2 = 1 (νt , νs) ρ = (ρ1, ρ2, ρ3)

500 (1.018,2.014,−1.993) 1.265 (3.56,1.24) (0.000,0.786,0.214)

1000 (1.038,1.972,−1.981) 0.839 (4.43,1.51) (0.000,0.914,0.086)

2000 (1.027,2.012,−2.046) 0.946 (4.61,1.53) (0.000,0.922,0.078)

5000 (0.985,1.979,−2.073) 0.918 (4.03,–) (0.000,1.000,0.000)

the same X, β’s and σ 2 from Study I. The sample sizes n considered are the same as in
Study II.

Again, 50 replications are generated. It is important to notice that our modeling framework
to perform robust model selection cannot retrieve the generating model, since we assume that
all the residuals must be from the same distribution. Nevertheless, a good fit may still be
provided by one of the individual models. Table 4 shows the result of one of the 50 replica-
tions. It is clear that the posterior distribution identifies the Student-t distribution as the best
candidate model, specially as the sample size increases.

For sample size 2000, Figure 3 shows the fit of the selected model (Student-t) and the other
two models, Normal and Slash, fitted individually. It also shows the true generating distribu-
tion for the error term. It is clear that, although the posterior distribution is different from the
true generating distribution, by definition, it approximates fairly very well the original one.

Table 5 shows that the proposed model consistently chooses the dominating model
(Student-t) as the sample size increases. The same does not happen for the other model se-
lection criteria.

5 Application

5.1 AIS

In this section, we introduce a biomedical study from the Australian Institute of Sports (AIS)
in 202 athletes (Cook and Weisberg, 1994). To exemplify our modeling, we consider the body
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Figure 3 Study III—residual histogram with true generating model (blue), selected Student-t model (red), Nor-
mal model (dashed black), and Slash model (dashed magenta) for sample size 2000.

Table 5 Percentage of the times each model was selected for different sample sizes (Study III)

Proposed methodology ∗WAIC

Sample size Normal Student-t Slash Normal Student-t Slash

500 0% 70% 30% 6% 50% 44%
1000 0% 98% 2% 4% 46% 50%
2000 0% 100% 0% 0% 62% 38%
5000 0% 100% 0% 0% 52% 48%

∗WAIC = all the other criteria (CPO, DIC, EAIC and EBIC) select the same model as WAIC.

Table 6 Model selection criterion for the fitting of the Normal, Student-t and Slash regression models. LMPL is
the the log-marginal pseudo-likelihood

Models −LMPL DIC EAIC EBIC WAIC

Normal 498.497 2976.407 994.142 1000.758 996.971
Student-t 491.623 2935.009 982.059 991.984 983.210
Slash 491.033 2931.636 980.633 990.558 982.049

mass index (BMI) as our response and the percentage of body fat (Bfat) as our covariate. This
way, we have a regression model with Xi· = (1,Bfati ) for i = 1, . . . ,202.

We fit each individual model separately and the proposed mixture model. Results are pre-
sented in Tables 6 and 7. Note that, although the Slash model is chosen by all the criteria,
and the estimates of the regression coefficients are similar between the individual fit and our
model, significant, though not large, differences can be found for the estimates of the vari-
ance σ 2. This highlights the model averaging feature of our approach, which is particularly
appealing when one of the models is not chosen with very high probability—in this example,
ρ = (0.001,0.304,0.695).
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Table 7 Posterior results for the BMI analysis with Bfat as covariate for the robust mixture model. The posterior
mean, median and standard deviation (Sd) are presented as well as the 95% high posterior density (HPD) interval

Model Parameters Mean Median Sd 95% HPD interval

Slash model β0 21.810 21.810 0.419 (20.980,22.620)

β1 0.070 0.070 0.028 (0.015,0.126)

σ 2 10.093 8.989 3.587 (5.702,17.940)

νs 1.705 1.612 0.442 (1.110,2.569)

Slash selected β0 21.794 21.799 0.418 (21.022,22.667)

model β1 0.071 0.071 0.028 (0.016,0.128)

σ 2 9.200 8.462 2.954 (5.543,14.765)

νs 1.716 1.628 0.434 (1.111,2.549)

5.2 WAGE

The wage rate data set presented in Mroz (1987) is used to extend our modeling framework
for censored data. The data consist of the wage of 753 married white women, with ages
between 30 and 60 years old in 1975. Out of the 753 women considered in this study, 428
worked at some point during that year. When the wives did not work in 1975, the wage rates
were set equal to zero. However, it is considered that they may had a cost in that year and,
therefore, these observations are considered left-censored at zero. The considered response is
Yi—the wage rate, and the explanatory variables are the wife’s age (X1i), years of schooling
(X2i), number of children younger than six years old in the household (X3i) and number
of children between six and nineteen years old (X4i). Thus, Xi· = (1,X1i ,X2i ,X3i ,X4i),
i = 1, . . . ,753.

Since the Wage data is censored, we have the following characteristic for our response
variables:

Yobsi =
{
κi, if Yi ≤ κi,

Yi if Yi > κi,

with κi = 0.
Suppose that, out of the n responses, C of them are censored as κi . From a Bayesian

perspective, these observations, YC = (y1, . . . , yC), can be viewed as latent and sampled at
each step of the MCMC. Because of the model structure presented in (6)–(9), it is simple to
notice that (

Yc|Zj = 1, uc,β, σ 2, νj

) ∼ T N
(
Xβ, σ 2γju

−1
c

)
, �−∞, κc�,

c = 1, . . . ,C,
(18)

where T N is a truncated Normal distribution with limits �−∞, κc�. Therefore, we simply
add a new sampling step in the blocking scheme as

(p,Z,U), YC, β, σ 2, (νt , νs).

This simple extension allows our modeling framework to deal with any kind of censored data,
where, for each type of censoring scheme, the new limits of (18) must be calculated.

To obtain our final chain with 100k observations, a Markov Chain of 110k iterations is
run and the first 10k observations are discarded for burn-in. The posterior estimate for ρ is
(0.000,0.025,0.975), which indicates the Slash distribution as the preferred one.

Table 8 summarises the posterior results. Garay et al. (2015) studied this data set from a
Bayesian perspective fitting a variety of independent models in the NI family. In their study,
the Slash distribution was selected as the preferred one as in our case. Moreover, the posterior
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Table 8 Posterior results for the Wage data analysis. The posterior mean, median and standard deviation (Sd)
are presented as well as the 95% high posterior density (HPD) interval

Parameters Mean Median Sd 95% HPD interval

β0 −1.174 −1.152 1.408 (−3.952,1.523)

β1 −0.109 −0.108 0.022 (−0.155,−0.066)

β2 0.646 0.645 0.070 (0.508,0.783)

β3 −3.114 −3.103 0.387 (−3.887,−2.381)

β4 −0.293 −0.294 0.129 (−0.539,−0.039)

σ 2 26.542 24.740 7.843 (14.784,42.624)

νs 1.410 1.374 0.207 (1.110,1.788)

mean estimates of the fixed effects parameters in Table 8 are very similar to the ones presented
in Garay et al. (2015) as well as the statistical significance of each covariate. The wife’s age,
the number of children younger than six years old in the household and the number of children
between six and nineteen years old tend to decrease the wage rate, while years of schooling
tend to increase the salary. The posterior estimates encountered by Garay et al. (2015) for
νs and νt , fitting separate models, were 1.438 and 5.279, respectively, which agree with
our results. Our mixture model approach was able to correctly capture the Slash distribution
without separately fitting the three models. Moreover, it provides a high computational gain
given the high posterior probability of the Slash model.

6 Conclusions and some extensions

Our proposed methodology has shown considerable flexibility to perform model selection
for heavy-tailed data explained by covariates under a regression framework. From theoretical
arguments, simulation studies and application to real data sets, it is clear that the methodology
provides a robust alternative to select the best model instead of relying on model selection
criteria which can be unstable (Gelman, Hwang and Vehtari, 2014).

In Section 5.2, we extend the methodology to censored heavy-tailed regression, showing
that the extension is straightforward and achieved by adding one simple step to the Gibbs
sampler. Also, the extension of the algorithm described in Section 3.1 to include more distri-
butions in the finite mixture is almost direct. Finally, it is clear from our results that this finite
mixture idea can be used in a variety of problems where a common parametrisation exists for
a family of distributions.

Besides the computational advantage of fitting one general model instead of K separated
models, we also emphasise that our robust model selection framework automatically performs
multiple comparison between the K models, which gives an advantage if one, instead, prefers
to use the Bayes factor performing 2 by 2 comparisons in each individual model. Moreover,
our approach also allows the use of model averaging.

Although the proposed methodology enriches the class of traditional censored regression
models, we conjecture that it may not provide satisfactory result when the response exhibit
asymmetry besides the non-normal behavior. To overcome this limitation, extending the work
to account for skewness behavior is also a possibility, for example, by using the scale mix-
tures of skew-normal (SMSN) distributions proposed in Lachos, Ghosh and Arellano-Valle
(2010). Nevertheless, a deeper investigation of those modifications in the parametrisation and
implementations is beyond the scope of this paper, but provides stimulating topics for further
research. Another possibility of future research is to generalise these modeling framework to
linear mixed model, for example, clustered, temporal or spatial dependence. These extensions
are being studied in a different manuscript.



Robust Bayesian model selection 67

Finally, a supplementary material with all the codes and the wage data is available for users
who want to apply our methodology (Gonçalves, Prates and Lachos, 2020).

Appendix A: Proof of Lemma 1

The posterior density of p is given by

f (p|Y = y) =
K∑

k=1

f (p|Y = y,Zk = 1)P (Zk = 1|Y = y).

If we multiply both sides by pj , integrate with respect to p and use the fact that p and Y are
conditionally independent given Z, we get

E[pj |y] =
K∑

k=1

E[pj |Zk = 1]P(Zk = 1|Y = y),

which is a weighted average of {E[pj |Zk = 1]}Kk=1 and, therefore, implies that

E[pj |y] ∈
(
min

k

{
E[pj |Zk = 1]},max

k

{
E[pj |Zk = 1]}).

Now note that (p|Zk = 1) ∼ Dir(α1 + 1{k = 1}, . . . , αK + 1{k = K}) and E[pj |Zk = 1] is
αj

α0+1 if j �= k and is αj+1
α0+1 if j = k, where α0 = ∑K

k=1 αk . This concludes the proof.

Appendix B: Model comparison criteria

The DIC (Spiegelhalter et al., 2002) is a generalisation of the Akaike information crite-
rion (AIC) and is based on the posterior mean of the deviance, which is also a measure
of goodness-of-fit. The DIC is defined by

DIC = D(θ) + ρD = 2D(θ) − D(θ̃),

where θ̃ = E[θ |y], D(θ) is the posterior expectation of the deviance and ρD is a measure of
the effective number of parameters in the model. The effective number of parameters, ρD, is
defined as ρD = D(θ) − D(θ̃), with D(θ) = −2E[logf (y|θ)|y].

The computation of the integral D(θ) is complex, a good solution can be obtained using
the MCMC sample {θ1, . . . , θM} from the posterior distribution. Thus, we can obtain an
approximation of the DIC by first computing the sample posterior mean of the deviations
D = −2 1

M

∑M
m=1 logf (y|θm) and then D̂IC = 2D − D(θ̃).

The expected Akaike information criterion (EAIC), and the expected Bayesian information
criterion (EBIC) (see discussion at Spiegelhalter et al., 2002) are given by

ÊAIC = D + 2ϑ and ÊBIC = D + ϑ log(n),

respectively, where ϑ is the number of model parameters and can be used for model compar-
ison.

Recently, Watanabe (2010) introduced the Widely Applicable Information Criterion
(WAIC). The WAIC is a fully Bayesian approach for estimating the out-of-sample expec-
tation. The idea is to compute the log pointwise posterior predictive density (lppd) given
by lppd = ∑n

i=1 log( 1
M

∑M
m=1 f (yi |θm)), and then, to adjust for overfitting, add a term

to correct for effective number of parameters ρWAIC = ∑n
i=1 V M

m=1(logf (yi |θm)), where
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V M
m=1(a) = 1

M−1
∑M

m=1(am − ā)2. Finally, as proposed by Gelman, Hwang and Vehtari
(2014), the WAIC is given by

WAIC = −2(lppd − ρWAIC).

So far, for the DIC, EAIC, EBIC and WAIC, the model that best fits a data set is the model
with the smallest value of the criterion.

Another common alternative is the conditional predictive ordinate (CPO) approach
(Geisser and Eddy, 1979). This statistic is based on the cross validation criterion to compare
the models. Let y = {y1, . . . , yn} be an observed sample from f (·|θ). For the ith observation,
the CPOi can be written as:

CPOi = p(yi |y(−i)) =
∫
θ∈�

f (yi |θ)π(θ |y(−i)) dθ =
{∫

θ∈�

π(θ |y)

f (yi |θ)
dθ

}−1
,

where y(−i) is the y without the ith observation and π(θ |y) denotes the posterior distribution
of θ . Thus, the CPOi has the idea of the leave one out cross validation, where each value
is an indicator of the likelihood value given all the other observations. For this reason, low
values of CPOi must correspond to poorly fitted observations. For many models, the analytic
calculation of the CPO is not available. However, Dey, Chen and Chang (1997) showed that
an harmonic mean approach can be used to do a Monte Carlo approximation of the CPOi by
using a MCMC sample {θ1, . . . , θM} from the posterior distribution π(θ |y). Therefore, the
CPOi approximation is given by

ĈPOi =
{

1

M

M∑
m=1

1

f (yi |θm)

}−1

.

Since the CPOi is defined for each observation, the log-marginal pseudo likelihood (LMPL)
given as

LMPL =
n∑

i=1

log(ĈPOi ),

is used to summarise the CPOi information and the larger the value of LMPL is, the better
the fit of the model under consideration.

Supplementary Material

Supplement to “Robust Bayesian model selection for heavy-tailed linear regression us-
ing finite mixtures” (DOI: 10.1214/18-BJPS417SUPP; .zip). Supplementary information.
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