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Abstract. Longitudinal zero-inflated count data are widely encountered in
many fields, while modeling the correlation between measurements for the
same subject is more challenge due to the lack of suitable multivariate joint
distributions. This paper studies a novel mean-correlation modeling approach
for longitudinal zero-inflated regression model, solving both problems of
specifying joint distribution and parsimoniously modeling correlations with
no constraint. The joint distribution of zero-inflated discrete longitudinal re-
sponses is modeled by a copula model whose correlation parameters are inno-
vatively represented in hyper-spherical coordinates. To overcome the compu-
tational intractability in maximizing the full likelihood function of the model,
we further propose a computationally efficient pairwise likelihood approach.
We then propose separated mean and correlation regression models to model
these key quantities, such modeling approach can also handle irregularly and
possibly subject-specific times points. The resulting estimators are shown to
be consistent and asymptotically normal. Data example and simulations sup-
port the effectiveness of the proposed approach.

1 Introduction

Longitudinal zero-inflated count data are widely encountered in the fields of biomedical,
medical, public health and social survey, etc. Zero inflation describes data for which the
number of observed zeroes is higher than what is expected from a standard Poisson distribu-
tion and often results in over-dispersion. For example, Bulsara et al. (2004) reported a study
of evaluating risk factors associated with severe hypoglycaemia (an event leading to loss of
consciousness or seizure), prospective assessment of severe hypoglycaemia was made over
9-year period for a total of 1229 children with Type 1 diabetes. Patients were seen every 3
months and episodes of hypoglycaemia along with clinical data were recorded. Over 70% of
children never experienced a severe hypoglycaemic event. With measuring the variables of
interest longitudinally, it is important to properly address the problem of zero inflation and
correlated observations within individuals over time, otherwise, the analysis may lead to bi-
ased estimates, underestimated standard errors and distorted test statistics of overall goodness
of fit (Atkins and Gallop (2007)).

Recently, several so-called two-part mixed models have been developed for longitudinal
zero-inflated data, which impose a binomial distribution to deal with zero versus nonzero,
and other distribution (discrete distribution for counts data, or censored continuous distribu-
tion for continuous outcome) to deal with the nonzero part of the distribution. The random
effect is then included either or both in the zero and nonzero parts to account for the cor-
relation between measurements upon the same subject at different occasions. For example,
Berk and Lachenbruch (2002) used a two-part model to handle the zero and positive repeated
measures by including a random effect in the logistic regression part for zeros, and impos-
ing a left censored lognormal distribution for the nonzero positive observations; For count
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data, Min and Agresti (2005) proposed a two-part zero-inflated random effects hurdle model
(Mullahy (1986)) to handle the zero and positive count separately; Lee et al. (2006) incor-
porated shared subject-specific random effects in each zero-inflated Poisson (ZIP) regression
model part to account for zero inflation and over-dispersion within longitudinal count mea-
surements. Bulsara et al. (2004) found that the negative binomial or zero inflated models are
more appropriate than the commonly used Poisson regression models for longitudinal severe
hypoglycaemia data. Rose et al. (2006) argued that ZINB and Negative Binomial Hurdle
(NBH) models produce more reliable inference, and which one should be used depend on
the study design and purpose. Similar results can be found in Lewsey and Thomson (2004),
Ground and Koch (2008) and Buu et al. (2012). Ghosh, Mukhopadhyay and Lu (2006) pro-
posed a Bayesian alternative approach for zero-inflated regression models; Alfo and Maruotti
(2010) discussed semiparametric estimation method for dynamic two-part models.

However, in many practical applications the assumption of normality and the condition
of being uncorrelated between random effects and errors may be violated as the data of-
ten exhibit skewness and some covariates may be measured with measurement errors. An
attractive alternative is to characterize the covariations for those repeated measurements us-
ing parsimonious regression techniques. For continuous longitudinal responses, Pourahmadi
(1999, 2000) developed a modified Cholesky decomposition on covariances that allows un-
constrained parametrization of the entries in the decomposition and permits the development
of interpretable regression models. Along this line, joint mean-covariance modelling ap-
proaches have attracted increasing interest. See, for example, Pan and Mackenzie (2003), Ye
and Pan (2006), Pourahmadi (2007), Leng, Zhang and Pan (2010), Zhang and Leng (2012),
Liu and Zhang (2013), Liu, Zhang and Chen (2018). More recently, Zhang, Leng and Tang
(2015) proposed models to investigate marginal variances and correlations from a geometric
perspective. For discrete longitudinal responses, however, modeling the covariance is more
challenging mainly because of the lack of suitable multivariate joint distributions that can
support complex correlation structures. As a consequence, models for longitudinal count data
have either sacrificed generality or have been specified with potentially undesirable correla-
tion restrictions imposed for the sake of retaining computational tractability. For example,
multivariate Poisson models are often constructed by including a common Poisson process
that enters every outcome in the model, but this approach can only produce nonnegative corre-
lations (Kocherlakota and Kocherlakota (1992), Karlis (2003)). It is also known that even for
given marginal distributions of the discrete variables, such as Bernoulli or Poisson, specifying
the joint distribution of multiple longitudinal measurements incorporating between measure-
ments correlations remains difficult (Molenberghs and Verbeke (2005), Bergsma, Croon and
Hagenaars (2009)). As such, jointly modeling the mean, variance, and correlations of re-
peated discrete measurements is much more challenging, compared with that for continuous
cases.

In this paper, we propose a novel approach by using copula for mean-correlation regres-
sion analysis for longitudinal zero-inflated data, solving both problems of specifying joint
distributions and parsimoniously modeling correlations with no constraint. A copula is a
function that represents the joint distribution in terms of its marginals (Sklar (1959)), and
hence can be used to couple any discrete and/or continuous distributions. An appealing fea-
ture of copula modeling is that it can be used to retain well-known parametric families for the
marginal distributions even though they may not be easily extendable to multivariate settings.
The use of copulas for count data is not new, for example, Zimmer and Trivedi (2006) use
trivariate copula to model two longitudinal count outcomes and a binary outcome. Madsen
and Fang (2011) introduced a Gaussian copula likelihood for discrete longitudinal data; Deb,
Trivedi and Zimmer (2014) and Shi and Zhang (2015) proposed a copula-based bivariate hur-
dle model for bivariate outcomes which are a mixture of zeros and continuously measured
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positive. Tang, Zhang and Leng (2018) first develop a copula-based mean-correlation mod-
eling approach for classical count data. Zimmer (2018) employed a copula-based method
for identifying and estimating the coefficient of a binary endogenous regressor in a Poisson
regression. The existing copula-based works mainly use copula to decouple the marginal fea-
ture from the dependent structure and generally do not parsimoniously model the correlation
or well account for the zero-inflation. We then study the use of hyper-spherical coordinates
to parametrize the correlation matrix in the copula in terms of a set of angles, effectively a
new set of constraint-free parameters on their support. Aided by this property, we propose
separated mean, correlation, and dispersion regression models to understand these three key
quantities, which can also handle irregularly and possibly subject-specific times points. We
show that our approach is adaptive, flexible, and powerful being innovatively capable of in-
corporating general covariates in a regression model for correlations, see the Rutgers alcohol
data example in Section 3.1.

There is often an issue of computational feasibility arising when maximizing the full like-
lihood function constructed from the copula representation. The high-dimensional intractable
integrals presents substantial challenges in statistical inferences and applications. We propose
an inferential strategy based on the pairwise likelihood, which only requires the computation
of bivariate distributions, and can guarantee the resulting estimated correlation matrix to be
always positive-definite, overcoming an important issue of using the pairwise likelihood ap-
proaches for correlation and covariance matrices. The other benefits of our approach are the
simplicity of implementation and the potential to handle large data sets. The estimators based
on the pairwise likelihood are generally consistent and asymptotically normally distributed.
We then demonstrate the usefulness and merits of the proposed framework in terms of simu-
lation and real data example.

The rest of the paper is organized as follows. Section 2 introduces the joint mean-
correlation-dispersion modeling approach of the paper and its theoretical properties. Sec-
tion 3 presents numerical simulation and real data analysis. Conclusions and an outline of
future study are found in Section 4. Technical details are relegated to the Appendix.

2 Main methodology

2.1 The joint modeling approach

An appealing approach for incorporating the dependency among longitudinal categorical
variables is the copula construction (Joe (1997), Song, Li and Yuan (2009)). The copula
approach basically involves the generation of a multivariate joint distribution, given the
marginal distributions of the correlated variables, so that the dependence structure is en-
tirely unaffected by the marginal distributions assumed. For our paper, we use the so-called
Gaussian copula, which has merits of being convenient and has been demonstrated useful in
recent studies (see, e.g., Liu, Lafferty and Wasserman (2009)). Following Sklar (1959), the
joint cumulative distribution function (CDF) of random variables U = (U1, . . . ,Ud)T with
given margins can be constructed by the Gaussian copula in the form

G(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud) = �d(v1, . . . , vd;R).

Here �d is the distribution function of the d-dimensional standardized normal distribution
with zero mean, R is the correlation matrix, and vi = �−1

1 (wi) where wi = P(Ui ≤ ui) is the
marginal distribution of Ui (1 ≤ i ≤ d). The copula construction provides substantial flexibil-
ity in correlating random variables, as it separates the marginal feature from the dependence
structure, and can treat continuous, categorical and mixed data in a unified fashion. Because
of the decoupling, models developed for independent data can be seamlessly incorporated by
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appropriately manipulating the marginal distributions. Though the Gaussian copula is elab-
orated in our method, we remark that other copulas can also be applied without comprising
the essence of our mean-correlation modeling framework. For example, the t-copula (Fang,
Fang and Kotz (2002)) parametrized by the correlation matrix R may also be applied.

Designate the vector (Yi1, . . . , Yimi
)T to be the mi longitudinal measurements for the ith

subject at times ti = (ti1, . . . , timi
), with corresponding covariates vectors introduced in the

following later. Suppose that Yij marginally follows the common zero-inflated negative bino-
mial distribution (ZINB):

P(Yij = y) =
{
pij + (1 − pij )P (Wij = 0) y = 0,

(1 − pij )P (Wij = y) y ≥ 1,
(2.1)

where Wij follows a negative binomial distribution with probability mass function

P(Wij = w) = �(w + 1/τ)

w!�(1/τ)

(
1

1 + τλij

)1/τ(
τλij

1 + τλij

)w

, (2.2)

where w = 0, . . . and τ (τ > 0) is a shape parameter that quantifies the amount of over-
dispersion. Denote Yij ∼ ZINB(λij ,pij ; τ), it is easy to verify that the mean and variance of
Yij are EYij = (1 − pij )λij and Var(Yij ) = (1 − pij )λij (1 + τλij + pij ), respectively.

The ZINB model has been well studied for independent zero-inflated data. In a ZINB
model, both pij and λij are modeled as functions of explanatory variables. The log link
function is used to relate λij to the explanatory variables (say, xij ), and the logit link function
is used to relate pij to the explanatory variable (say, hij ). The predictors (say, xij ) for λij can
be different from the predictors (say, hij ) for pij . Let us assume that

log(λij ) = xT
ijβ, logit(pij ) = hT

ijγ . (2.3)

Thus, the mean of Yij , μij = EYij = (1 − pij )λij , depends on the parameters β and γ .
Let the joint CDF of Yi1, . . . , Yimi

follow the Gaussian copula representation

F(yi ) = P(Yi1 ≤ yi1, . . . , Yimi
≤ yimi

) = �mi
(zi1, . . . , zimi

;Ri ), (2.4)

where yi = (yi1, . . . , yimi
)T, zij = �−1

1 {Fij (yij )} (j = 1, . . . ,mi), Fij (·) is the CDF of Yij

and Ri = (ρijk)
mi

j,k=1 is the correlation matrix of subject i. Clearly, at the model level, the
marginal distributions and the correlations of the discrete longitudinal responses are treated
separately. Thus this framework provides a powerful and flexible device to incorporate de-
sired marginal models for discrete responses. Note that although the elements in Ri are not
directly the correlations between the discrete observations, they are determining the depen-
dence of the longitudinal observations via (2.4). When the responses are binary, the correla-
tion between two observations is a monotone function of the corresponding element in Ri ;
see also Fan et al. (2017). We also refer to the discussions in Song (2000) on the connection
between the correlation coefficients in Ri and those of the observed variables.

With so many parameters in {Ri} (i = 1, . . . , n), the model is clearly over-parametrized
and thus can not be applied in practice. It is also worth to mention that a regression approach
based on a direct Cholesky-type decomposition of the correlation matrix encounters great
difficulty. To overcome this, we first decompose Ri as

Ri = TiTT
i , (2.5)
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where Ti is a lower triangular matrix given by

Ti =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
ci21 si21 0 · · · 0
ci31 ci32si31 si32si31 · · · 0
...

...
...

. . .
...

cimi1 cimi2simi1 cimi3simi2simi1 · · ·
mi−1∏
l=1

simi l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.6)

and cijk = cos(ωijk) and sijk = sin(ωijk) are trigonometric functions of angles ωijk ∈ [0, π)

(1 ≤ k < j ≤ mi ) that are the parameters under the new parametrization. That is, the
nonzero entries in the lower diagonal matrix Ti are given by Ti11 = 1, Tij1 = cos(ωij1) for
j = 2, . . . ,mi , and

Tijk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos(ωijk)

k−1∏
l=1

sin(ωijl) 2 ≤ k < j ≤ mi;
k−1∏
l=1

sin(ωijl) k = j ; j = 2, . . . ,mi.

(2.7)

Note that for any matrix Ti , Ri = TiTT
i is guaranteed to be nonnegative definite. The spe-

cial form of Ti in (2.6) ensures further that the diagonals of Ri are unit and that Ri is positive
definite. In addition, the lower triangular structure of Ti respects the longitudinal nature of
the data in that the angles are added sequentially to Ti in a way similar to the fact that longi-
tudinal data are collected along a time dimension. Thus, the effect of the decomposition is to
transform the unknown positive definite correlations {Ri} into unconstrained parameters in
{ωijk} on [0, π). This decomposition in (2.6) appeared in Creal, Koopman and Lucas (2011)
for analyzing time series and was studied by Zhang, Leng and Tang (2015) for regression
with continuous longitudinal responses where it was argued that the angles ωijk represent
rotations of these coordinates and their magnitude reflects roughly the correlations amongst
different components.

Since all angles in (2.6) are unconstrained on [0, π), we propose to model these angles
{ωijk} collectively via a regression model after a monotone transformation as

ωijk = π/2 − atan
(
wT

ijkα
)
, (2.8)

where wijk ∈ R
q is a covariate and α is the q × 1 unknown parameters. We note that ωijk

can be directly modeled as a linear function of wijk as in Zhang, Leng and Tang (2015).
We remark that wijk depends on two indices j and k of the ith subject. This is reasonable
since for modeling the correlation between observation j and k, we need to examine the co-
variates of the ith subject at the two corresponding observations. In practice, we can follow
the convention of longitudinal data analysis by taking wijk as some function of the time lag
|tij − tik| between observations, which effectively ensures the correlation to be stationary;
see also Pourahmadi (1999). Other time-dependent covariates may also be meaningfully ex-
ploited. Such a rationale can be initially assessed by examining empirical correlations from
the observed longitudinal data. For a balanced longitudinal study, an initial version of the
angles ωijk can be obtained from the empirical correlation matrix of the φ−1(F (y)) after a
marginal model fitting. By examining the plot of those angles ωijk against the time lag, ap-
propriate models can be used to describe such a curvature. Furthermore, we emphasize that
by using regression model (2.8) in conjunction with copula, our approach provides a new
device for modeling general joint distributions for data that can be discrete or more generally
being mixed.
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By combining all unknown parameters in this modeling framework, we write collectively
the parameter vector of interest as θ = (βT,γ T,αT, τ )T. Using the ZINB model for the re-
sponses marginally in (2.1) and the model in (2.8) for the correlations, we are ready to develop
the maximum likelihood estimators for θ . A daunting difficulty is, however, that applying
copula to fit discrete data is known to be computationally intensive. To see this, we may write
the full likelihood as

L(θ) =
n∏

i=1

P(Yi1 = yi1, . . . , Yimi
= yimi

)

=
n∏

i=1

P(yi1 − 1 < Yi1 ≤ yi1, . . . , yimi
− 1 < Yimi

≤ yimi
) (2.9)

=
n∏

i=1

∫
· · ·

∫
z−
i <u≤zi

φmi
(u;Ri) du,

where zi = (zi1, . . . , zimi
)T and z−

i = (z−
i1, . . . , z

−
imi

)T with zij = �−1
1 {Fij (yij )}, z−

ij =
�−1

1 {Fij (yij − 1)}. When yij takes the smallest possible value on its support, z−
ij = −∞.

The vector inequality z−
i < u ≤ zi means componentwise, that is, z−

i1 < u1 ≤ zi1, . . . , z
−
im1

<

umi
≤ zimi

. Though integrals in the full likelihood (2.9) can be approximated numerically or
by Bayesian methods, the computational cost is clearly high and may not scale easily to even
a moderate number of repeat measurements. Actually, directly calculating the distribution
function of each subject i specified by (2.4) requires 2mi summations of lower dimensional
distribution functions as in the approach of Song, Li and Yuan (2009), thus the computational
cost grows exponentially with mi ; see also Smith and Khaled (2012).

To overcome the computational difficulty, we propose to apply the composite likelihood
idea reviewed in Varin, Reid and Firth (2011) by using pairwise likelihood. The pairwise
approach is a good balance between statistical and computational efficiency. Many studies
have found that the efficiency loss of the pairwise likelihood estimator (relative to the max-
imum likelihood estimator) is negligible to small in applications, see, for example, Renard,
Molenberghs and Geys (2004), Fieuws and Verbeke (2006).

2.2 Pairwise likelihood (PL) inference

To estimate the parameters in the model specified by (2.3)–(2.8), we apply the composite
likelihood idea by constructing the all pairwise likelihood via bivariate copula as

pL(θ) =
n∏

i=1

∏
1≤j<k≤mi

∫ zij

z−
ij

∫ zik

z−
ik

φ2(u;ρijk) du, (2.10)

where φ2(·;ρ) is the probability density function of bivariate normal N(0,0,1,1, ρ). The
computational cost is remarkably lower than that of the full likelihood. To see this, we note
that (2.10) involves mi(mi − 1)/2 summations for each subject in the longitudinal data, a
polynomial order complexity as compared to the exponential order in computing the full
likelihood. Furthermore, each summand can be obtained by approximating a bivariate normal
distribution function which can be evaluated very quickly and accurately with existing com-
putational routines developed for low-dimensional integration, for example, those in Tong
(1990) and the ones implemented in R (e.g., function biv.nt.prob in package mnormt;
and function pmvnorm in package mvtnorm).

By using the pairwise likelihood (2.10) in conjunction with our mean-correlation regres-
sion models specified in (2.3)–(2.8), our proposed method also substantially enhances the
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conventional pairwise likelihood methods for studying covariance and correlation matrices.
We remark that a unique feature of our pairwise likelihood approach is that ρijk in (2.10)
is specified by the hyperspherical decomposition in (2.6) and (2.8) so that it is highly par-
simonious and ensures the resulting correlation matrix to be automatically positive definite.
In contrast, a conventional composite pairwise likelihood treats all correlations as standing-
alone parameters, ignoring the fact that they are from a correlation matrix. Thus in addition to
the difficulty from over-parametrization, the resulting estimates from a conventional pairwise
likelihood approach may not respect the fact that the pairwise correlations jointly forms a
correlation matrix.

Let the log pair-wise likelihood function be

pl(θ) =
n∑

i=1

∑
1≤j<k≤mi

log
∫ zij

z−
ij

∫ zik

z−
ik

φ2(u;ρijk) du

:=
n∑

i=1

∑
1≤j<k≤mi

lijk(θ),

(2.11)

and the score function be

Sn(θ) = ∂ pl

∂θ
=

n∑
i=1

∑
1≤j<k≤mi

∂lijk

∂θ
:=

n∑
i=1

Sni(θ). (2.12)

We employ the modified Fisher scoring algorithm to maximize the pairwise likelihood
function (2.11). The exact forms of the score function and the expected Hessian matrix for
pl(θ) are provided in the Appendix. Denote θ (t−1) as the updated value of θ at the (t −
1)th iteration. We update the estimates by the following iterative equation θ (t) = θ (t−1) +
K−1

n (θ (t−1))Sn(θ
(t−1)), where Kn is the expected Hessian matrix given later in (2.13).

The parameters β and γ can be initialized by fitting the marginal model, we can use the
independent correlation structure (ρijk = 0, thus α = 0). These initial estimators of β and
γ are known to be root-n consistent (Zeger and Liang (1986)). If data are balanced where
Ri = R, it is not difficult to find an initial consistent estimator of α. To do that, we can
easily obtain a sample estimator of R which is root-n consistent, using the initial consistent
estimators of β and γ . By noticing ω1jk = · · · = ωnjk for balanced data, we can use the model
in (2.8) to consistently estimate α. It is then straightforward to show that one step estimator
will be as efficient as the fully iterated estimators, a reminiscence of what is true for one
step estimators for the MLE. If data are unbalanced, obtaining the global optimal solution of
the likelihood or the pairwise likelihood is more difficult. We experience, however, that the
iterative procedure we have discussed so far always converges to an optimal solution, and the
numerical results reported in Section 4 are based on this simple iterative procedure.

2.3 Asymptotic properties

The asymptotic property of the maximum likelihood estimation involves the limit of the
expected Hessian matrix K(θ) = limn→∞ − 1

n
E(∂2 pl/∂θ∂θT), and the limit of variance

J(θ) = limn→∞ Varθ (
1√
n

Sn(θ)), where the expectation is conditioning on the covariates xij

and wijk . To formally establish the theoretical properties, we impose the following standard
regularity conditions in studying statistical methods for longitudinal data.

Condition A1. The dimensions p, d and q of covariates xij , hij and wijk are fixed; n → ∞
and maxi mi is bounded.
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Condition A2. The true value θ0 = (βT
0 ,γ T

0 ,αT
0 , τ0)

T is in the interior of the parameter space
θ that is a compact subset of Rp+d+q+1.

Condition A3. Both K(θ0) and J(θ0) are positive definite matrices.

For the MLE based on the full likelihood function, we have the following asymptotic
results.

Theorem 1. Under regular conditions (A1) to (A3), let θ̂ = (β̂
T
, γ̂ T

, α̂T
, τ̂ )T be the maxi-

mum pairwise likelihood estimates of (2.9), then
√

n(θ̂ − θ0) → N
(
0,G(θ0)

−1)
,

where G(θ) = K(θ)J(θ)−1K(θ) is known as the sandwich information or Godambe informa-
tion.

The form of sandwich information is due to the fact, K(θ) 	= J(θ), indicating loss of effi-
ciency with respect to maximum likelihood estimation (Varin, Reid and Firth (2011)). How-
ever, Renard, Molenberghs and Geys (2004), Fieuws and Verbeke (2006) among others have
found that the efficiency loss of the pairwise likelihood estimator (relative to the maximum
likelihood estimator) is negligible to small in applications. Our numerical studies experience
in later section is consistent with such conclusion.

Since θ̂ is consistent estimators for θ0, K and J in the asymptotic covariance matrix can
be consistently estimated by

Kn(θ̂) = −1

n

n∑
i=1

∑
1≤j<k≤mi

l̈ijk(θ̂), (2.13)

where l̈ijk(θ) = ∂2lijk(θ)/∂θ∂θT, and

Jn(θ̂) = 1

n

n∑
i=1

Sni(θ̂)ST
ni(θ̂). (2.14)

Therefore, G−1(θ0) can be consistently estimated by

G−1
n (θ̂) = K−1

n (θ̂)Jn(θ̂)K−1
n (θ̂). (2.15)

3 Examples: Data analysis and simulations

3.1 Rutgers alcohol problem index data

We apply the proposed approach to the dataset on gender differences across two years in
alcohol-related problem (Neighbors et al. (2010)), measured by the Rutgers Alcohol Problem
Index (RAPI, White and Labouvie (1989)). This dataset is drawn from an intervention study
aimed at reducing problematic drinking in college students. After filtering out the objects
with incomplete measurements, we have a balanced data set with 2805 longitudinal measures
across five time points from 561 individuals, 213 men and 348 women. The histogram of
RAPI outcomes show in Figure 1(a) reveals obvious zero inflation. According to Neighbors
et al. (2010), we use the zero-inflated negative binominal (ZINB) model with the following
links for λit and pit

log(λit ) = β0 + β1 · genderi + β2 · Timet + β3 · genderi × Timet , (3.1)

logit(pit ) = γ0 + γ1 · genderi + γ2 · Timet + γ3 · genderi × Timet , (3.2)
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Figure 1 (a) Histogram of RAPI data and predicted counts (dashed lines); (b) Plot of fitted correlations versus
time lag. Circle dots are fitted angles with a common correlation matrix for all subjects with parametrization (2.6),
the dashed black line is from fitting a LOWESS curve to the circle dots, the solid black line is from the proposed
model, and the dashed curves represent asymptotic 95% confidence intervals.

As for the correlation modeling, we first investigate a reasonable model using a common
5 × 5 correlation matrix R by letting Ri = R for all subjects. Thus the equivalent unknown
parameters for R by the decomposition (2.6) are ωjk (1 ≤ j < k ≤ 5). Then the pairwise
likelihood approach is applied to obtain estimators ω̂jk , leading to an estimated correlation
matrix. The plot of the function tan(π/2 − ω̂jk) versus the time lag is given in Figure 1(b)
with circle dots, suggesting some monotone decreasing associations. Clearly, this method
for incorporating the correlations involves 5 × 4/2 = 10 parameters. To model the correla-
tion parsimoniously by regression, we link these angles with covariates via the parsimonious
model specified in

tan(π/2 − ωijk) = α0 + α1(tij − tik) + α2(tij − tik)
2. (3.3)

The estimated parameters of the mean-correlation joint model with estimated standard de-
viation shown in the subscript are β̂0 = 1.74350.0553, β̂1 = 0.32120.0906, β̂2 = −0.00400.0039,
β̂3 = 0.00750.0055, suggesting that the gender is significant, the covariate Time and the in-
teraction effect are marginally significant. For model (3.2), we have γ̂0 = −4.62550.5686,
γ̂1 = −0.14290.9294, γ̂2 = 0.13260.0214, γ̂3 = −0.00390.0358, indicating that Time is signif-
icant. The estimated parameters in the correlation regression model are α̂0 = 0.65900.0963,
α̂1 = −0.16000.1052, α̂2 = 0.02440.0237, implying that a reduced model can be further dis-
cussed. τ̂ = 0.19080.0652 shows that data are over-dispersed. Denoted by ω̂jk the estimated
angles from the parsimonious model, Figure 1(b) also shows the plot of the fitted angles
tan(π/2 − ω̂jk) versus time lag, which indicates a competent fitting of the angles with far
fewer parameters where only 3 parameters are involved compared with 10 parameters in a
common correlation matrix R. To show the goodness-of-fit of our model, we simulate 1000
new outcomes from the fitted model, then average over simulations to get predicted counts
as the black line in Figure 1(a). Figure 1(b) shown the fitted polynomials and the LOWESS
curves.

Using ZINB model and pairwise likelihood (2.11), the log pair-wise likelihood value in-
creased from −31,675 to −30,878 by modeling the correlation using our approach than
assuming independence. After fitting the models, we then simulate 1000 outcomes from the
fitted model to compute the average predicted RAPI. Figure 2 shows the average predict RAPI
for women and men with comparison to the sample mean of RAPI, respectively, indicating
that our proposed model is fitting reasonably well.
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Figure 2 Plots of Average predicted RAPI for women and men under proposed model, ZINB with assuming
independence and sample mean of RAPI.

3.2 Simulations

In this section, we investigate the finite sample performance of the proposed estimation
method and compare our method with the standard ZINB approach. We conduct simulations
in two studies. In each of the following studies, we generate 500 data sets and consider sam-
ple sizes n = 200 and 400. All simulations were conducted in R. The data sets are generated
from the model

yij ∼ ZINB(λij ,pij ; τ), log(λij ) = 0.1 + 0.5xij1 − 0.5xij2,

logit(pij ) = −1 + 0.5xij1 + 0.5xij2

The angles are then modeled by quadratic polynomials with wijk = (1, tij − tik, (tij −
tik)

2)T and α = (1,−1,0.5)T , where the measurement times tij are generated from the uni-
form distribution. The shape parameter τ = 1/8. We consider two cases: (I) mi ≡ 6 and
(II) mi − 1 ∼ Binomial(6,0.8), respectively. The latter case gives different numbers of re-
peated measurements mi for different subjects. The covariate xij = (xij1, xij2)

T is generated
from independent standard normal distribution.

To compare our proposed approach with the full likelihood approach and the classical
ZINB model (with independence correlation), we directly use the estimation algorithm pro-
vided by R package pscl.

Tables 1 and 2 show the accuracy of the estimated parameters in terms of their mean biases
(MB) and standard deviations. Additionally, to evaluate the inference procedure, we compare
the sample standard deviation (SD) of 500 parameter estimates to the sample average of 500
standard errors (SE) using formula (2.15). The standard deviation (Std) of 500 standard er-
rors is also reported. For the parameters βi in the regression mean, all three approaches give
similar mean biases while our approach is more efficient in all the cases. It can also be seen
that the SD and SE are quite close especially when n is large, indicating the sandwich esti-
mation formula (2.15) works considerably well. Although estimators based on the pairwise
likelihood function is slightly less efficient than the maximum likelihood estimates, they have
relatively small biases. In particular, the estimates for the parameters in correlation matrices
based on full likelihood approach are highly biased. As discussed earlier, this is likely due to
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Table 1 Simulation results for case I. Mean absolute bias (MAB) and standard deviation (SD) of each parameter
(reported in the subscript). SE is the average standard error calculated using the formula (2.15)

n

Pairwise likelihood Full likelihood Independence

200 400 200 400 200 400

β0 MBSD −0.0010.050 −0.0030.032 −0.0010.045 −0.0030.030 0.0010.053 −0.0020.035
SEstd 0.0310.002 0.0220.001 – − – –

β1 MBSD 0.0010.019 0.0010.013 0.0010.017 −0.0010.012 −0.0030.027 −0.0010.02
SEstd 0.0210.002 0.0150.001 – − – –

β2 MBSD −0.0010.021 0.0010.014 −0.0010.018 0.0010.013 0.0030.030 0.0010.021
SEstd 0.0220.002 0.0160.001 – − – –

γ0 MBSD −0.0070.145 −0.0020.102 −0.0090.136 −0.0070.099 −0.0090.155 −0.0030.107
SEstd 0.1180.010 0.0840.005 – − – –

γ1 MBSD 0.0040.079 0.0050.055 0.0040.073 0.0070.051 0.0020.105 0.0050.073
SEstd 0.0830.008 0.0590.004 – − – –

γ2 MBSD 0.0010.071 0.0050.051 0.0010.062 0.0040.046 −0.0050.095 0.0070.067
SEstd 0.0730.006 0.0520.003 – − – –

τ MBSD −0.0020.025 0.0010.020 −0.0030.022 −0.0010.017 0.0030.034 0.0020.025
SEstd 0.1400.034 0.0950.017 – − – –

α0 MBSD −0.0010.072 −0.0030.049 −0.0380.061 −0.0430.04 – –
SEstd 0.0250.024 0.0280.002 – − – –

α1 MBSD 0.0210.410 0.0190.277 0.2700.303 0.2860.205 – –
SEstd 0.2460.113 0.1310.107 – − – –

α2 MBSD −0.0190.468 −0.0140.317 −0.3000.331 −0.3150.223 – –
SEstd 0.2450.132 0.1990.117 – − – –

the computational difficulty of evaluating multidimensional integrals when a full likelihood
is used. Compared to the classical ZINB estimates for estimating the parameters in the mean
model, the pairwise likelihood estimates have very competitive performance. Though our
method is not designed with specific consideration for enhancing the mean model estimation
incorporating correlations from the longitudinal data, we see that their performance is very
close to those of the full likelihood and classical ZINB approaches. When the sample size
is smaller, the pairwise likelihood estimates even outperform the classical ZINB approach,
showing the advantage of using parsimonious correlation models.

4 Conclusion

This paper presents a tool for investigating the correlation of longitudinal zero-inflated count
data, which incorporates the dependency through copula construction. By utilizing the un-
constrained parametrization of correlation matrix in a copula and a computationally efficient
estimation method based on pairwise likelihood, we have shown that our approach for mod-
eling mean-correlation is flexible and allows the development of parametric, nonparametric,
semi-parametric models for correlations.

As always in the application of parametric models for data analysis, it is important to de-
termine whether all the necessary model assumptions are valid before performing inference.
Checking assumptions on the marginal model specifications can be done similarly as in the
classical generalized linear model theory, while assessing the correlation model adequacy is
not straightforward especially for unbalanced data. For balanced data, as illustrated in the
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Table 2 Simulation results for case II. Mean absolute bias (MB) and standard deviation (SD) of each parameter
(reported in the subscript). SE is the average standard error calculated using the formula (2.15)

n

Pairwise likelihood Full likelihood Independence

200 400 200 400 200 400

β0 MBSD −0.0040.052 −0.0020.036 −0.0040.049 −0.0020.034 −0.0010.054 −0.0010.037
SEstd 0.0360.003 0.0250.002 – − – –

β1 MBSD 0.0010.021 0.0010.016 0.0010.020 0.0010.015 −0.0030.031 0.0010.021
SEstd 0.0250.003 0.0180.001 – − – –

β2 MBSD 0.0010.024 0.0010.016 −0.0010.021 0.0010.014 0.0030.031 0.0010.021
SEstd 0.0270.003 0.0180.002 – − – –

γ0 MBSD −0.0010.155 −0.0060.108 −0.0100.146 −0.010.101 −0.0020.158 −0.0070.111
SEstd 0.1340.013 0.0940.006 – − – –

γ1 MBSD 0.0060.090 0.0050.066 0.0080.085 0.0060.064 0.0040.115 0.0060.080
SEstd 0.0970.010 0.0680.005 – − – –

γ2 MBSD 0.0040.077 0.0010.060 0.0040.070 0.0010.054 0.0010.095 −0.0010.075
SEstd 0.0850.008 0.0590.004 – − – –

τ MBSD −0.0020.028 −0.0020.022 −0.0010.026 −0.0020.018 0.0030.034 0.0010.024
SEstd 0.1990.051 0.1310.027 – − – –

α0 MBSD −0.0040.090 0.0030.065 −0.0430.069 −0.040.054 – –
SEstd 0.0280.004 0.020.002 – − – –

α1 MBSD 0.0280.491 −0.0230.339 0.2930.371 0.2660.281 – –
SEstd 0.2600.017 0.0410.010 – − – –

α2 MBSD −0.0310.562 0.0290.383 −0.3310.429 −0.2990.312 – –
SEstd 0.3920.043 0.1310.024 – − – –

paper, graphical tools to compare the empirical estimates and the model estimates in Fig-
ure 1 are useful, counterparts of those are not currently available when data are unbalanced.
Other multivariate copulas than the Gaussian copula may also be possible to establish similar
frameworks to that presented in this article, but different copula could have significant effect
on modeling the covariation. As such, another future line of research is to develop data-driven
models for covariations.

Appendix

Computation of score function

Notice that the objective function

pl(θ) =
n∑

i=1

∑
1≤j<k≤mi

lijk(θ), (A.1)

where

lijk(θ) = logLijk(θ) = log
∫ zij

z−
ij

∫ zik

z−
ik

φ2(u;ρijk) du

= log
(
�2(zij , zik;ρijk) − �2

(
z−
ij , zik;ρijk

)
(A.2)

− �2
(
zij , z

−
ik;ρijk

) + �2
(
z−
ij , z

−
ik;ρijk

))
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and �2(x, y;ρ) is the CDF of bivariate normal N(0,0,1,1, ρ), zij = �−1
1 {F(yij )} = zij (η),

z−
ij = �−1

1 {F(yij − 1) = z−
ij (η)}, and η = (βT,γ T, τ )T, we have

∂lijk

∂η
= 1

Lijk

∂Lijk

∂η

= 1

Lijk

(
∂

∂η
�2(zij , zik;ρijk) − ∂

∂η
�2

(
z−
ij , zik;ρijk

)

− ∂

∂η
�2

(
zij , z

−
ik;ρijk

) + ∂

∂η
�2

(
z−
ij , z

−
ik;ρijk

))
,

(A.3)

hence we just need to compute the derivative alike

∂�2(z1, z2;ρ)

∂η
. (A.4)

Infact, we have

∂�2(z1, z2;ρ)

∂η

= ∂�2(z1, z2;ρ)

∂z1

∂z1

∂η
+ ∂�2(z1, z2;ρ)

∂z2

∂z2

∂η

= φ(z1)�1

(
z2 − ρz1√

1 − ρ2

)
∂z1

∂η
+ φ(z2)�1

(
z1 − ρz2√

1 − ρ2

)
∂z2

∂η

= �1

(
z2 − ρz1√

1 − ρ2

)
∂F (y1)

∂η
+ �1

(
z1 − ρz2√

1 − ρ2

)
∂F (y2)

∂η
,

(A.5)

where zi = �−1
1 {F(yi)}, i = 1,2. We can finish (A.3) easily by

∂F (y)

∂β
= (1 − p)

y∑
k=0

P(W = k)
k − λ

1 + τλ
x, (A.6)

∂F (y)

∂γ
= p(1 − p)

[
1 −

y∑
k=0

P(W = k)

]
h, (A.7)

∂F (y)

∂τ
= (1 − p)

y∑
k=0

P(W = k)
tk1 + tk2 + tk3

τ 2 , (A.8)

where tk1 = digamma( 1
τ
)− digamma(k + 1

τ
), tk2 = log(1 + τλ)− τλ

1+τλ
and tk3 = kτ

1+τλ
, with

digamma(x) = d
dx

ln�(x) = �′(x)
�(x)

and P(W = k) is the probability mass function of negative
binomial distribution in (2.1).

On the other side, Noting that for j < k, ρijk = ∑j
s=1 TijsTiks and

∂Tits

∂α
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tits

[
− tan(ωits)

∂ωits

∂α
+

s−1∑
l=1

1

tan(ωitl)

∂ωitl

∂α

]
t > s > 1,

Tits

s−1∑
l=1

1

tan(ωitl)

∂ωitl

∂α
t = s > 1,

− sin(ωit1)
∂ωit1

∂α
s = 1,

(A.9)
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we can obtain the derivative of lijk respect to α as

∂lijk

∂α
= 1

Lijk

∂Lijk

∂α

= 1

Lijk

(
φ2(zij , zik;ρijk) − φ2

(
z−
ij , zik;ρijk

)

− φ2
(
zij , z

−
ik;ρijk

) + φ2
(
z−
ij , z

−
ik;ρijk

))∂ρijk

∂α
.

(A.10)

Combining (A.3) and (A.10) leads to the score function Sn(θ).

Proof of the main theorem

The main theorem can be proved by the standard Taylor expansion approach for maximum
likelihood estimation as that in Molenberghs and Verbeke (2005) and Tang, Zhang and Leng
(2018). Here we give a scratch for easy reference. It is easy to see that EθSn(θ) = 0, thus by
Taylor expansion,

0 = Sn(θ̂) = Sn(θ0) + Ṡn(θ̃)(θ̂ − θ0),

where Ṡn = ∂ST
n /∂θ and θ̃ is within neighborhood of θ0. Specially, θ̃ → θ0 when n → ∞.

Therefore,

√
n(θ̂ − θ0) =

[
−1

n
Ṡn(θ̃)

]−1 1√
n
Sn(θ0). (A.11)

From Central Limit Theorem, Assumptions A1–A3 and because Eθ0Sn(θ0) = 0 and the
boundness of Varθ0(Sni(θ0)), i = 1, . . . , n,

1√
n
Sn(θ0) → N

(
0,J(θ0)

)
. (A.12)

By Assumption A3 and Slutsky’s theorem, θ̂ is consistent and asymptotically normal with
asymptotic covariance matrix G(θ0).
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