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Bootstrap-based testing inference in beta regressions
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Abstract. We address the issue of performing testing inference in small sam-
ples in the class of beta regression models. We consider the likelihood ra-
tio test and its standard bootstrap version. We also consider two alternative
resampling-based tests. One of them uses the bootstrap test statistic replicates
to numerically estimate a Bartlett correction factor that can be applied to the
likelihood ratio test statistic. By doing so, we avoid estimation of quantities
located in the tail of the likelihood ratio test statistic null distribution. The
second alternative resampling-based test uses a fast double bootstrap scheme
in which a single second level bootstrapping resample is performed for each
first level bootstrap replication. It delivers accurate testing inferences at a
computational cost that is considerably smaller than that of a standard dou-
ble bootstrapping scheme. The Monte Carlo results we provide show that
the standard likelihood ratio test tends to be quite liberal in small samples.
They also show that the bootstrap tests deliver accurate testing inferences
even when the sample size is quite small. An empirical application is also
presented and discussed.

1 Introduction

The class of beta regression models introduced by Ferrari and Cribari-Neto (2004) is com-
monly used when the response variable is restricted to the interval (0,1), such as rates
and proportions. In such a class of models, the response (y) is beta-distributed, that is,
y ∼ B(μ,φ). Its density function is given by

f (y;μ,φ) = �(φ)

�(μφ)�((1 − μ)φ)
yμφ−1(1 − y)(1−μ)φ−1, 0 < y < 1,

where μ ∈ (0,1) and φ > 0 are the mean and the precision parameters, respectively. Here,
E(y) = μ and Var(y) = μ(1 − μ)/(1 + φ). The mean response is related to a set of inde-
pendent variables through a link function. In the fixed precision variant of the model, the
precision parameter is taken to be constant for all observations. In the varying dispersion beta
regression model, in contrast, such a parameter is not taken to be fixed and is modeled much
in the same fashion as the mean parameter. Thus, the more general formulation of the beta
regression model comprises of two submodels, one for the mean and another for the preci-
sion. In each submodel, the parameter is related to a linear predictor via a (strictly increasing
and twice differentiable) link function. Such a formulation was considered by Smithson and
Verkuilen (2006) and formally introduced by Simas, Barreto-Souza and Rocha (2010). Dif-
ferent residuals for the model were proposed by Espinheira, Ferrari and Cribari-Neto (2008)
and diagnostic tools were developed by Ferrari, Espinheira and Cribari-Neto (2011). Beta re-
gression model selection was considered by Bayer and Cribari-Neto (2015). Improved point
and interval estimation in beta regressions was developed by Ospina, Cribari-Neto and Vas-
concellos (2006) and non-nested testing inference in the same class of models was developed
by Cribari-Neto and Lucena (2015). An extension of the model to accommodate the presence
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of zeros and/or ones in the data was proposed by Ospina and Ferrari (2012): the class of
inflated beta regressions.

Testing inferences in beta regressions are usually carried out using the likelihood ratio
test. Since the test statistic null distribution is typically unknown, the inference is based
on an asymptotic approximation. As is well known, the test statistic is asymptotically dis-
tributed as χ2

r under the null hypothesis, where r is the number of restrictions under eval-
uation. Such an approximation can be poor in small samples, thus rendering the test to be
size distorted. Analytical finite samples have been derived and are available in the literature.
For instance, Ferrari and Pinheiro (2011) derived Skovgaard’s correction (Skovgaard, 2001)
to the likelihood ratio test statistic and Bayer and Cribari-Neto (2013) obtained a Bartlett-
corrected likelihood ratio test statistic (Bartlett, 1937). The latter, however, is only avail-
able for the fixed precision variant of the beta regression model. In this paper we consider
an alternative approach, namely: the use of bootstrap resampling (Efron, 1979) to improve
testing inferences accuracy. The underlying idea is to use pseudo-samples to estimate the
test statistic exact null distribution, thus avoiding the use of an asymptotic approximation.
The usual practice is to base the test decision on a bootstrap p-value which is then com-
pared to the selected significance level. We go further and consider two alternative uses of
bootstrap resampling, namely: (i) the use of data resampling to numerically estimate the
Bartlett correction factor and (ii) the use of a second level of data resampling, in nested
fashion, but in a less computer intensive variant known as “the fast double bootstrap”. In
short, we explore three different bootstrap-based testing strategies in the class of beta re-
gression models. Their finite sample performances are evaluated via Monte Carlo simula-
tions.

We note that it is important for practitioners to have at their disposal several reliable test-
ing strategies that can deliver accurate inferences even when the sample size is small. For
instance, in Section 7 we present an empirical application that involves modeling a natu-
ral gas usage simultaneity factor. There are only 42 observations available. The interest lies
in determining whether or not precision is fixed. The likelihood ratio test cannot be trusted
since it tends to be considerably liberal in small samples, as our simulation results indicate.
The standard bootstrap p-value is equals 0.098, and as consequence the test is not conclu-
sive at the 10% significance level. We then resort to the bootstrap Bartlett corrected test and
to the fast double bootstrap test. Both tests indicate rejection of the null hypothesis (fixed
precision) at the 10% significance level. For more details, see the empirical analysis in Sec-
tion 7.

Our focus is on the likelihood ratio test because it is most commonly used test by prac-
titioners. We note that alternative asymptotically chi-squared testing criteria are available in
the literature, for example, the gradient, score and Wald tests. For a comparison of likelihood
ratio, score and Wald testing inferences in beta regressions, see Cribari-Neto and Queiroz
(2014). It is noteworthy that the bootstrap procedures we consider can be easily adapted for
use with the aforementioned alternative tests.

The paper unfolds as follows. Section 2 introduces the class of beta regression mod-
els. The likelihood ratio test and its standard bootstrap variant are briefly reviewed in Sec-
tion 3.

Section 4 presents the test based on the bootstrap Bartlett corrected likelihood ratio statis-
tic. The fast double bootstrap test is presented in Section 5. In Section 6, we present and
discuss Monte Carlo simulations results. Section 7 contains an empirical application. Finally,
concluding remarks are offered in Section 8.
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2 The beta regression model

Let y1, . . . , yn be a sample of independent random variables such that yt ∼ B(μt , φt ), for
t = 1, . . . , n. The varying precision beta regression model is given by

g(μt) =
k∑

i=1

xtiβi = x�
t β = ηt ,

h(φt ) =
m∑

j=1

ztj γj = z�
t γ = δt ,

where β and γ are unknown parameter vectors (β ∈ R
k and γ ∈ R

m), xt1, . . . , xtk and
zt1, . . . , ztm are fixed covariates (k + m < n) and g(·) and h(·) are link functions, which
are strictly increasing and twice-differentiable.

Parameter estimation is typically carried out by maximum likelihood. The log-likelihood
function based on an n-dimensional sample of independent beta responses is

	(β, γ ) =
n∑

t=1

	t (μt , φt ),

where

	t (μt , φt ) = log�(φt ) − log�(μtφt ) − log�
(
(1 − μt)φt

) + (μtφt − 1) logyt

+ {
(1 − μt)φt − 1

}
log(1 − yt ).

The score functions are given by

Uβ(β, γ ) = X�V T
(
y∗ − μ∗)

,

Uγ (β, γ ) = Z�Ha,

where X is an n × k matrix and Z is an n × m matrix whose t th rows are x�
t and

z�
t , respectively, and V , T and H are diagonal matrices given by V = diag{φ1, . . . , φn},

T = diag{1/g′(μ1), . . . ,1/g′(μn)} and H = diag{1/h′(φ1), . . . ,1/h′(φn)}. Additionally,
y∗ = {y∗

1 , . . . , y∗
n}� and μ∗ = {μ∗

1, . . . ,μ
∗
n}� with y∗

t = log(yt/(1−yt )) and μ∗
t = ψ(μtφt )−

ψ((1 − μt)φt ) where ψ(·) denotes the digamma function, that is, ψ(w) = d log�(w)/dw,
for w > 0, and a = (a1, . . . , an)

� with at = ∂	t (μt , φt )/∂φt .
The maximum likelihood estimators, β̂ and γ̂ , solve the system of equations given by

Uβ(β, γ ) = Uγ (β, γ ) = 0. Such a system of equations has no solution in closed-form and
maximum likelihood estimates are typically obtained by numerically maximizing the log-
likelihood function using a nonlinear optimization algorithm, such as the BFGS quasi-
Newton algorithm; see Press et al. (1992) and Nocedal and Wright (2006) for details on
numerical optimization.

Under regularity conditions (Serfling, 1980),(
β̂

γ̂

)
∼Nk+m

((
β

γ

)
,K−1

)
,

where K−1 is the inverse information given by

K−1 = K−1(β, γ ) =
(
Kββ Kβγ

Kγβ Kγγ

)
,
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with

Kββ = (
X�V WX − X�CT HZ

(
Z�DZ

)−1
Z�HT C�X

)−1
,

Kβγ = (
Kγβ)� = −KββX�CT HZ

(
Z�DZ

)−1
,

Kγγ = (
Z�DZ

)−1{
Im + (

Z�HT C�X
)
KββX�CT HZ

(
Z�DZ

)−1}
.

Here, W = diag{w1, . . . ,wn}, with

wt = φt

{
ψ ′(μtφt ) + ψ ′((1 − μt)φt

)} 1

[g′(μt )]2 ,

C = diag{c1, . . . , cn}, with

ct = φt

[
ψ ′(μtφt )μt − ψ ′((1 − μt)φt

)
(1 − μt)

]
,

and D = diag{d1, . . . , dn}, with

dt = ψ ′(μtφt )μ
2
t + ψ ′((1 − μt)φt

)
(1 − μt)

2 − ψ ′(φt ),

where ψ ′(·) is the trigamma function and Im is the m × m identity matrix.

3 The likelihood ratio test and its bootstrap variant

Let y = (y1, . . . , yn)
�, where yt ∼ B(μt , φt ), t = 1, . . . , n, and let θ = (β�, γ �)� be

the parameter vector that indexes the model. We partition θ as θ = (ω�,ψ�)�, where
ω = (ω1, . . . ,ωr)

� denotes the parameter of interest and ψ = (ψ1, . . . ,ψs)
� denotes the

nuisance parameter, with r + s = m + k. Suppose the interest lies in the test of H0 : ω = ω(0)

against a two-sided alternative hypothesis, where ω(0) is a given r-vector. The likelihood ratio
(LR) test statistic is given by

LR = 2
{
	(ω̂, ψ̂) − 	

(
ω(0), ψ̃

)}
,

where hats (tildes) indicate evaluation at the unrestricted (restricted) maximum-likelihood
estimator. Under regularity conditions and when the null hypothesis is true, the distribution of
the likelihood ratio statistic converges to χ2

r (Serfling, 1980). The test is then performed using
approximate (asymptotic) χ2 critical values, which can cause considerable size distortions in
small samples.

In order to overcome this problem, Cribari-Neto and Queiroz (2014) consider a bootstrap
version of the LR test for beta regression models, thus avoiding the use of asymptotic critical
values. In this paper we shall go further and consider two additional bootstrap-based testing
strategies, namely: the use of bootstrap Bartlett correction to the likelihood ratio test statis-
tic and the fast double bootstrap. The relative merits of each approach in the class of beta
regression model will be numerically evaluated via Monte Carlo simulations.

The decision rule of the bootstrap test can be expressed based on the bootstrap p-value.
Let y = (y1, . . . , yn)

� be a random sample from the random variable Y , τ be a test statistic,
and τ̂ be the realized value of τ for y. If F is the null cumulative distribution function of τ ,
the p-value of the test based on τ̂ is

p(τ̂ ) = 1 − F(τ̂ ).

However, in most cases, F is unknown. Bootstrap resampling can then be used to estimate
F, the resulting estimate being denoted by F̂

∗
B . The estimation procedure can be outlined

as follows. At the outset and imposing the null hypothesis, we obtain B of pseudo-samples
(or bootstrap samples) from the estimated model: y∗ = (y∗

1 , . . . , y∗
n)�. Here, B is a large
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positive integer and by “estimated model” we mean the model with its parameters replaced
by restricted estimates. We then compute the quantity of interest for each bootstrap sample,
τ̂ ∗ = τ(y∗), and use the empirical distribution of τ̂ ∗ as an estimate of the null distribution
of τ .

The bootstrap p-value is given by

p∗ = 1 − F̂
∗
B(τ̂ ) = 1

B

B∑
i=1

I
(
τ̂ ∗
i > τ̂

)
, (3.1)

where I (·) is an indicator function that equals 1 if its argument is true and 0 otherwise. We
reject the null hypothesis if p∗ is smaller than the test significance level.

The standard bootstrap version for the likelihood ratio test can be performed as follows:

(1) Compute the test statistic LR using the original sample;
(2) Generate a bootstrap sample y∗ under the null hypothesis, with y∗

t ∼ B(μ̃t , φ̃t ), where
μ̃t = g−1(x�

t β̃) and φ̃t = h−1(z�
t γ̃ ), β̃ and γ̃ being the restricted maximum likelihood

estimators of β and γ , respectively;
(3) Fit the model using y∗ and compute the test statistic LR∗;
(4) Execute steps 2 and 3 B times, where B is a large positive integer;
(5) Compute the bootstrap p-value:

p∗(LR) = 1

B

B∑
i=1

I
(
LR∗

i > LR
);

(6) Reject the null hypothesis if p∗ is smaller than the test significance level.

4 Bootstrap Bartlett correction

Bartlett (1937) proposed a correction to the likelihood ratio statistic, which was later gener-
alized by Lawley (1956). It makes it possible to reduces the order of the chi-square approxi-
mation error from O(n−1) to O(n−2). The modified LR statistic is given by

LRBc = LR

c
,

where c = E(LR)/r is known as the Bartlett correction factor. Oftentimes, however, the
derivation of the Bartlett correction factor may be quite cumbersome. For instance, the
Bartlett correction factor for beta regressions has only been obtained under fixed precision;
see Bayer and Cribari-Neto (2013). The derivation of the Bartlett correction factor for varying
precision beta regressions is quite cumbersome, and for that reason no such result is available
so far. An alternative lies in the use of bootstrap resampling to estimate the correction factor;
see Rocke (1989) and Bayer and Cribari-Neto (2013). The bootstrap Bartlett corrected LR
statistic is given by

LR∗
Bc = rLR

LR∗ ,

where LR∗ = 1
B

∑B
i=1 LR∗

i . For further details on Bartlett corrections, we refer readers to
Cordeiro and Cribari-Neto (2014), Cribari-Neto and Cordeiro (1996) and the references
therein.

The bootstrap Bartlett corrected likelihood ratio test can be performed as follows:

(1) Compute the test statistic LR using the original sample;
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(2) Generate a bootstrap sample y∗ under the null hypothesis, with y∗
t ∼ B(μ̃t , φ̃t ), where

μ̃t = g−1(x�
t β̃) and φ̃t = h−1(z�

t γ̃ ). Here, β̃ and γ̃ are the restricted maximum likeli-
hood estimators of β and γ , respectively;

(3) Fit the model using y∗ and compute the test statistic LR∗;
(4) Execute steps 2 and 3 B times, where B is a large positive integer;
(5) Compute the bootstrap Bartlett corrected statistic:

LR∗
Bc = rLR

LR∗ ;

(6) Reject the null hypothesis at the α significance level if LR∗
Bc is larger than upper χ2

r 1−α

quantile, where r is the number of restrictions under test.

We note that an advantage of the above resampling strategy over the more traditional ap-
proach of using the bootstrap method to estimate the test critical value or its p-value is that
here the bootstrap test statistic replicates are used to estimate a distribution mean: the mean
of the null distribution of LR. A distribution mean can be more accurately estimated from a
set of bootstrap test statistics replicates than a quantity that lies in the distribution tail.

5 The fast double bootstrap test

Davidson and MacKinnon (2000) proposed the fast double bootstrap (FDB) as an alternative
to the standard double bootstrap, which is very costly computationally, thus allowing practi-
tioners to achieve greater accuracy with reduced computational cost. This is possible because,
whereas in the standard double bootstrap C second-level pseudo-samples are used for each
first-level pseudo-sample, in the fast double bootstrap only one second-level bootstrap sample
is used, which considerably reduces the computational burden of the resampling scheme.

We generate, under the null hypothesis, B first-level bootstrap samples y∗ and compute
τ̂ ∗
i = τ(y∗

i ), i = 1, . . . ,B . Then, imposing the null hypothesis, we generate one second-level
bootstrap sample y∗∗ for each first-level pseudo-sample and compute τ̂ ∗∗

i = τ(y∗∗
i ). The fast

double bootstrap p-value is

p∗∗(τ ) = 1

B

B∑
i=1

I
(
τ̂ ∗
i > Q̂∗∗

B

(
1 − p∗(τ )

))
,

where p∗(τ ) is as in Equation (3.1), and Q̂∗∗(1 − p∗(τ )) is the 1 − p∗(τ ) quantile of all B

second-level bootstrap test statistics τ̂ ∗∗
1 , . . . , τ̂ ∗∗

B . It is noteworthy that the FDB based on B

bootstrap replications is equivalent to the double bootstrap provided that the distribution of
τ̂ ∗∗
j l does not depend on τ̂ ∗

j , where τ̂ ∗
j and τ̂ ∗∗

j l are, respectively, the test statistics computed
in the first and second levels of the double bootstrap mechanism and j and l index the first
and second level bootstrap replications, respectively. Let B1 and B2 be the number of first
and second level bootstrap replications in the double bootstrap scheme and let, as before,
B denote the number of FDB replications. By equivalence we mean that the two p-values
coincide when B,B1,B2 → ∞. For further details, see MacKinnon (2006).

In the last few years, the FDB has been considered by several authors. Davidson and
MacKinnon (2002) proposed a FDB version of the J test for use with non-nested linear re-
gression models, Ouysse (2011) used the FDB for performing bias correction and Davidson
and Trokic (2011) extended the FDB to higher orders of iteration. Other applications of the
method can be found in Omtzigt and Fachin (2002), Davidson (2006) and MacKinnon (2006).

The fast double bootstrap version of the likelihood ratio test can be performed as follows:

(1) Compute the test statistic LR using the original sample;
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(2) Generate a bootstrap sample y∗ under the null hypothesis, with y∗
t ∼ B(μ̃t , φ̃t ), where

μ̃t = g−1(x�
t β̃) and φ̃t = h−1(z�

t γ̃ ), β̃ and γ̃ being the restricted maximum likelihood
estimators of β and γ , respectively;

(3) Fit the model using y∗ and compute the test statistic LR∗;
(4) Generate a second-level bootstrap sample y∗∗ under the null hypothesis, with y∗∗

t ∼
B(μ̃∗

t , φ̃
∗
t ), where μ̃∗

t = g−1(x�
t β̃∗) and φ̃∗

t = h−1(z�
t γ̃ ∗). Here, β̃∗ and γ̃ ∗ are the

restricted maximum likelihood estimators of β and γ , respectively, obtained using y∗
as response;

(5) Fit the model using y∗∗ and compute the test statistic LR∗∗;
(6) Execute steps 2 through 5 B times, where B is a large positive integer;
(7) Compute the bootstrap p-value:

p∗(LR) = 1

B

B∑
i=1

I
(
LR∗

i > LR
);

(8) Compute Q̂∗∗(1−p∗(LR)), the 1−p∗(LR) quantile of all B second-level bootstrap test
statistics LR∗∗

1 , . . . ,LR∗∗
B ;

(9) Compute the fast double bootstrap p-value:

p∗∗(LR) = 1

B

B∑
i=1

I
(
LR∗

i > Q̂∗∗
B

(
1 − p∗(LR)

));
(10) Reject the null hypothesis if p∗∗ is smaller than the test significance level.

It is noteworthy that only one second level bootstrap sample is used at each first level
bootstrap replication.

6 Numerical evidence

This section presents Monte Carlo simulation results on the finite sample performances of
the likelihood ratio test (LR) and its bootstrap-based versions: standard bootstrap (LR∗), fast
double bootstrap (LR∗∗) and bootstrap Bartlett corrected (LR∗

Bc) tests. The number of Monte
Carlo replications is 5000, the tests nominal levels are α = 10%,5% and 1%, and the number
of bootstrap replications is 500.

At the outset, we consider the fixed precision beta regression model with logit link function
given by

log
(

μt

1 − μt

)
= β1 + β2xt2 + β3xt3.

The covariates values were obtained as random standard uniform draws. We use three sam-
ples sizes, n = 10,20,40, three values for the precision parameter, φ = 20,100,500, and
three scenarios for μ: μ ∈ (0.020,0.088), μ ∈ (0.20,0.84) and μ ∈ (0.94,0.98). The null
hypothesis is H0 : β3 = 0 which is tested against a two-sided alternative hypothesis. Since
the precision is fixed, we also report results on the analytically Bartlett-corrected likelihood
ratio test (LRBc); recall that such a correction is only available for fixed precision beta regres-
sions (Bayer and Cribari-Neto, 2013).

Tables 1, 2 and 3 contain the tests null rejection rates. The results reveal that the bootstrap-
based versions of the LR test outperform the test based on asymptotic critical values, which
displays liberal finite sample behavior, that is, it tends to over-reject the null hypothesis.
Moreover, although the LRBc test outperforms the usual LR test, it still displays some size
distortion, especially when n = 10 and 20. For instance, when φ = 20, μ ∈ (0.020,0.088),
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Table 1 Null rejection rates (%) when testing H0 : β3 = 0; φ = 20

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.020,0.088)

LR 18.80 14.20 11.52 12.04 8.40 6.18 4.34 2.32 1.36
LRBc 13.14 11.40 9.84 7.44 6.08 5.02 1.82 1.42 0.98
LR∗

Bc 11.04 10.66 9.96 5.60 5.58 5.02 1.26 1.28 1.00
LR∗ 10.70 10.66 9.92 5.60 5.70 4.86 1.32 1.32 0.92
LR∗∗ 10.86 10.36 10.12 5.86 5.42 5.08 1.36 1.22 0.96

μ ∈ (0.20,0.84)

LR 18.52 12.86 11.84 11.18 6.90 5.94 3.80 1.86 1.46
LRBc 12.14 9.62 10.20 6.36 4.92 5.36 1.50 1.18 1.04
LR∗

Bc 10.02 9.20 10.26 4.86 4.66 5.14 1.04 1.10 1.00
LR∗ 9.62 9.14 10.08 5.02 4.58 5.00 0.94 1.14 1.00
LR∗∗ 10.16 9.34 10.14 5.02 4.84 4.98 1.00 1.16 1.00

μ ∈ (0.94,0.98)

LR 16.84 13.18 11.92 10.08 6.82 6.22 3.34 2.04 1.50
LRBc 11.06 9.88 10.28 6.04 4.90 5.14 1.28 1.18 1.12
LR∗

Bc 9.22 9.46 10.14 4.44 4.72 5.12 1.04 1.06 1.08
LR∗ 9.20 9.10 10.10 4.12 4.82 5.00 0.82 1.10 1.12
LR∗∗ 9.52 9.40 10.26 4.64 4.76 5.20 0.98 1.28 1.06

Table 2 Null rejection rates (%) when testing H0 : β3 = 0; φ = 100

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.020,0.088)

LR 19.14 13.76 11.86 12.16 7.36 6.54 3.90 1.76 1.58
LRBc 13.10 10.48 10.30 6.98 4.98 5.22 1.62 0.96 1.18
LR∗

Bc 10.34 10.18 10.28 5.26 4.86 5.08 0.94 0.88 1.14
LR∗ 10.20 9.96 10.24 5.18 4.70 5.16 1.04 0.98 1.12
LR∗∗ 10.52 10.00 10.28 5.48 4.68 5.24 1.02 0.92 1.08
μ ∈ (0.20,0.84)

LR 18.88 13.26 12.16 11.48 7.56 6.80 3.80 1.72 1.44
LRBc 12.20 10.32 10.64 6.66 5.38 5.84 1.72 1.02 1.06
LR∗

Bc 10.32 10.06 10.40 5.10 4.94 5.58 1.20 0.90 1.16
LR∗ 10.04 9.90 10.32 4.96 4.96 5.50 1.06 0.90 1.12
LR∗∗ 10.12 9.96 10.56 5.18 4.98 5.50 1.06 0.94 1.32

μ ∈ (0.94,0.98)

LR 17.94 13.82 11.46 10.78 7.72 6.00 3.48 1.78 1.48
LRBc 11.88 10.82 9.94 6.52 5.38 5.02 1.34 1.10 1.04
LR∗

Bc 9.20 10.42 10.02 4.94 4.90 4.90 0.84 0.94 1.04
LR∗ 9.16 10.20 9.84 4.70 4.84 4.90 0.80 0.92 1.12
LR∗∗ 9.38 10.06 9.88 4.60 4.82 4.90 0.86 0.96 1.30

α = 10% and n = 20, the null rejection rate of the LR test is 14.20% whereas those of LRBc,
LR∗

Bc, LR∗ and LR∗∗ are 11.40%, 10.66%, 10.66% and 10.36%, respectively. It is noteworthy
that, in most cases, the FDB and LR∗

Bc tests outperform the standard bootstrap test.
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Table 3 Null rejection rates (%) when testing H0 : β3 = 0; φ = 500

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.020,0.088)

LR 18.32 13.16 11.88 11.04 7.16 6.06 3.76 2.04 1.38
LRBc 11.86 10.20 10.36 6.54 5.32 4.88 1.56 1.26 1.06
LR∗

Bc 10.04 9.82 10.24 5.06 4.86 4.98 1.04 1.10 1.10
LR∗ 10.04 9.78 10.16 5.10 4.66 4.94 1.22 1.10 1.10
LR∗∗ 10.04 9.70 10.00 5.14 4.74 4.94 1.32 1.06 1.14

μ ∈ (0.20,0.84)

LR 18.18 12.84 11.94 11.10 7.14 5.78 3.54 1.66 1.44
LRBc 12.12 10.26 10.38 6.66 4.90 4.94 1.64 0.94 1.08
LR∗

Bc 9.94 9.78 10.40 4.86 4.64 4.94 0.96 0.82 0.92
LR∗ 10.08 9.82 10.20 4.82 4.54 4.80 0.88 0.78 0.88
LR∗∗ 9.66 9.60 10.12 4.96 4.58 4.92 0.98 0.92 1.14

μ ∈ (0.94,0.98)

LR 17.78 13.36 10.92 11.14 7.86 5.72 3.42 1.84 1.08
LRBc 11.88 10.56 9.56 5.80 5.74 4.82 1.70 1.18 0.80
LR∗

Bc 9.92 10.18 9.58 4.66 5.34 4.76 1.22 1.06 0.76
LR∗ 9.56 10.16 9.66 4.44 5.14 4.72 1.06 1.08 0.64
LR∗∗ 9.44 10.24 9.56 4.46 5.10 4.66 1.14 1.04 0.82

We have also carried out Monte Carlo simulations using a varying precision beta regression
model. The following model was used:

log
(

μt

1 − μt

)
= β1 + β2xt2 + β3xt3,

log(φt ) = γ1 + γ2zt2.

The samples sizes are n = 10,20,40. We generated 10 values from the standard uniform
distribution for xti = ztj and replicated them to get covariate values for the three samples
sizes in order to keep the degree of heterogeneity (measured by λ = φmax/φmin) constant. We
consider different scenarios for μ and three values for λ = 20,50,100. At the outset, we test
H0 : β3 = 0 against H1 : β3 	= 0.

Tables 4, 5 and 6 contain the tests null rejection rates. The asymptotic LR test is clearly
liberal. For example, when λ = 50, μ ∈ (0.20,0.80), α = 10% and n = 10, its null rejection
rate exceeds 22%. On the other hand, the bootstrap-based tests show minor size distortions
relative to the asymptotic test, especially when n = 10 and 20. Moreover, in most cases, the
LR∗∗ test outperforms the LR∗ and LR∗

Bc tests. For instance, when λ = 100, μ ∈ (0.95,0.98),
n = 40 e α = 10%, the null rejection rate of the LR∗∗ test is 9.92% whereas those of LR∗ and
LR∗

Bc are 10.16% and 10.10%, respectively.
We shall now consider the test of H0 : β2 = β3 = 0 (two restrictions). The results in the Ta-

bles 7, 8 and 9 show that the bootstrap-based tests outperform the asymptotic test. Moreover,
the LR∗ test is the best performer in two scenarios, namely: when λ = 20 and μ = 0.092,
and when λ = 100 and μ = 0.85. In all other cases, the LR∗∗ and LR∗

Bc tests outperform the
standard bootstrap test.

We shall now perform testing inferences on the parameter vector that indexes the precision
submodel. We consider the null hypothesis H0 : γ2 = 0 which is tested against H1 : γ2 	= 0.
The tests null rejection rates are presented in Table 10. The results show that in most cases the
LR∗∗ and LR∗

Bc tests outperform the LR∗ test. For instance, when μ ∈ (0.92,0.98), α = 5%
and n = 10, the null reject rate of the standard bootstrap test is 4.54% whereas those of
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Table 4 Null rejection rates (%) when testing H0 : β3 = 0; λ = 20

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.020,0.080)

LR 23.60 14.48 12.44 16.08 7.84 6.48 6.70 2.08 1.68
LR∗ 10.02 9.86 10.50 4.86 4.78 5.30 1.10 1.16 1.20
LR∗∗ 10.38 10.00 10.56 5.34 4.84 5.26 1.06 0.98 1.12
LR∗

Bc 9.92 9.70 10.40 4.76 4.92 5.30 0.98 1.10 0.90

μ ∈ (0.20,0.80)

LR 23.22 15.12 11.94 15.30 8.22 6.40 5.94 2.22 1.50
LR∗ 9.26 10.30 10.02 4.54 5.54 5.18 1.08 1.16 1.04
LR∗∗ 9.60 10.14 10.10 4.84 5.14 5.06 0.96 0.96 1.04
LR∗

Bc 9.16 10.26 9.82 4.42 5.24 5.20 0.94 0.94 0.94

μ ∈ (0.95,0.98)

LR 22.52 14.22 11.72 14.58 7.98 6.44 5.70 2.48 1.30
LR∗ 8.94 9.96 10.16 4.58 5.12 4.90 1.10 1.50 0.90
LR∗∗ 9.16 9.72 10.06 4.82 5.24 4.70 1.04 1.20 0.78
LR∗

Bc 8.90 9.86 10.30 4.54 5.02 4.78 0.86 1.32 0.76

Table 5 Null rejection rates (%) when testing H0 : β3 = 0; λ = 50

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.020,0.080)

LR 22.82 14.82 12.52 15.22 8.88 6.82 5.98 2.58 1.72
LR∗ 9.24 10.48 10.58 4.64 5.60 5.62 0.84 1.42 1.36
LR∗∗ 9.44 10.32 10.56 4.70 5.48 5.68 0.86 1.10 1.16
LR∗

Bc 9.44 10.44 10.34 4.44 5.38 5.40 0.64 1.20 1.24

μ ∈ (0.20,0.80)

LR 22.82 15.84 11.84 15.20 8.84 6.80 5.66 2.40 1.76
LR∗ 9.88 10.56 10.06 4.78 5.16 5.42 1.28 1.30 1.26
LR∗∗ 9.66 10.56 10.04 4.70 5.48 5.36 0.98 1.34 1.22
LR∗

Bc 9.86 10.36 10.06 4.48 5.10 5.40 1.04 1.02 1.14

μ ∈ (0.95,0.98)

LR 23.36 14.92 11.76 15.28 9.40 6.46 5.90 2.52 1.58
LR∗ 9.24 10.90 10.42 4.66 5.64 5.32 1.04 1.22 1.24
LR∗∗ 9.36 10.88 10.30 4.50 5.34 5.46 0.92 1.28 1.04
LR∗

Bc 9.28 10.98 10.18 4.70 5.28 5.06 0.74 1.04 1.10

LR∗∗ and LR∗
Bc are 4.98% and 4.74%, respectively. The asymptotic test is again considerably

liberal.
Finally, we analyze the impact of the number of bootstrap replications on the bootstrap-

based tests accuracy. The results in the Tables 11, 12 and 13 show that for B = 250, in
most cases, the LR∗

Bc test outperforms the standard bootstrap and fast double bootstrap tests.
However, with B = 500 the LR∗∗ test outperforms the other two bootstrap-based tests. When
B = 1000, the results are inconclusive. It is noteworthy that, in most cases, the FDB test
based on only 500 replications outperforms the standard bootstrap test with B = 1000.
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Table 6 Null rejection rates (%) when testing H0 : β3 = 0; λ = 100

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.020,0.080)

LR 22.48 13.96 11.98 14.42 7.84 6.50 5.60 2.36 1.54
LR∗ 8.96 9.28 10.14 4.56 4.74 5.22 1.10 1.14 1.20
LR∗∗ 8.82 9.26 10.06 4.60 5.00 5.32 1.00 0.78 1.04
LR∗

Bc 9.00 9.36 9.84 4.46 4.72 5.10 0.88 0.86 1.04

μ ∈ (0.20,0.80)

LR 23.88 15.02 12.30 15.92 8.42 6.96 6.02 2.48 1.74
LR∗ 10.12 10.14 10.42 5.24 4.92 5.48 1.26 1.14 1.50
LR∗∗ 9.98 10.06 10.44 5.22 4.96 5.56 1.12 1.06 1.16
LR∗

Bc 10.26 10.24 10.18 4.96 5.10 5.34 0.98 0.90 1.20

μ ∈ (0.95,0.98)

LR 21.94 14.92 11.78 14.86 8.50 6.62 5.78 2.12 1.36
LR∗ 9.62 10.10 10.16 4.88 5.12 5.36 0.96 1.06 1.02
LR∗∗ 9.56 9.98 9.92 4.68 5.00 5.24 0.88 1.04 0.98
LR∗

Bc 9.64 9.96 10.10 4.88 4.90 5.16 0.82 0.94 0.80

Table 7 Null rejection rates (%) when testing H0 : β2 = β3 = 0; λ = 20

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ = 0.092
LR 27.20 15.60 12.40 18.26 9.24 6.56 7.28 2.50 1.60
LR∗ 9.84 9.86 9.68 4.98 4.86 5.18 1.26 1.28 1.14
LR∗∗ 10.30 9.44 9.52 4.78 4.70 5.04 0.98 1.08 1.04
LR∗

Bc 9.56 9.50 9.54 4.76 4.66 4.90 0.96 1.10 0.88

μ = 0.85
LR 27.78 16.98 13.18 18.80 10.00 7.34 7.56 2.90 1.60
LR∗ 10.24 10.74 10.62 5.24 5.20 5.72 1.02 1.32 1.26
LR∗∗ 9.84 10.82 10.52 5.16 5.30 5.48 0.96 1.08 1.18
LR∗

Bc 10.06 10.48 10.48 5.06 5.12 5.38 0.86 1.20 1.04

μ = 0.95
LR 26.52 16.32 12.76 17.76 9.66 6.34 6.70 2.70 1.48
LR∗ 9.48 10.40 9.94 4.38 4.94 4.98 0.98 1.12 1.06
LR∗∗ 9.62 10.06 9.66 4.60 4.88 4.88 0.94 1.00 1.02
LR∗

Bc 9.48 10.26 10.04 4.16 4.86 5.00 0.86 0.92 0.90

7 Empirical application

In what follows, we shall present an empirical application of the tests considered in the previ-
ous sections. We use the data analyzed by Espinheira, Ferrari and Cribari-Neto (2014), which
contain 42 observations on the distribution of natural gas for home usage in São Paulo, Brazil.
Gas distribution is based on a simultaneity factor that assumes values in (0,1). It relates to
the nominal power and to the number of natural gas-powered home appliances. Given these
factors, the gas supplier seeks to forecast the probability of simultaneous appliances usage in
order to decide how much gas to supply to a given residential unit. The response (y) is the
simultaneity factor, which is used to obtains an indicator of gas release in a given tubulation
section according to the following formula: Q = F × Qmax, where Q is the release, F is
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Table 8 Null rejection rates (%) when testing H0 : β2 = β3 = 0; λ = 50

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ = 0.092
LR 27.06 16.50 11.96 18.28 9.18 6.82 7.30 2.76 1.46
LR∗ 9.90 9.80 10.12 5.10 5.02 5.54 1.32 1.26 1.16
LR∗∗ 9.96 9.72 10.06 4.98 4.86 5.20 1.10 1.18 1.16
LR∗

Bc 9.76 9.82 10.06 4.88 5.02 5.30 1.02 0.94 0.96

μ = 0.85
LR 26.36 16.44 12.72 18.32 9.88 7.14 7.06 2.86 1.60
LR∗ 9.86 10.58 10.14 4.94 5.52 5.30 1.04 1.22 1.24
LR∗∗ 9.84 10.56 9.88 4.80 4.96 5.16 0.92 1.18 1.10
LR∗

Bc 10.02 10.50 9.84 4.84 5.64 5.10 0.64 1.10 0.98

μ = 0.95
LR 26.70 16.68 12.38 18.40 9.44 7.00 7.24 2.88 1.52
LR∗ 10.38 10.18 10.02 5.20 5.36 5.40 1.18 1.26 1.24
LR∗∗ 10.50 10.18 10.02 5.02 5.42 5.02 0.92 1.10 1.10
LR∗

Bc 10.36 10.00 9.96 5.12 5.32 5.08 0.96 1.00 1.02

Table 9 Null rejection rates (%) when testing H0 : β2 = β3 = 0; λ = 100

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ = 0.092
LR 28.36 16.32 13.30 19.12 9.66 7.06 7.90 2.76 1.60
LR∗ 10.90 10.34 10.54 5.46 5.22 4.92 1.24 1.18 1.20
LR∗∗ 10.82 10.20 10.44 5.30 5.08 5.16 1.18 1.02 1.10
LR∗

Bc 10.80 10.02 10.28 5.24 4.84 4.84 0.92 0.98 1.08

μ = 0.85
LR 28.32 16.44 12.24 19.10 9.38 6.66 7.66 2.62 1.54
LR∗ 10.40 10.10 9.64 5.50 5.02 5.06 1.04 1.04 1.20
LR∗∗ 10.12 10.08 9.56 5.20 5.10 4.90 1.08 0.86 1.26
LR∗

Bc 10.30 10.08 9.50 5.18 4.80 4.88 0.90 1.00 1.08

μ = 0.95
LR 27.36 16.34 12.82 18.44 9.50 6.80 6.78 2.40 1.42
LR∗ 9.96 10.18 10.16 4.90 4.80 5.08 1.12 1.08 1.14
LR∗∗ 9.84 10.10 10.10 4.62 4.88 4.98 0.90 1.12 1.18
LR∗

Bc 9.72 10.22 10.22 4.80 4.54 4.96 0.80 0.92 0.98

a simultaneity factor and Qmax is the maximum possible release in the tubulation section.
Espinheira, Ferrari and Cribari-Neto (2014) use as covariate the log of the release and model
the data with the following fixed precision beta regression model:

M1 : log
(

μt

1 − μt

)
= β1 + β2 log(xt2).

We shall consider the model given by

M2 : log
(

μt

1 − μt

)
= β1 + β2 log(xt2),

log(φ) = γ1 + γ2 log(xt2).
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Table 10 Null rejection rates (%) when testing H0 : γ2 = 0

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

μ ∈ (0.025,0.13)

LR 26.36 14.88 11.96 18.76 8.98 6.82 8.80 2.70 1.46
LR∗ 9.26 9.98 10.12 4.72 4.92 5.54 0.94 1.30 1.16
LR∗∗ 9.42 10.18 10.06 4.90 4.86 5.20 0.92 1.16 1.16
LR∗

Bc 9.74 9.78 10.06 4.96 5.00 5.30 0.78 1.10 0.96

μ ∈ (0.28,0.87)

LR 24.24 14.86 12.58 16.78 8.54 7.14 7.28 2.30 1.88
LR∗ 9.32 9.96 10.86 4.62 4.82 5.62 1.12 1.06 1.50
LR∗∗ 9.14 9.70 10.72 4.40 4.62 5.32 0.88 1.14 1.32
LR∗

Bc 9.54 9.92 10.62 5.02 4.72 5.44 1.18 1.00 1.26

μ ∈ (0.92,0.98)

LR 24.84 14.34 12.50 17.54 8.32 6.66 8.04 2.22 1.56
LR∗ 9.46 9.72 10.38 4.54 5.14 5.16 1.04 1.06 1.12
LR∗∗ 10.24 9.66 10.32 4.98 5.12 5.20 0.90 0.96 1.04
LR∗

Bc 9.56 9.64 10.20 4.74 5.06 5.10 0.94 0.84 0.92

Table 11 Null rejection rates (%) when μ ∈ (0.020,0.080); λ = 100

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

B = 250
LR∗ 9.96 10.16 9.94 5.20 5.10 5.02 1.04 1.42 1.26
LR∗∗ 10.24 9.94 9.70 5.42 5.14 4.98 1.38 1.28 1.18
LR∗

Bc 9.96 9.78 9.58 4.82 4.94 4.58 0.72 1.14 0.96

B = 500
LR∗ 8.96 9.28 10.14 4.56 4.74 5.22 1.10 1.14 1.20
LR∗∗ 8.82 9.26 10.06 4.60 5.00 5.32 1.00 0.78 1.04
LR∗

Bc 9.00 9.36 9.84 4.46 4.72 5.10 0.88 0.86 1.04

B = 1000
LR∗ 9.62 9.92 10.06 4.82 4.72 5.20 0.98 0.90 1.14
LR∗∗ 9.84 9.82 9.74 4.92 4.70 5.02 0.96 0.88 1.10
LR∗

Bc 9.76 9.80 9.96 4.74 4.64 5.14 0.80 0.74 1.08

Our interest lies in testing the null hypothesis of constant precision (i.e. H0 : γ2 = 0). The
null hypothesis is rejected at 10% significance level by the asymptotic version of the LR test,
whose p-value equals 0.071. The bootstrap p-value equals 0.098; since it is very close to
0.10 the test is inconclusive at the 10% significance level. We shall then resort to the fast
double bootstrap version of the LR test and also to the test based on the bootstrap Bartlett
corrected LR statistic. The null hypothesis of constant precision is rejected by the LR∗

Bc test at
de 10% significance level; its p-value equals 0.091. The conclusion is enhanced by the FDB
p-value, 0.068, which allows one to reject the null hypothesis of fixed precision with more
confidence. Table 14 presents parameter estimates and standard errors for Model M2.

Next, we evaluate the goodness-of-fit of the estimated varying precision regression model.
At the outset, we carry out the RESET misspecification test (Ramsey, 1969, Pereira and
Cribari-Neto, 2014). The test is performed by including η̂2

t as an additional regressor in the
mean submodel and testing its exclusion. The test p-value is 0.929. Hence, there is no evi-
dence of model misspecification. We also computed, for Models M1 and M2, the pseudo-R2

LR
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Table 12 Null rejection rates (%) when μ ∈ (0.20,0.80); λ = 100

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

B = 250
LR∗ 9.84 10.44 9.30 5.10 5.26 4.80 1.08 1.20 1.18
LR∗∗ 9.70 10.02 9.08 4.74 5.42 4.78 0.98 1.16 1.16
LR∗

Bc 9.98 10.10 9.14 4.92 5.08 4.44 0.90 0.78 0.90

B = 500
LR∗ 10.12 10.14 10.42 5.24 4.92 5.48 1.26 1.14 1.50
LR∗∗ 9.98 10.06 10.44 5.22 4.96 5.56 1.12 1.06 1.16
LR∗

Bc 10.26 10.24 10.18 4.96 5.10 5.34 0.98 0.90 1.20

B = 1000
LR∗ 10.40 10.70 10.24 5.54 5.62 5.20 1.08 1.36 1.26
LR∗∗ 10.38 10.54 10.26 5.50 5.72 5.08 0.98 1.34 1.20
LR∗

Bc 10.48 10.60 10.28 5.40 5.56 5.12 1.06 1.20 1.14

Table 13 Null rejection rates (%) when μ ∈ (0.95,0.98); λ = 100

α = 10% α = 5% α = 1%

n 10 20 40 10 20 40 10 20 40

B = 250
LR∗ 10.14 10.06 10.64 5.12 5.06 5.82 1.22 0.96 1.28
LR∗∗ 10.34 9.96 10.72 5.10 4.86 5.66 1.28 0.98 1.14
LR∗

Bc 9.94 9.78 10.28 4.92 5.04 5.30 0.84 0.72 0.92

B = 500
LR∗ 9.62 10.10 10.16 4.88 5.12 5.36 0.96 1.06 1.02
LR∗∗ 9.56 9.98 9.92 4.68 5.00 5.24 0.88 1.04 0.98
LR∗

Bc 9.64 9.96 10.10 4.88 4.90 5.16 0.82 0.94 0.80

B = 1000
LR∗ 9.94 10.96 9.72 4.82 5.42 4.58 1.10 1.16 1.32
LR∗∗ 10.10 10.64 9.50 4.60 5.44 4.56 0.82 1.08 1.10
LR∗

Bc 9.96 11.02 9.68 4.62 5.38 4.58 0.90 1.14 1.26

Table 14 Parameter estimates and standard errors

β1 β2 γ1 γ2

Estimate −1.717 −0.797 4.001 0.542
Standard error 0.091 0.085 0.326 0.296

(Nagelkerke, 1991), its version for varying precision beta regression models R2
LR (Bayer and

Cribari-Neto, 2017), and also the AIC (Akaike, 1973), the AICc (Hurvich and Tsai, 1989)
and the BIC (Akaike, 1978, Schwarz, 1978). Table 15 contains the R2

LR, R2
LR, AIC, AICc

and BIC values for both models. The results favor Model M2. Finally, Figure 1 contains sim-
ulated envelope plots based on the standardized weighted residual 2 of Ferrari, Espinheira
and Cribari-Neto (2011) for both models. Such plots indicate that both models fit the data
well.
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Table 15 Pseudo-R2 and model selection criteria

Model R2
LR R2

LR AIC AICc BIC

M1 0.722 0.705 −170.779 −170.148 −165.566
M2 0.743 0.722 −172.031 −170.950 −165.081

Figure 1 Simulated envelope plots for Models M1 and M2.

8 Concluding remarks

This paper addressed the issue of performing likelihood ratio testing inferences in beta regres-
sions. In its standard formulation, the likelihood ratio test relies on an asymptotic approxi-
mation that may render the test inaccurate in small samples. In particular, the test may be
considerably size distorted. Bootstrap resampling can be used to achieve more accurate infer-
ences. The standard approach involves using the bootstrap test statistic replicates to compute
a bootstrap p-value which can then be compared to the selected significance level. The null
hypothesis is rejected if the former is smaller than the latter. In this paper, we consider two
additional resampling strategies. The first involves using the bootstrap test statistic replicates
to estimate the Bartlett correction factor which is then used to transform the test statistic.
The second approach we pursue uses a nested resampling scheme in which one additional
(second level) bootstrap sample is created based on each (first level) bootstrap sample. The
inner bootstrap information is then used to obtain a p-value that is more accurate than the
standard bootstrap p-value. The finite sample performances of the different bootstrap-based
tests were evaluated using Monte Carlo simulations. An empirical application was presented
and discussed.
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