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Abstract. Bayesian hypothesis testing is re-examined from the perspective
of an a priori assessment of the test statistic distribution under the alterna-
tive. By assessing the distribution of an observable test statistic, rather than
prior parameter values, we revisit the seminal paper of Edwards, Lindman
and Savage (Psychol. Rev. 70 (1963) 193–242). There are a number of impor-
tant take-aways from comparing the Bayesian paradigm via Bayes factors to
frequentist ones. We provide examples where evidence for a Bayesian strik-
ingly supports the null, but leads to rejection under a classical test. Finally,
we conclude with directions for future research.

1 Introduction

Bayesians and Classicists are sharply divided on the question of hypothesis test-
ing. Hypothesis testing is a cousin to model selection and in a world of high di-
mensional selection problems, hypothesis testing is as relevant today as it ever has
been. We contrast these two approaches, by re-examining the construction of a
hypothesis test, motivated by the seminal paper of Edwards, Lindman and Savage
(1963) (hereafter ELS) who provide the following contrast:

We now show informally, as much as possible from a classical point of view, how evi-
dence that leads to classical rejection of a null hypothesis at the 0.05 level can favor
that null hypothesis. The loose and intuitive argument can easily be made precise. Con-
sider a two-tailed t test with many degrees of freedom. If a true null hypothesis is being
tested, t will exceed 1.96 with probability 2.5% and will exceed 2.58 with probabil-
ity 0.5%. (Of course, 1.96 and 2.58 are the 5% and 1% two-tailed significance levels;
the other 2.5% and 0.5% refer to the possibility that t may be smaller than −1.96
or −2.58.) So on 2% of all occasions when true null hypotheses are being tested, t

will lie between 1.96 and 2.58. How often will t lie in that interval when the null hy-
pothesis is false? That depends on what alternatives to the null hypothesis are to be
considered. Frequently, given that the null hypothesis is false, all values of t between,
say, −20 and +20 are about equally likely for you. Thus, when the null hypothesis
is false, t may well fall in the range from 1.96 to 2.58 with at most the probability
(2.58–1.96)/[+20–(−20)] = 1.55%. In such a case, since 1.55 is less than 2 the oc-
currence of t in that interval speaks mildly for, not vigorously against, the truth of the
null hypothesis. This argument, like almost all the following discussion of null hypoth-
esis testing, hinges on assumptions about the prior distribution under the alternative
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hypothesis. The classical statistician usually neglects that distribution in fact, denies its
existence. He considers how unlikely a t as far from 0 as 1.96 is if the null hypothesis
is true, but he does not consider that a t as close to 0 as 1.96 may be even less likely if
the null hypothesis is false.

In terms of a decision rule,1 ELS go on to say:

If you need not make your guess until after you have examined a datum D, you will pre-
fer to guess A if and only if �(A|D) exceeds J/I , that is L(A;D) > J/I�(A) = �

where your critical likelihood ratio � is denied by the context. Classical Statisticians
were the first to conclude that there must be some � such that you will guess A if
L(A;D) > � and guess Ā if L(A;D) < �. By and large, classical statisticians say the
choice of � is an entirely subjective one which no one but you can make (e.g., Lehmann
((1959), page 62)). Bayesians agree; � is inversely proportional to your current odds
for A, an aspect of your personal opinion. The classical statisticians, however, have
overlooked a great simplification, namely that your critical � will not depend on the
size or structure of the experiment and will be proportional to J/I . As Savage (1962)
puts it: the subjectivist’s position is more objective than the objectivist’s, for the subjec-
tivist finds the range of coherent or reasonable preference patterns much narrower than
the objectivist thought it to be. How confusing and dangerous big words are (page 67)!

Given this discussion, we build on the idea that a hypothesis test can be con-
structed by focusing on the distribution of the test statistic, denoted by t , under the
alternative hypothesis. Bayes factors can then be calculated once the researcher is
willing to assess a prior predictive interval for the t statistic under the alternative.
In most experimental situations, this appears to be the most realistic way of as-
sessing a priori information. For related discussion, see Berger and Sellke (1987)
and Berger (2003) who pose the question of whether Fisher, Jeffreys and Neyman
could have agreed on testing and provide illuminating examples illustrating the
differences (see Etz and Wagenmakers (2017)).

The rest of our paper is outlined as follows. Section 2 provides a framework
for the differences between Classical and Bayesian hypothesis testing. Section 3
uses a probabilistic interval assessment for the test statistic distribution under the
alternative to assess a Bayes factor. Jeffreys’s (1957, 1961) Cauchy prior and the
Bartlett–Lindley paradox (Lindley (1957) and Bartlett (1957)) are discussed in this
context. Extensions to regression and R2, χ2 and F tests (see Connolly (1991)
and Johnson (2005, 2008)) are also provided. Section 4 concludes with further
discussion and with directions for future research.

2 Bayesian vs classical hypothesis testing

Point 1. Section 2 could bring some comments about the test statistic and its rela-
tion to the concept of sufficiency, specially for the Bayesian approach.

1Here �(A) is the prior odds of the null. �(A|D) is the posterior odds given datum D, and
L(A;D) is the likelihood ratio (a.k.a. Bayes factor, BF).
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Suppose that you wish to test a sharp null hypothesis H0 : θ = 0 against a non-
sharp composite alternative H1 : θ �= 0. We leave open the possibility that H0 and
H1 could represent models and the researcher wishes to perform model selection.
A classical test procedure uses the sampling distribution, denoted by p(θ̂ |θ), of a
test statistic θ̂ , given the parameter θ . A critical value, c, is used to provide a test
procedure of the form

Reject H0 if |θ̂ | > c.

There are two types of errors that can arise. Either the hypothesis maybe rejected
even though it is true (a Type I error) or it maybe accepted even though it is false
(Type II). Typically, the critical value c is chosen so as to make the probability of
a type I error, α, to be of fixed size. We write α(c) = 1 − ∫ c

−c p(θ̂ |θ) dθ̂ .
Bayes factor, denoted by BF, which is simply a density ratio (as opposed to a

tail probability) is defined by a likelihood ratio

BF = p(θ̂ |H0)

p(θ̂ |H1)
.

Here p(θ̂ |H0) = ∫
p(θ̂ |θ,H0)p(θ |H0) dθ is a marginal distribution of the test

statistic and p(θ |H0) an a priori distribution on the parameter. For a simple hy-
pothesis, (θ |H0) ∼ δθ0 is a Dirac measure at the null value. The difficulty comes
in specifying p(θ |H1), the prior under the alternative. A Bayesian Hypothesis Test
can then be constructed in conjunction with the a priori odds ratio p(H0)/p(H1),
to calculate a posterior odds ratio, via Bayes rule,

p(H0|θ̂ )

p(H1|θ̂ )
= p(θ̂ |H0)

p(θ̂ |H1)

p(H0)

p(H1)
.

As H0 : θ = θ0 and H1 : θ �= θ0, the Bayes factor calculates p(θ̂ |θ = θ0)/p(θ̂ |θ �=
θ0). We will focus on the test statistic distribution under the alternative hypothesis,
namely p(θ̂ |θ �= θ0). See also Held and Ott (2018) for additional discussion on
p-values and Bayes factors.

3 A default Bayes factor

Our approach is best illustrated with the usual t-ratio test statistic in a normal
means problem. As ELS illustrate, the central question that a Bayesian must a
priori address is the question:

How often will t lie in that interval when the null hypothesis is false?

To do this we need an assessment to the distribution of the t-ratio test statistic
under the alternative. As ELS further observe:
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This argument, like almost all the following discussion of null hypothesis testing, hinges
on assumptions about the prior distribution under the alternative hypothesis. The clas-
sical statistician usually neglects that distribution in fact, denies its existence. He con-
siders how unlikely a t as far from 0 as 1.96 is if the null hypothesis is true, but he does
not consider that a t as close to 0 as 1.96 may be even less likely if the null hypothesis
is false.

First, we calculate prior predictive distribution of the test statistic under the
alternative and then show how such assessment can lead to a default Bayes factor.

3.1 Predictive distribution, Pr(T = t|H1)

A simple default approach to quantifying a priori opinion is to assess a hyperpa-
rameter, denoted by A, such that the following probability statements hold true:

Pr(−1.96
√

A < T < 1.96
√

A|H1) = 0.95,

Pr(−1.96 < T < 1.96|H0) = 0.95.

Under the null, H0, both the Bayesian and Classicist agree that A = 1. All that is
needed to complete the specification is the assessment of A.

In the normal mean testing problem we have an i.i.d. sample (yi |θ) ∼ N(θ,σ 2),
for i = 1, . . . , n, with σ 2 known and nȳ = ∑n

i=1 yi . Under the null, H0 : θ = 0,
the distribution of T = √

nȳ/σ , is the standard normal distribution, namely T ∼
N(0,1). The distribution of T under the alternative, H1 : θ �= 0, is a mixture dis-
tribution

p(T = t |H1) =
∫
	

p(T = t |θ)p(θ |H1) dθ,

where p(θ |H1) denotes the prior distribution of the parameter under the alterna-
tive. Under a normal sampling scheme, this is a location mixture of normals

p(T = t |H1) =
∫ ∞
−∞

P(T = t |H1, θ)p(θ |H1) dθ,

where T |H1, θ is normal with mean
√

nθ/σ and variance one; or T = √
nθ/σ +ε,

where ε ∼ N(0,1).
Under a normal prior, θ |H1 ∼ N(0, τ 2), the distribution p(T = t |H1) can be

calculated in closed form as T |H1 ∼ N(0,A) where A = 1 + nτ 2/σ 2. Hence an
assessment of A will depend on the design (through n) and on the relative ratio of
measurement errors (through τ 2/σ 2).

The gain in simplicity of the Bayes test is off-set by the difficulty in assessing A.
The Bayes factor is then simply the ratio of two normal ordinates

B = φ(t)

φ(t/
√

A)
= √

A exp
{
−1

2
t2(

1 − A−1)}
,

where φ(·) is the density of the standard normal distribution. The factor A is often
interpreted as the Occam factor (Berger and Jefferys (1992), Jefferys and Berger
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(1992), Good (1992)). See Hartigan (2003) for a discussion of default Akaike–
Jeffreys priors and model selection.

Recalling, A is such that Pr(−1.96
√

A < T < 1.96
√

A|H1) = 0.95. Therefore,
the researcher can “calibrate” A ahead of time by performing a what if analysis
and assess what posterior odds she would believe if she saw t = 0. This assessment
directly gives the quantity

√
A, which, again, is directly related to n and τ/σ .

Dickey–Savage. The Bayes factor BF for testing H0 versus H1 can be calculated
using the Dickey–Savage density ratio. This relates the posterior model probability
p(θ = θ0|y) to the marginal likelihood ratio via Bayes rule

Pr(θ = θ0|y)

Pr(θ = θ0)
= p(y|θ = θ0)

p(y)
.

Bayes factor bounds. Let θ̂MLE denote the maximum likelihood estimate, then

p(T = t |H1) =
∫

p(T = t |θ)p(θ |H1) dθ ≤ p(T = t |θ̂MLE).

This implies that

B = p(T = t |H0)

p(T = t |H1)
≥ p(T = t |θ = 0)

p(T = t |θ̂MLE)
,

which, in the normal means testing context, leads to a bound

p(T = t |H0)

p(T = t |H1)
≥ exp

{−0.5
(
1.962 − 02)} = 0.146.

Under a standard two-sided test, the bound increases to 0.292. Hence, at least
30% of the hypotheses that the classical approach rejects are true in the Bayesian
world. Amongst the experiments with p-values of 0.05 at least 30% will actually
turn out to be true! Put another way, the probability of rejecting the null conditional
on the observed p-value of 0.05 is at least 30%. You are throwing away good null
hypothesis and claiming you have found effects! In terms of posterior probabilities,
with p(H0) = p(H1), we have a bound

Pr(H0|y) =
[
1 + p(y|H1)

p(y|H0)

Pr(H1)

Pr(H0)

]−1
≥ 0.128.

Hence, there is at least 12.8 percent chance that the null is still true even in the
one-sided version of the problem! Clearly at odds with a p-value of 5 percent.

One of the key issues, as discussed by ELS, is that the classicist approach is
based on an observed p-value is not a probability in any real sense. The observed
t-value is a realization of a statistic that happens to be N(0,1) under the null
hypothesis. Suppose that we observe t = 1.96. Then the maximal evidence against
the null hypothesis which corresponds to t = 0 will be achieved by evaluating the
likelihood ratio at the observed t ratio, which is distributed N(0,1).
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3.2 Normal means Bayes factors

We have the following set-up for the normal means case (see Berger and Delam-
pady (1987), for the full details): Let ȳ|θ ∼ N(θ,σ 2/n), where σ 2 is known and
let t = √

n(ȳ − θ0)/σ the t-ratio test statistic when testing the null hypothesis
H0 : θ = θ0 against the alternative hypothesis H0 : θ �= θ0. Also, let ρ = σ/(

√
nτ)

and η = (θ0 − μ)/τ , derived from a normal prior in the alternative θ ∼ N(μ, τ 2).
Usually, we take a symmetric prior and set μ = θ0, such that η = 0 and the Bayes
factor simplifies to

BF =
√

1 + ρ−2 exp
(
− 1

2(1 + ρ2)
t2

)
.

We can use the Dickey–Savage density ratio as follows to derive the above Bayes
factor:

p(θ0|ȳ) = 1
√

2πτ

√
1 + ρ−2

exp
(
− 1

2(1 + ρ2)
t2

)
,

p(θ0) = 1√
2πτ

.

The posterior distribution under the alternative is

(θ |y) ∼ N
((

n

σ 2 + 1

τ 2

)−1(
nȳ

σ 2 + θ0

τ 2

)
,

(
n

σ 2 + 1

τ 2

)−1)

with quantities

t2 = n(ȳ − θ0)
2

σ 2 and
(

n

σ 2 + 1

τ 2

)−1
= τ 2(

1 + ρ−2)−1
.

The posterior mean E(θ |y) can be written as

θ0 +
(

T

σ 2 + 1

τ 2

)−1 T (ȳ − θ0)

σ 2 .

Substituting into the ratio of ordinates p(θ = θ0|y)/p(θ = θ0) gives the result.
In the case where τ is moderate to large, this is approximately

BF =
√

nτ

σ
exp

(
−1

2
t2

)
.

Clearly, the prior variance τ has a dramatic effect on the answer. First, we can
see that the “noninformative” prior τ 2 → ∞ makes little sense (Lindley (1957),
Bartlett (1957)). For instance, when σ = τ and t = 2.567 (a p-value of 0.01), then
the Bayes factor equals 0.16, 1.15, 3.62 and 36.23 for n equal to 10, 100, 1000
and 1,000,000, respectively (see Section 3.3 for more details about the Bartlett–
Lindley paradox). Secondly, the large effect is primarily due to the thinness of the
normal prior in the tails. Jeffreys (1961) then proposed the use of a Cauchy (0, σ 2)

prior (see Section 3.4 for further details).
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3.3 Bartlett–Lindley paradox

See Lindley (1957) and Bartlett (1957) for the full details. The Bartlett–Lindley
paradox occurs when you let τ 2 → ∞. This has the “appropriate” behaviour at the
origin of flattening out the marginal distribution of T . So when comparing equal
length intervals Pr(a < T < b) and Pr(c < T < d), where a − b = c − d , one
would get approximately a Bayes factor of one.

The so-called paradox arises when the Bayes factor places all its weight on
the alternative hypothesis H1. Thought of via the marginal predictive of T this
is not surprising. As τ 2 → ∞ implies A → ∞, and your belief a priori that you
expect an incredibly large value of T values under the alternative. Now, when you
actually observe 1.96 < T < 2.56 this is unlikely under the null approximately
2%, but nowhere near as likely under the alternative. The Bayes factor correctly
identifies the null as having the most posterior mass.

3.4 Cauchy prior

Jeffreys (1961) proposed a Cauchy (centered at θ0 and scale 1) to allow for fat-
tails whilst simultaneously avoiding having to specify a scale to the normal prior.
Using the asymptotic, large n, form of the posterior (

√
n/

√
2πσ) exp{−0.5t2} for

the usual t-ratio test statistic and the fact that the prior density ordinate from the
Cauchy prior is p(θ0) = 1/(πσ), the Bayes factor is

BF = (
√

n/
√

2πσ) exp{−0.5t2}
1/(πσ)

= √
0.5πn exp

{−0.5t2}
.

We have the interval probability

Pr(−1.96
√

A < T < −1.96
√

A|H1) ≈ 0.95,

for A ≈ 40, when n = 1 and σ 2 = 1. Exact answer given by cdf of hypergeometric
Beta You can also see this in the Bayes factor approximations. Therefore, very
different from letting A → ∞, in a normal prior.

3.5 Coin tossing: p-values and Bayes

Suppose that you routinely reject two-sided hypotheses at a fixed level of signifi-
cance, say α = 0.05. Furthermore, suppose that half the experiments under the null
are actually true, i.e. Pr(H0) = Pr(H1) = 0.5. The experiment will provide data, y,
here we standardize the mean effect and obtain a t-ratio.

Example: Coin tossing (ELS). Let us start with a coin tossing experiment where
you want to determine whether the coin is “fair”, H0 : Pr(Head) = Pr(Tail), or the
coin is not fair, H1 : Pr(Head) �= Pr(Tail). ELS discuss at length the following four
experiments where, in each case, the test statistics is t = 1.96. We reproduce below
of their Table 1.
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Table 1 The quantities n and r are, respectively,
number of tosses of the coin and the number of
heads that barely leads to rejection of the null hy-
pothesis, H0 : Pr(Head) = Pr(Tail), by a classical
two-tailed test at the 5 percent level

Expt 1 2 3 4

n 50 100 400 10,000
r 32 60 220 5098
BF 0.8 1.1 2.2 11.7

For n coin tosses and r heads, the Bayes factor,

BF =
(

1

2

)n/∫ 1

0
θr(1 − θ)n−rp(θ |H1) dθ,

which grows to infinity and so there is overwhelming evidence in favor of H0 :
Pr(Head) = Pr(Tail). This is a clear illustration of Lindley’s paradox.

There are a number of ways of assessing the odds. One is to use a uniform
prior. Another useful approach which gives a lower bound is to use the maximally
informative prior which puts all its mass on the parameter value at the mle, θ̂ =
r/n. For example, in the r = 60 versus n = 100 example, we have θ̂ = 0.6. Then
we have p(y|H1) ≤ p(y|θ̂ ) and for the odds ratio

p(y|H0)

p(y|H1)
≥ p(y|θ = θ0)

p(y|θ̂ )
.

For example, with n = 100 and r = 60, we have

p(y|H0)

p(y|H1)
≥ 0.5100

0.6600.440 = 0.134.

In terms of probabilities, if we start with a 50/50 prior on the null, then the poste-
rior probability of the null is at least 0.118:

Pr(H0|y) =
(

1 + p(y|H1)

p(y|H0)

Pr(H1)

Pr(H0)

)−1
≥ 0.118.

Once the Bayes factor is computed one can combine it with the prior probabilities
for the hypothesis under study to produce posterior probabilities for those hypothe-
sis and/or simply use (with care) the Bayes factor as a generalized likelihood value
for comparing competing hypothesis. See Kass and Raftery (1995), for a review of
Bayes factors.
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3.6 Regression

A number of authors have provided extensions to traditional classical tests, for
example Johnson (2008) shows that R2, deviance, t and F can all be interpreted as
Bayes factors. See also Gelman et al. (2008) for weakly informative default priors
for logistic regression models.

In the case of nested models, Connolly (1991) proposes the use of

BF = n− d
2

(
1 + d

n − k
F

) n
2
,

where F is the usual F -statistic, k is the number of parameters in the larger model
and d is the difference in dimensionality between the two models. In the non-
nested case, first it helps to nest them if you can, otherwise MCMC comparisons.

Zellner and Siow (1979) extend this to the Cauchy prior case, see Connolly
(1991). Essentially, introduces a constant out-front that depends on the prior or-
dinate p(θ = θ0). See Efron and Gous (2001) for additional discussion of model
selection in the Fisher and Jeffreys approaches. Additionally, Polson and Roberts
(1994) and Lopes and West (2004) study model selection in diffusion processes
and factor analysis, respectively. Scott and Berger (2010) compare Bayes and
empirical-Bayes in the variable selection context.

4 Discussion

The goal of our paper was to revisit ELS. There are a number of important take-
aways from comparing the Bayesian paradigm to frequentist ones. Jeffreys (1961)
provided the foundation for Bayes factors (see Kass and Raftery (1995), for a
review). Berkson (1938) was one of the first authors to point out problems with
p-values.

The Bayesian viewpoint is clear: you have to condition on what you see. You
also have to make probability assessments about competing hypotheses. The ob-
served y can be highly unlikely under both scenarios! It is the relative odds that is
important. The p-value under both hypotheses are then very small, but the Bayes
posterior probability is based on the relative odds of observing the data plus the
prior, that is p(y|H0) and p(y|H1) can both be small, but its p(y|H0)/p(y|H1)

that counts together with the prior p(H0)/p(H1). Lindley’s paradox shows that a
Bayes test has an extra factor of

√
n which will asymptotically favor the null and

thus lead to asymptotic differences between the two approaches. There is only a
practical problem when 2 < t < 4—but this is typically the most interesting case!

Jeffreys ((1961), page 385), said that “what the use of P implies . . . is that a hy-
pothesis that may be true may be rejected because it has not predicted observable
results that have not occurred. This seems a remarkable procedure.”



754 H. F. Lopes and N. G. Polson

We conclude with two quotes on what is wrong with classical p-values with
some modern day observations from two Bayesian statisticians.

Jim Berger: p-values are typically much smaller than actual error probabilities
p-values do not properly seem to reflect the evidence in the data. For instance,
suppose one pre-selected α = 0.001. This then is the error one must report whether
p = 0.001 or p = 0.0001, in spite of the fact that the latter would seem to provide
much stronger evidence against the null hypothesis.

Bill Jefferys: The Lindley paradox goes further. It says, assign priors however you
wish. You don’t get to change them. Then take data and take data and take data . . .

There will be times when the classical test will reject with probability (1−α) where
you choose α very small in advance, and at the same time the classical test will
reject at a significance level α. This will not happen, regardless of priors, for the
Bayesian test. The essence of the Lindley paradox is that “sampling to a foregone
conclusion” happens in the frequentist world, but not in the Bayesian world.

As we pointed out at the outset, hypothesis testing is still a central issue in modern-
day statistics and machine learning, in particular, its relationship with high dimen-
sional model selection. Finding default regularization procedures in high dimen-
sional settings is still an attractive area of research.
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