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A note on monotonicity of spatial epidemic models

Achillefs Tzioufas
Universidade de São Paulo

Abstract. The epidemic process on a graph is considered for which infec-
tious contacts occur at rate which depends on whether a susceptible is in-
fected for the first time or not. We show that the Vasershtein coupling extends
if and only if secondary infections occur at rate which is greater than that of
initial ones. Nonetheless we show that, with respect to the probability of oc-
currence of an infinite epidemic, the said proviso may be dropped regarding
the totally asymmetric process in one dimension, thus settling in the affirma-
tive this special case of the conjecture for arbitrary graphs due to [Ann. Appl.
Probab. 13 (2003) 669–690].

1 Introduction and results

The three state contact process infection rates (λ,μ) on a digraph G ≡ G(V,E) is
a continuous-time Markov process ζt on the configuration space X = {−1,0,1}V ,
that is, the set of all functions from V to {−1,0,1}. Transition rates for ζt are
specified via the flip rates for ζt (u), which are given as follows:

−1 → 1 at rate λ
∣∣{−→vu ∈ E : ζt (v) = 1

}∣∣
0 → 1 at rate μ

∣∣{−→vu ∈ E : ζt (v) = 1
}∣∣

1 → 0 at rate 1,

t ≥ 0, and where |A| denotes cardinality of set A. Initial configuration η and infec-
tion rates (λ,μ) are incorporated in the notation below in the fashion: ζ

{η,(λ,μ)}
t .

The configuration space X is endowed with the usual component-wise partial or-
der, given by writing η1 ≤ η2 whenever η1(x) ≤ η2(x), for all x ∈ V . If (Yt )t≥0
and (Wt)t≥0 are two stochastic processes on X, we write Yt ≥st. Wt to denote that
Yt stochastically dominates Wt , which is, that the two processes can be defined on
a common probability space such that: Yt ≥ Wt , for all t ≥ 0, almost surely.1 The

Key words and phrases. Three state contact processes, stochastic domination, attractiveness, con-
tact process, standard spatial epidemic.
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1Equivalently, if νt ,μt denote the distributions of Yt ,Wt respectively, then Yt ≥st. Wt if, for all

t ≥ 0, ∫
X

f dνt ≥
∫

X
f dμt , for all increasing f on X, (1)

where f ∈ C(X), the space of continuous functions on X equipped with the uniform norm, is said to
be increasing in the component-wise sense.
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usual assumption that G is of bounded degree, needed to assure uniqueness of the
process, is adopted here. Note also that although the process is an interacting par-
ticle system, it is not a spin system as the contact process itself due to the inclusion
of a third state. For background and general information about interacting particle
systems, we refer to Liggett (1985, 1999) and Durrett (1988, 1995).

The three-state contact process admits the following epidemiological interpre-
tation, which will be in effect in the sequel. If ζt (x) = 1, site x is regarded as
infected; if ζt (x) = −1, it is regarded as susceptible and never infected, and
if ζt (x) = 0, as susceptible and previously infected. Thus, transitions −1 → 1,
0 → 1, and 1 → 0 may be thought of as initial infections, secondary infections
and recoveries, respectively. Observe that, when reinfections occur at the same
rate as initial infections, that is, λ = μ, and when reinfections are disallowed,
that is, μ = 0, the process reduces to the extensively studied contact process and
the standard spatial epidemic process, respectively. The three state contact pro-
cess was introduced in the mathematics literature by Durrett and Schinazi (2000),
independently of Grassberger, Chate, and Rousseau (1997) that introduced it in
the physics one first. The process has been considered afterward under a differ-
ent name in Stacey (2003), and in Sections 2, 3 and 5 in Tzioufas (2011). Be-
cause interest in the process stems principally from understanding the variation
induced in properties of the contact process when allowing for a different initial
infection rate, focus is placed upon analysis of the process from initial configu-
rations ηA such that ηA(x) = 1, for x ∈ A, ηA(x) = −1, otherwise, A finite. In
what follows, we write simply ζ

{A,(λ,μ)}
t for ζ

{ηA,(λ,μ)}
t , and also, ζ

{u,(λ,μ)}
t instead

of ζ
{{u},(λ,μ)}
t . Furthermore, we use the shorthand {ζ {η,(λ,μ)}

t survives} to denote
{∀t, ζ

{η,(λ,μ)}
t (x) = 1 for some x}, which is, the event an infinite epidemic occurs.

Our first result regards extending a stochastic monotonicity property of spin
systems, the so-called attractiveness, to the three-state contact process on G. This
result improves Proposition 2.1 in Stacey (2003), where the additional assumption
λ′ ≥ μ in our notation is required.

Theorem 1. Let ζ ′
t ≡ ζ

{η′,(λ′,μ′)}
t and ζt ≡ ζ

{η,(λ,μ)}
t be the three state contact pro-

cesses with initial configurations η′ and η and infection rates (λ′,μ′) and (λ,μ),
respectively. We have that

λ′ ≥ λ,μ′ ≥ μ and μ′ ≥ λ =⇒ for all η′ ≥ η : ζ ′
t ≥st. ζt . (2)

We give in the next remark a compound form of Theorem 1 which facilitates
applications, and then explicate on the necessity of condition μ′ ≥ λ for (2) to
hold.

Remark 2. Monotonicity in the initial configuration:

∀(λ,μ) s.t. μ ≥ λ,η ≤ η′ =⇒ ζ
η′
t ≥st. ζ

η
t . (3)
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Monotonicity in the infection rates:

∀η,λ′ ≥ λ,μ′ ≥ μ and μ′ ≥ λ =⇒ ζ
(λ′,μ′)
t ≥st. ζ

(λ,μ)
t . (4)

Regarding ζt on arbitrary G, note that the condition μ ≥ λ cannot be dropped for
monotonicity in the initial configuration property to hold (cf. (10) below); further,
condition μ′ ≥ λ cannot be dropped for monotonicity in the infection rates prop-
erty to hold (cf. (11)).

The method of proof of Theorem 1 is based on an extension of what is known in
the context of spin systems as the Vasershtein (or basic) coupling; it differs from
the techniques of Stacey (2003) which rely on a Harris’ graphical representation,
introduced in Harris (1978), for this process. For background on stochastic mono-
tonicity, coupling and attractiveness in particular, we refer the reader to Lindvall
(2002) and Liggett (1999), see also Durrett (1981). This important in the study of
interacting particle systems property was introduced and studied in Holley (1972).
For differences and similarities among the basic coupling and that yielded by Har-
ris’ graphical representations for spin systems, see Liggett (1985), Chapter III,
Section 6. We also remark, for ease of reference below, on a simple consequence
of monotonicity in the infection rates.

Remark 3. Let θ(λ,μ) = P(ζt survives). The following critical curves may be
defined: μc(λ) := inf{μ ≥ λ : θ(λ,μ) > 0} and λc(μ) := inf{λ ≤ μ : θ(λ,μ) > 0}.

For the next statement only, we consider a specific graph; let G1,+ ≡ G1,+(V ,

E) be such that V = {0,1, . . . } and E = {−→vu : u = v + 1}. The contact process on
G1,+ has been extensively studied in the literature and is referred to as the one-
sided basic contact process, see, for instance, Griffeath (1979), Chpt. II, Section 4,
and Schonmann (1986). Regarding the one-sided basic three state contact process,
we note that (5) below addresses Question 5.1 in Stacey (2003) and (6) settles in
the affirmative Conjecture 5.2 there.

Theorem 4. Let ζ ′
t ≡ ζ

{ηo,(λ
′,μ′)}

t and ζt ≡ ζ
{ηo,(λ,μ)}
t be the three state contact

process on G1,+ with infection rates (λ′,μ′) and (λ,μ) respectively, and the same
initial configuration ηo such that ηo(0) = 1 and ηo(n) = −1, for all n ≥ 1. Let also
I ′
n = {t ≥ 0 : ζ ′

t (n) = 1} and In = {t ≥ 0 : ζt (n) = 1}. We have that

λ′ ≥ λ and μ′ ≥ μ =⇒ ∣∣I ′
n ∩ [0, t]∣∣ ≥st.

∣∣In ∩ [0, t]∣∣. (5)

Furthermore,

λ′ ≥ λ and μ′ ≥ μ =⇒ P
(
ζ ′
t survives

) ≥ P(ζt survives). (6)

It is interesting to contrast our principle monotonicity property, given in (5)
above, with that induced by the partial order above. Note first that (5) states that



Monotonicity of spatial epidemics 677

the total infected time before any fixed time is at least as great for ζ ′
t (n) as it is for

ζt (n). Note however that Remark 9 below yields that the following holds.

λ < λ′ and μ′ = μ = 0 �=⇒ ∀n : ζt (n) ≤st. ζ
′
t (n), (7)

where �=⇒ denotes that the implication is false. Hence, the monotonicity property
in (5) corresponds to a strictly weaker property to that in (7). We note that this
weak monotonicity property may also be relevant for other models which have the
standard spatial epidemic and the contact process as special cases, see for instance,
Van Den Berg, Grimmett and Schinazi (1998). Regarding the proof of Theorem 4,
we note that it relies on a stochastic comparison (coupling) construction which
exploits the memory-less property of the exponential distribution and the spatial
restriction imposed in an essential way. Note also that the following direct conse-
quence of (6) gives an extension of the conclusion in Remark 3 above, which is
valid however for general G.

Remark 5. For the three state contact process on G1,+ the following criti-
cal curves may be defined: μc(λ) := inf{μ : θ(λ,μ) > 0} and λc(μ) := inf{λ :
θ(λ,μ) > 0}.

A comparison between the probability of an infinite epidemic in the three state
contact process and in the standard spatial epidemic, noted without proof for the
case that G is the d-dimensional lattice in Durrett and Schinazi (2000), Proposi-
tion 2, is given in the following statement. Roughly speaking, the result provides
that permitting for secondary infections cannot cause the probability of an infinite
epidemic in the standard spatial epidemic process to decrease.

Proposition 6. Let ζ
{w,(λ,μ)}
t and ξ

{w,λ}
t ≡ ζ

{w,(λ,0)}
t be the three state contact

process parameters (λ,μ) and the standard spatial epidemic parameter λ respec-
tively, and the same initial configuration ηw , w ∈ V . We have that

P
(
ζ

{w,(λ,μ)}
t survives

) ≥ P
(
ξ

{w,λ}
t survives

)
. (8)

The proof of this last statement relies on extending in our context an observation
of Mollison (1977) regarding a stochastic comparison (coupling) between the stan-
dard spatial epidemic and a certain dependent directed percolation model, in which
bonds are mutually independent if and only if they start out of different sites; this
observation was subsequently developed in Kuulasmaa (1982). Our proof follows
and extends the version of these arguments given in Durrett (1988), Chapter 9.

We remark next on an extension of monotonicity in the initial configuration
property (3) in juxtaposition with an important property of the contact process,
known as additivity. This property provides that, if η

η
t is the contact process, then

η
η1∨η2
t = η

η1
t ∨ η

η2
t , (9)
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almost surely, where η1 ∨ η2 denotes the configuration such that η1 ∨ η2(x) =
max{η1(x), η2(x)}, x ∈ V . It may be easily shown that (9) is a stronger property
than monotonicity in the initial configuration: η1 ≥ η2 =⇒ η

η1
t ≥st. η

η2
t ; see, for

example, Corollary 1.3 in Chapter II of Griffeath (1979). We point out that, al-
though the analog of this property for the three state contact process is not known to
hold, the following weaker conclusion can be deduced by the definition of stochas-
tic domination and applying (3) twice.

Remark 7. Let μ ≥ λ. We have that: ζ
η1∨η2
t ≥st. ζ

η1
t ∨ ζ

η2
t , ∀η1, η2 ∈ X.

The next statement regards lack of monotonicity for the standard spatial epi-
demic, also known as the forest fire model.

Proposition 8. Let ξ
{A,λ}
t ≡ ζ

{A,(λ,0)}
t and �A

t = {x : ξ
{A,λ}
t (x) = 1}. There is G

such that:

A ⊂ A′ �=⇒ �
{A,λ}
t ⊆st. �

{A′,λ}
t , for every λ > 0. (10)

λ < λ′ �=⇒ �
{A,λ}
t ⊆st. �

{A,λ′}
t , for every A ⊂ V. (11)

As far as we know, the statement in Proposition 8 is not given explicitly else-
where in the literature. Intuitively, the result can be expected based on the follow-
ing remarks, which we quote from Section 13.5 in Grimmett (1999). By adding an
extra infective, one may subsequently infect a point which, during its removal pe-
riod, prevents the infection from spreading further. A forest fire may be impeded by
burning a pre-emptive firebreak. The proof of Proposition 8 relies on constructing
counterexamples on the connected graph with two vertices. We also point out here
that a different approach for showing results alike Proposition 8 would be through
appropriate extensions of Theorem 3.2, Chapter III in Liggett (1985), where the
condition μ′ ≥ μ is shown to be necessary and sufficient for attractiveness in the
case of the contact process to hold. The necessity part of this result relies on a sim-
ple argument relating the distribution of the process with its transition rates via its
pregenarator, which however seems to not extend for the three state contact pro-
cess. Finally, we note that the argument given in the proof of Proposition 8 applies
for G1,+, giving in particular the following consequence mentioned above.

Remark 9. For G ≡ G1,+ both conclusions of Proposition 8 are valid.

2 Proofs

Proof of Theorem 1. We construct a coupled process (ζ ′
t (x), ζt (x)) on X × X

with the property that if η′ ≥ η, then ζ ′
t ≥ ζt , for all t ≥ 0, a.s., via prescribing all

joint transitions-rates, i.e. flips. The existence of such a coupling implies (in fact
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it is equivalent to) the desired conclusion by a general result, see Theorem 2.4,
Chapter II, Liggett (1985).

(0,−1) →
{
(1,1) at rate λ|−→yx ∈ E : ζt (y) = 1|,
(1,−1) at rate μ′|−→yx ∈ E : ζ ′

t (y) = 1| − λ|−→yx ∈ E : ζt (y) = 1|,

(−1,−1) →
{
(1,1) at rate λ|−→yx ∈ E : ζt (y) = 1|,
(1,−1) at rate λ′|−→yx ∈ E : ζ ′

t (y) = 1| − λ|−→yx ∈ E : ζt (y) = 1|,

(0,0) →
{
(1,1) at rate μ|−→yx ∈ E : ζt (y) = 1|,
(1,0) at rate μ′|−→yx ∈ E : ζ ′

t (y) = 1| − μ|−→yx ∈ E : ζt (y) = 1|.
Further, (1,−1) → (1,1) at rate λ|−→yx ∈ E : ζt (y) = 1|, while (1,−1) → (0,−1)

at rate 1. Also, (1,0) → (1,1) at rate μ|−→yx ∈ E : ζt (y) = 1|, while (1,0) → (0,0)

at rate 1. Finally, (1,1) → (0,0) at rate 1.
Note first that the inequality ζ ′

t (x) ≥ ζt (x) is preserved by all flips prescribed
above. Note also that the assumptions on the infection rates in (2) are required
for all of the flip rates of (ζ ′

t (x), ζt (x)) prescribed above to be non-negative. In
addition, we observe that the flip rates define a valid coupling, since the marginals
yield the correct transition rates for both (ζt ) and (ζ ′

t ). To see this, one adds up the
transition rates in order to check that the coordinates ζ ′

t (x) and ζt (x) individually
flip at the correct rates. For instance, from the first and third displays above, we
have that ζ ′

t (x) : 0 → 1 at rate μ′|−→yx ∈ E : ζ ′
t (y) = 1|, whenever ζt (x) equals −1 or

0, respectively. We have achieved the coupling and thus the proof is complete. �

Proof of Theorem 4. We first prove (5). Let In and I ′
n denote the sets of infected

times for site {n}. For each n ≥ 0 these sets are denumerable unions of disjoint
intervals. We are going to prove by induction on n that there exists a representation

In = ⋃
i≥0

[
a

(n)
i , b

(n)
i

)
, (12)

where the index i is used for the successive infection intervals, and an associated
(monotone increasing) function φn : In → I ′

n from In into I ′
n such that, for all

i ≥ 0,

φn

(
a

(n)
i

) ≤ a
(n)
i (13)

φn(t) = φn

(
a

(n)
i

) + t − a
(n)
i , t ∈ [a(n)

i , b
(n)
i ) (14)

φn

(
a

(n)
i+1

) − φn

(
a

(n)
i

) ≥ a
(n)
i+1 − a

(n)
i . (15)

We construct the coupled processes by induction on n (see Fig. 1). Clearly the
above representation in the case n = 0 holds. Therefore, we assume that we have
such a representation for some n and establish it for n+1. In particular, this implies
(5). Consider the ζt process first. Given the set of infected times In at site n we
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Figure 1 Note that the image under φn of each of the intervals in the representation of In in (12) is
an earlier interval in I ′

n of the same length, whereas the image intervals are disjoint and more widely
spaced than the originals.

construct In+1 as follows. On In generate independent Poisson processes with rates
λ, corresponding to (potential) initial infections of site n+1, and μ, corresponding
to secondary infections of site n+1. Denote by ν0 the time of the first point (in In)
of the process at rate λ, and by ν1, ν2, . . . , νk the times of subsequent points (again
in In) of the process at rate μ. Thus ν0 ≤ ν1 ≤ · · · ≤ νk are the times at which site
n + 1 is infected (if not already currently infected) from site n. Construct also an
independent Poisson process with rate 1 on R+ defining the recovery events as
the times at which site n + 1 recovers. Then the set of infected times In+1 at site
n + 1 has the representation (12) with a

(n+1)
i = νi , i = 0,1, . . . , k, and, for each

such i, b
(n+1)
i = νi + di , where νi + di is the minimum of νi+1 (where we define

νk+1 = ∞) and the time of the first recovery event after νi .
Now consider the ζ ′

t process. Given the set I ′
n of infected times at site n we sim-

ilarly construct I ′
n+1 as follows. The independent Poisson processes of rates λ′ and

μ′ on I ′
n (defining respectively, the times of initial and secondary infections of site

n + 1) are given as follows. On the image φn(In) of In in I ′
n, these two processes

are given by using φn to map the points of the corresponding Poisson processes
(with rates λ and μ) on In which were used in the construction of the ζt process;
in order to obtain the correct rates, these two processes are then supplemented by
the points of additional independent Poisson processes of rates λ′ − λ and μ′ − μ.
On I ′

n \ φn(In) we simply run additional independent Poisson processes with rates
λ′ and μ′. Denote by ν′

0 the time of the first point (in I ′
n) of the process with rate

λ′, and, for i = 1, . . . , k, define ν′
i = φn(νi) ∈ I ′

n. Thus, ν′
0 is the time of the first

infection (in the ζ ′
t process) of site n + 1, while ν′

1, . . . , ν
′
k are a subset of the fur-

ther times at which site n + 1 is infected (if not already currently infected) from
site n. Since also, by construction, ν′

0 ≤ φn(ν0), it follows from the properties of
the function φn that

ν′
i ≤ νi, i = 0, . . . , k, (16)

ν′
i+1 − ν′

i ≥ νi+1 − νi, i = 0, . . . , k − 1. (17)

The independent Poisson process with rate 1 on R+ which defines the times of
the recovery events for infections of site n + 1 in the ζ ′

t process is given as fol-
lows: consider the corresponding Poisson process with rate 1 used in the construc-
tion of In+1. The restriction of this process to each of the intervals [νi, νi+1), i =
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0,1, . . . , k (and again with νk+1 = ∞) is mapped to the interval [ν′
i , ν

′
i +νi+1 −νi)

in the obvious manner, that is, by adding ν′
i − νi to each point (recall that, from

(17), these latter intervals are disjoint); outside the intervals [ν′
i , ν

′
i + νi+1 − νi) we

place an independent Poisson process with rate 1. The set I ′
n+1 is now constructed

in the usual manner. Note that, from the above construction, it contains each of the
intervals [ν′

i , ν
′
i + di) ⊆ [ν′

i , ν
′
i + νi+1 − νi) for i = 0, . . . , k. We can thus take the

mapping φn+1 to be given by φn+1(a
(n+1)
i ) = φn+1(νi) = ν′

i for i = 0, . . . , k and
to be such that (14) is satisfied with n + 1 replacing n. It follows from the above
construction of In+1 and I ′

n+1 that this indeed maps the former set into the latter.
Further it follows from (16) and (17) that (13) and (15) are similarly satisfied with
n + 1 replacing n. This proves (5). The proof of (6) is omitted as it follows from
(5) by an instance of the argument given in the the last paragraph of the proof of
Proposition 6 for deriving (8) from (18) there. This completes the proof. �

Proof of Proposition 6. We first show that we may define the two processes on a
common probability space, such that the following holds:{

ξ
{w,λ}
t (v) = 1, for some t ≥ 0

} ⊆ {
ζ

{w,(λ,μ)}
t (v) = 1, for some t ≥ 0

}
, (18)

almost surely. To do so, for all u ∈ V let (T u
n )n≥1 be exponential 1 r.v.’s; further

for all u, v such that −→
uv, let (Y

(u,v)
n )n≥1 be exponential λ r.v.’s and (N

(u,v)
n )n≥1 be

Poisson processes at rate μ. All random elements introduced are independent and
P below denotes the corresponding probability measure. To describe the construc-
tion below, let τ

(u,v)
k,n , k ≥ 1, be the times of events of N

(u,v)
n within the time interval

[0, T u
n ) and let also X

(u,v)
n , n ≥ 1, be such that X

(u,v)
n = Y

(u,v)
n if Y

(u,v)
n < T u

n and
X

(u,v)
n := ∞ otherwise.
We now construct ζ

{w,(λ,μ)}
t on G. Suppose that site u gets infected at time t for

the nth time, n ≥ 1, then: (i) at time t + T u
n a recovery occurs at site u, (ii) at time

t + X
(u,v)
n an initial infection of v occurs if immediately prior to that time site v is

at a susceptible and never infected state, and, (iii) at each time t + τ
(u,v)
k,n , k ≥ 1, a

secondary infection occurs at site v if immediately prior to that time site v is at a
susceptible and previously infected state.

Let also Xu = {v : −→uv and X
(u,v)
1 < ∞}, u ∈ V . Let � denote the subgraph of G

induced by retaining edges from u to v if and only if v ∈ Xu, for all u, v ∈ V . Let
further u −−−−−−→

(Xu,u∈V )
v denote the existence of a directed path from u to v in � (see

Figure 2 for an example). It follows by Lemma 1 in Durrett (1988), Chapter 9, that
by the construction of ζ

{w,(λ,0)}
t , we have that

{w −−−−−−→
(Xu,u∈V )

v} = {
ζ

{w,(λ,0)}
t (v) = 1 for some t ≥ 0

}
.

Analogously for ζ
{w,(λ,μ)}
t , we also have that

{w −−−−−−→
(Xu,u∈V )

v} ⊆ {
ζ

{w,(λ,μ)}
t (v) = 1 for some t ≥ 0

}
,
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Figure 2 An example of a digraph G (left); a realization of the associated (dependent) directed
percolation random graph � (right), in which, for instance, X2 = {3,5} and 1 −−−−−−→

(Xu,u∈V )
9.

for all v ∈ V . The proof of (18) is then complete by combining the last two displays
above.

We finally derive (8) from (18). We consider ζ
{w,(λ,μ)}
t and for v ∈ V , we let

Av = {
ζ

{w,(λ,μ)}
t (v) = 1 for some t ≥ 0

}
.

From the first part, it suffices to show that

P

(∑
v∈V

1(Av) = ∞
)

= P
(
ζ

{w,(λ,μ)}
t survives

)
,

where 1(·) denotes the indicator function. To prove the equality in the last display
above, we let BM denote the event {∑v∈V 1(Av) ≤ M}. Either because a finite
state-space irreducible Markov chain with a single absorbing state is eventually
absorbed, or by Lemma VII.4.1 in Schinazi (1999), we have that, for all fixed
integer M ∈ [1,∞),

P
(
BM,ζ

{w,(λ,μ)}
t survives

) = 0,

and thus, P(
⋃

M≥1 BM,ζ
{w,(λ,μ)}
t survives) = 0, which completes the proof. �

Proof of Proposition 8. Let G be the connected graph with V = {u, v}. We will
show that: (i) for all λ > 1, a coupling of ζ

{u,(λ,0)}
t and ζ

{V,(λ,0)}
t on G, such that

ζ
{u,(λ,0)}
t ≤ ζ

{V,(λ,0)}
t ,∀t ≥ 0, cannot be constructed; and, further that: (ii) for all

λ,λ′, if λ < λ′ < 1 then a coupling of ζ
{u,(λ,0)}
t and ζ

{u,(λ′,0)}
t on G such that

ζ
{u,(λ,0)}
t ≤ ζ

{u,(λ′,0)}
t ,∀t ≥ 0, cannot be constructed. This suffices since (i) and (ii)

imply (10) and (11), respectively.
Let Tu, Tv be exponential 1 r.v.’s; let also Xu,v be an exponential λ r.v., and

fXu,v be its probability density function. All r.v.’s introduced are independent of
each other and defined on some probability space with probability measure P. We
have that, for any t ≥ 0,

P
(
ζ

{u,(λ,0)}
t = (1,1)

) = P(Tu > t)

∫ t

0
fXu,v (s)P(Tv > t − s) ds
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= e−2t
∫ t

0
λes(1−λ) ds (19)

= e−2t λ

λ − 1

(
1 − e−t (λ−1)).

By (19) then we have: (a) for all λ > 1 we can choose t sufficiently large, i.e.
t >

logλ
λ−1 , such that P(ζ

{u,(λ,0)}
t = (1,1)) > e−2t = P(ζ

{V,(λ,0)}
t = (1,1)); and fur-

ther that (b) for all λ < 1, P(ζ
{u,(λ,0)}
t = (1,1)) is not an increasing function of λ.

From Theorem B9 in Liggett (1999), (i) and (ii) follow by (a) and (b) respectively.
This completes the proof. �
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