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Abstract. In this paper, we study the change point problem for the skew
normal distribution model from the view of model selection problem. The
detection procedure based on the modified information criterion (MIC) for
change problem is proposed. Such a procedure has advantage in detecting the
changes in early and late stage of a data comparing to the one based on the
traditional Schwarz information criterion which is well known as Bayesian
information criterion (BIC) by considering the complexity of the models. Due
to the difficulty in deriving the analytic asymptotic distribution of the test
statistic based on the MIC procedure, the bootstrap simulation is provided to
obtain the critical values at the different significance levels. Simulations are
conducted to illustrate the comparisons of performance between MIC, BIC
and likelihood ratio test (LRT). Such an approach is applied on two stock
market data sets to indicate the detection procedure.

1 Introduction

In statistics, a change point is defined as place or time point which the observations
before and after that point follow different distributions. The study of the change
point problem was dated back to Page (1954, 1955), who first proposed a proce-
dure to detect only one change in a parameter. The identification of change points
plays an important role in financial time series analysis, economy, quality control,
genome research, signal processing, medical research, statistical calibration, etc.
For instance, Chernoff and Zacks (1964), Gardner (1969), Hawkins (1992), studied
the testing and estimation of a change in the mean of a normal model. Hsu (1977),
Inclán (1993), studied change point problem for the variance in a normal model.
Readers are referred to Csörgő and Horváth (1997) and Chen and Gupta (2012)
for more details of parametric and nonparametric methods on different types of
change point problems. Recently, Zou et al. (2007) proposed a procedure based on
the empirical likelihood method by Owen (1988) to detect changes in distributions,
and established the asymptotic distribution as one of the gumbel distributions.

In general, a change point problem involves with two consecutive steps (1) test-
ing null hypothesis without changes versus the alternative hypothesis with at least
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one change; (2) estimating the change location or locations if we reject the null
hypothesis. Therefore, a change point problem can be treated as the problem of se-
lecting a better one from the models under the null and the alternative hypotheses
respectively. The choice of the model under the null hypothesis corresponds to the
scenario of no change while the choice of the one under the alternative hypothesis
corresponds to the scenario of having at least one change. The use of the infor-
mation criteria for the model selection has been extensively studied since 1970s.
See Akaike (1973), Schwarz (1978) and Hannan and Quinn (1979). To adopt these
information criteria to change point problems, there have been fruitful research
done in this direction, such as Hirotsu, Kuriki and Hayter (1992), Chen and Gupta
(1997), Chen, Gupta and Pan (2006), Ngunkeng and Ning (2014), Hasan, Ning
and Gupta (2014) and Cai, Said and Ning (2016), to name a few.

The skew normal (SN) distribution refers to a parametric class of probability
distributions that extends the normal distribution by adding an additional shape
parameter λ that regulates the skewness of the data. Azzalini (1985) proposed the
skew normal distribution and defined the probability density function of the stan-
dard skew normal distribution as

f (z) = 2φ(z)�(λz), (1.1)

and the general skew normal distribution is then defined as

f (x;μ,σ,λ) = 2

σ
φ

(
x − μ

σ

)
�

(
λ
x − μ

σ

)
, (1.2)

where φ(·), �(·) are the p.d.f. and c.d.f. of the standard normal distribution x ∈
�,μ is the location, σ is the scale and λ ∈ � is the shape parameter.

The behavior of skew normal model has been studied by many authors, to name
a few, Henze (1986) provided a probabilistic representation of the skew normal
distribution family in terms of a normal random variable and a truncated normal
random variable. Azzalini and Dalla Valle (1996) extended the univariate case to
the multivariate case. Azzalini and Capitanio (1999) studied further probabilistic
properties of the multivariate skew normal distribution with applications to some
multivariate statistics problems. Arellano-Valle et al. (2008) and Arellano-Valle,
Genton and Loschi (2009) considered shape mixtures in the skew-normal class.
They addressed the inference problem in skewed regression models and discussed
theoretical issues regarding to Bayesian inference in the skew normal family such
as conjugacy and robustness. Ning and Gupta (2012) generalized the univariate
extended skew normal distribution family to the matrix variate case. Readers are
referred to see Azzalini and Capitanio (2014) for more recent results of the skew
normal distribution family.

To the best of our knowledge, only a few work has been done on the change
point problem of the skew normal distribution. Arellano-Valle, Castro and Loschi
(2013) proposed a Bayesian approach for the detection at most one change in the
skew normal distribution family. Ngunkeng and Ning (2014) proposed a testing
procedure based on Bayesian information criterion (BIC) and applied on several
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stock market data sets. Most recently, Said, Ning and Tian (2017) proposed a like-
lihood ratio testing procedure for the change point problem of the skew normal
distribution and established asymptotic properties of the associated test statistic.
As Chen, Gupta and Pan (2006) pointed out, when using the traditional informa-
tion criterion such as AIC and BIC in the context of change point problem, the
complexity of the model should be reconsidered due to the lack of the considera-
tion of the contributions by change locations.

The rest of paper is organized as follows. In Section 2, we adopt the modified in-
formation criterion (MIC) proposed by Chen, Gupta and Pan (2006) to the change
point problem of the skew normal distribution. Simulations are conducted in Sec-
tion 3 to investigate the performance of the proposed method and the comparison
with the one based on BIC. Such a method is applied to Chile and Mexico stock
returns to illustrate the detecting procedure. Discussion is provided in Section 5.

2 Changes in skew normal parameters

In this section, we apply the modified information approach (MIC) to detect
changes in a skew normal model. The MIC was proposed by Chen, Gupta and
Pan (2006) which is the modification of BIC approach by refining the model com-
plexity in the context of change point problems in order to involve with the contri-
butions by change locations.

In general, multiple changes in data will be considered. Vostrikova (1981) pro-
posed the binary segmentation method which can detect multiple changes in sev-
eral consecutive steps with at most one change in each step. She also showed such a
procedure is consistent. With the binary segmentation method, the multiple change
problem can always be treated as the single change problem. Therefore, through
the rest of the paper, we only develop the testing procedure for a single change.

Let X1, . . . ,Xn be a sequence of independent random variables from a skew
normal distribution SN(μ,σ,λ). We are interested in testing the changes in the lo-
cation μ, scale σ 2 and shape λ parameters simultaneously. Thus we are interesting
in testing the null hypothesis

H0 :μ1 = μ2 = · · · = μn︸ ︷︷ ︸
μ

, σ1 = σ2 = · · · = σn︸ ︷︷ ︸
σ

, λ1 = λ2 = · · · = λn︸ ︷︷ ︸
λ

versus the alternative hypothesis

H1 :μ1 = μ2 = · · · = μk︸ ︷︷ ︸
μ1

�= μk+1 = μk+2 = · · · = μn︸ ︷︷ ︸
μn

,

σ1 = σ2 = · · · = σk︸ ︷︷ ︸
σ1

�= σk+1 = σk+2 = · · · = σn︸ ︷︷ ︸
σn

,

λ1 = λ2 = · · · = λk︸ ︷︷ ︸
λ1

�= λk+1 = λk+2 = · · · = λn︸ ︷︷ ︸
λn

.
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Then the corresponding likelihood function under H0 is given as

LH0 = 2nσ−n
n∏

i=1

φ

(
xi − μ

σ

) n∏
i=1

�

(
λ
xi − μ

σ

)
. (2.1)

Consequently, the log-likelihood function is given by

logLH0 = n ln 2 − n lnσ − 1

2

n∑
i=1

(
xi − μ

σ

)2
+

n∑
i=1

ln�

(
λ
xi − μ

σ

)
. (2.2)

To find maximum likelihood estimators (MLEs) of μ,σ and λ, we need to solve
the following nonlinear equations.

∂

∂μ
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σ
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)
= 0. (2.5)

Similarly, the log-likelihood function under H1 is given by

logLH1 =
{
k ln 2 − k lnσ1 − 1

2
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)2
+
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.

Then, the MLEs of μ1, σ1, λ1 and μn,σn,λn are the solutions of the following
nonlinear equations.

∂

∂μ1
(logLH1) =
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i=1
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= 0, (2.8)
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and
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The existence of nonlinear functions φ(·) and �(·) prevents us to obtain the
explicit forms for the MLEs μ̂, σ̂ , λ̂ under H0 and MLEs μ̂1, σ̂1, λ̂1, μ̂n, σ̂n, λ̂n

under H1, so we employ R package sn (version 1.4.0, Azzalini (2016)) to obtain
the numerical solutions of the MLEs. Then we define the modified information
criteria MIC(n) under H0 and MIC(k) under H1 respectively, according to Chen,
Gupta and Pan (2006) as follows

MIC(n) = −2 lnLH0(μ̂, σ̂ , λ̂) + 3 ln(n), (2.12)

MIC(k) = −2 lnLH1(μ̂1, σ̂1, λ̂1, μ̂n, σ̂n, λ̂n) +
{

6 +
(

2k

n
− 1

)2}
ln(n), (2.13)

where k is the possible change location in the range of 1 ≤ k < n. Then we accept
H0 if

MIC(n) ≤ min
1≤k<n

MIC(k),

which indicates there is no change point, and we reject H0 if

MIC(n) > min
1≤k<n

MIC(k),

which indicates that there exists a change point. Consequently, we can estimate the
change point location k̂ by

MIC(k̂) = min
1≤k<n

MIC(k).

Further, we define the test statistic Sn based on MIC(n) and MIC(k) to test the
null hypothesis of no change versus the alternative hypothesis of one change as
follows,

Sn = MIC(n) − min
1≤k<n

MIC(k) + 3 ln(n). (2.14)
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By substituting the equations (2.12) and (2.13) into the equation (2.14), we obtain

Sn = −2 lnL(θ̂) + 3 ln(n)

− min
1≤k<n

[
−2 lnL(θ̂1, θ̂n) +

{
6 +

(
2k

n
− 1

)2}
ln(n)

]
+ 3 ln(n)

= −2 lnL(θ̂) + 3 ln(n)

− min
1≤k<n

[
−2 lnL(θ̂1, θ̂n) + 6 ln(n) −

(
2k

n
− 1

)2
ln(n)

]
+ 3 ln(n)

= −2 lnL(θ̂) − min
1≤k<n

[
−2 lnL(θ̂1, θ̂n) +

(
2k

n
− 1

)2
ln(n)

]
,

where θ̂ = (μ̂, σ̂ , λ̂), θ̂1 = (μ̂1, σ̂1, λ̂1) and θ̂n = (μ̂n, σ̂n, λ̂n). We reject the null
hypothesis for a sufficient large value of Sn. The standardization term 3 ln(n) re-
moves the constant term in the difference of MIC(n) and MIC(k).

3 Simulation results

In this section, we investigate the critical values and performance of the proposed
test in terms of powers through simulations due to the difficulty in deriving the
analytic properties of Sn.

3.1 Critical values

In our simulation study, we set up the null distribution to be SN(2,2,1) and choose
sample sizes n = 50,100,150,200 and 300 with significance levels α = 0.01,0.05
and 0.1. We also construct the test statistic Tn based on the classical Bayesian
information criterion (BIC) which is defined as below to make a comparison.

Tn = BIC(n) − min
1≤k<n

BIC(k) + 3 logn,

where BIC(n) under H0 and BIC(k) under H1 are given by

BIC(n) = −2 lnLH0(μ̂, σ̂ , λ̂) + 3 ln(n),

BIC(k) = −2 lnLH1(μ̂1, σ̂1, λ̂1, μ̂n, σ̂n, λ̂n) + 6 logn.

The similar idea based BIC has also been considered by Ngunkeng and Ning
(2014) to detect multiple changes in a skew normal distribution. We note here
that the only difference between Sn and Tn is reflected in the difference between
MIC(k) in (2.13) and BIC(k). The penalty term in the former one considers the
contribution of the change location k associated with the complexity of the model,
while the latter one does not. In order to make a fair power comparison between
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Sn and Tn, we simulate the critical values for both test statistics under the same
null distributions with the same sample sizes for given significance levels.

We would like to make some notes on the simulations to obtain critical values.
To simulate the critical values of test statistics under the null hypothesis, one way
is to conduct certain number of simulations for a given null distribution and cal-
culate test statistic values Sn and Tn for each simulation. Then the critical values
correspond to percentiles in sorted values calculated from the simulations. Another
approach is bootstrap method by resampling certain number of bootstrap samples
from a generated null distributional sample with replacement, then the percentiles
of sorted test statistics values from the bootstrap samples are critical values for
given significance levels.

When using the bootstrap method to obtain simulated critical values of a test
statistic, we need to ensure that the bootstrap samples are resampled from a data
under the null distribution. In simulations, this is not an issue because the null dis-
tribution has been determined before resampling. Therefore, it is known to satisfy
H0 which can be used to generate a sample. Thus, in simulations, both approaches
will obtain similar critical values. However, for a real data, it would be an is-
sue for bootstrap method since we do not know whether the data satisfies H0 or
H1. Therefore, we can not perform resampling directly on the data. The follow-
ing strategy will be taken. We first assume the data satisfying H0, which indicates
it should be fitted by a single skew normal distribution, say, SN0 = SN(μ̂, σ̂ , λ̂),
where μ̂, σ̂ and λ̂ can be obtained by R package sn (Azzalini (2016)). Then we
generate a random sample based on SN0 denoted by x1, x2, . . . , xn. Then B boot-
strap samples are drawn from this generated sample with replacement, denoted
by y

(i)
1 , y

(i)
2 , . . . , y

(i)
n , i = 1,2, . . . ,B . For each bootstrap sample, we calculate Sn

denoted by S
(i)
n , i = 1,2, . . . ,B . Thus, the p-value can be approximated as follows

p-value = 1

B

B∑
i=1

I
(
S(i)

n ≥ S(∗)
n

)
,

where I (·) is the indicator function and S
(∗)
n is the value of Sn calculated from the

original real data. The following Table 1 and Table 2 list critical values of Sn and
Tn obtained from the first approach.

3.2 Power comparison

In this section, we conduction simulations under different scenarios to investi-
gate the performance of test procedures based Sn and Tn in terms of power.
Furthermore, we also compare the power of the likelihood ratio test (LRT) pro-
posed by Said, Ning and Tian (2017) according to the suggestion by one ref-
eree. We set the distribution following SN(μ1, σ1, λ1) to be SN(2,2,1) before the
change and SN(μn, σn, λn) after the change with the parameter θn = (μn, σn, λn),
where θn = (3,3,0), (2.5,2.5,2), (3,3,2) and (1.5,1.5,1.5) with the sample size
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Table 1 Approximate critical values for MIC under different parameters

α

n SN(·) 0.1 0.05 0.01

50 (2,2,1) 13.8599 16.0408 20.9073
(2,1,3) 13.7189 15.9038 20.3248
(3,3,2) 15.0880 17.2305 21.3023

100 (2,2,1) 14.2453 16.3676 20.4829
(2,1,3) 14.6955 16.9056 21.8547
(3,3,2) 14.0461 16.3581 19.9698

150 (2,2,1) 13.4338 15.7396 20.5235
(2,1,3) 13.3606 15.8911 19.0863
(3,3,2) 13.2416 15.9811 21.1312

200 (2,2,1) 12.3516 14.3856 19.0478
(2,1,3) 13.4566 15.3791 22.2769
(3,3,2) 12.7815 15.1346 20.7744

300 (2,2,1) 13.4768 15.1166 19.6444
(2,1,3) 12.3190 14.0795 18.2067
(3,3,2) 12.5156 14.1769 17.8763

Table 2 Approximate critical values for BIC under different parameters

α

n SN(·) 0.1 0.05 0.01

50 (2,2,1) 15.909 17.896 22.164
(2,1,3) 16.243 18.813 23.722
(3,3,2) 16.309 18.956 23.325

100 (2,2,1) 15.202 17.159 21.294
(2,1,3) 15.961 17.792 22.577
(3,3,2) 15.791 17.355 21.207

150 (2,2,1) 15.060 17.103 20.326
(2,1,3) 15.504 17.725 21.436
(3,3,2) 15.186 17.268 22.784

200 (2,2,1) 14.866 16.928 21.565
(2,1,3) 15.767 17.745 22.867
(3,3,2) 15.437 17.138 22.234

300 (2,2,1) 14.957 16.581 21.685
(2,1,3) 15.767 17.502 21.397
(3,3,2) 15.479 17.615 20.991
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n = 50,100 and 150. We also set up changes occurring approximately at the be-
ginning ( 1

4 th), at the center ( 1
2 th) and at the end ( 3

4 th) of the sample size n. The
LRT statistic is given by Said, Ning and Tian (2017) as follows.

Zn = max
1≤k<n

{
−2 ln

( supμ,σ,λ LH0(xi;μ,σ,λ)

supμ1,σ1,λ1,μn,σn,λn
LH1(xi;μ1, σ1, λ1,μn, σn, λn)

)}
.

The results are listed in Tables 3, 4 and 5.
From the comparison, we can observe that the proposed MIC procedure is very

competitive comparing to the BIC and the LRT. In general, we observe that the
powers of all three tests increase as the increase of the sample size. For example,

Table 3 Power comparison between MIC, BIC and LRT for α = 0.1

(μn,σn,λn)

n k (μ1, σ1, λ1) Model (3, 3, 0) ( 5
2 , 5

2 ,2) (3, 3, 2) ( 3
2 , 3

2 , 3
2 )

50 10 (2, 2, 1) MIC 0.204 0.184 0.438 0.261
(2, 2, 1) BIC 0.173 0.089 0.265 0.289
(2, 2, 1) LRT 0.320 0.293 0.575 0.277

25 (2, 2, 1) MIC 0.439 0.334 0.711 0.395

(2, 2, 1) BIC 0.267 0.288 0.656 0.336
(2, 2, 1) LRT 0.555 0.430 0.806 0.370

40 (2, 2, 1) MIC 0.319 0.185 0.233 0.093

(2, 2, 1) BIC 0.276 0.148 0.435 0.058
(2, 2, 1) LRT 0.383 0.267 0.560 0.258

100 25 (2, 2, 1) MIC 0.731 0.476 0.882 0.407
(2, 2, 1) BIC 0.580 0.481 0.863 0.235
(2, 2, 1) LRT 0.639 0.528 0.922 0.514

50 (2, 2, 1) MIC 0.861 0.530 0.991 0.641
(2, 2, 1) BIC 0.704 0.423 0.975 0.535
(2, 2, 1) LRT 0.849 0.645 0.976 0.620

75 (2, 2, 1) MIC 0.658 0.380 0.924 0.502
(2, 2, 1) BIC 0.510 0.368 0.909 0.355
(2, 2, 1) LRT 0.735 0.509 0.935 0.474

150 35 (2, 2, 1) MIC 0.809 0.717 0.992 0.652
(2, 2, 1) BIC 0.803 0.610 0.983 0.617
(2, 2, 1) LRT 0.836 0.728 0.984 0.678

75 (2, 2, 1) MIC 0.983 0.914 1.000 0.881
(2, 2, 1) BIC 0.928 0.857 0.999 0.849
(2, 2, 1) LRT 0.973 0.874 0.996 0.824

110 (2, 2, 1) MIC 0.935 0.724 0.998 0.695
(2, 2, 1) BIC 0.926 0.711 0.993 0.651
(2, 2, 1) LRT 0.924 0.765 0.997 0.654
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Table 4 Power comparison between MIC, BIC and LRT for α = 0.05

(μn,σn,λn)

n k (μ1, σ1, λ1) Model (3, 3, 0) ( 5
2 , 5

2 ,2) (3, 3, 2) ( 3
2 , 3

2 , 3
2 )

50 10 (2, 2, 1) MIC 0.126 0.089 0.307 0.173
(2, 2, 1) BIC 0.081 0.040 0.151 0.160
(2, 2, 1) LRT 0.193 0.186 0.430 0.183

25 (2, 2, 1) MIC 0.328 0.221 0.603 0.216
(2, 2, 1) BIC 0.161 0.158 0.486 0.186
(2, 2, 1) LRT 0.403 0.285 0.688 0.234

40 (2, 2, 1) MIC 0.187 0.081 0.114 0.034
(2, 2, 1) BIC 0.175 0.077 0.312 0.017
(2, 2, 1) LRT 0.268 0.148 0.433 0.132

100 25 (2, 2, 1) MIC 0.543 0.373 0.784 0.278
(2, 2, 1) BIC 0.426 0.358 0.820 0.141
(2, 2, 1) LRT 0.498 0.414 0.865 0.392

50 (2, 2, 1) MIC 0.758 0.373 0.983 0.525
(2, 2, 1) BIC 0.598 0.518 0.929 0.404
(2, 2, 1) LRT 0.776 0.533 0.958 0.497

75 (2, 2, 1) MIC 0.535 0.283 0.851 0.376
(2, 2, 1) BIC 0.392 0.252 0.856 0.240
(2, 2, 1) LRT 0.653 0.386 0.899 0.343

150 35 (2, 2, 1) MIC 0.693 0.627 0.979 0.561
(2, 2, 1) BIC 0.713 0.445 0.959 0.596
(2, 2, 1) LRT 0.740 0.613 0.973 0.591

75 (2, 2, 1) MIC 0.949 0.841 1.000 0.771
(2, 2, 1) BIC 0.875 0.759 0.996 0.751
(2, 2, 1) LRT 0.942 0.818 0.995 0.726

110 (2, 2, 1) MIC 0.888 0.590 0.995 0.560
(2, 2, 1) BIC 0.860 0.532 0.987 0.542
(2, 2, 1) LRT 0.893 0.647 0.993 0.531

when n increases from 50 to 150 and the true change location is at the beginning of
the sample with α = 0.05, the power of MIC, BIC and LRT with θn = (3,3,2) in-
crease from 0.307, 0.151, 0.430 to 0.979, 0.959, 0.973, respectively. Furthermore,
in general the MIC procedure outperforms the BIC procedure with various change
locations. For example, in Table 4, when n = 50,100,150 and the true change
occurs at the beginning of the sample size, with θn = (2.5,2.5,2) the powers of
MIC are 0.089, 0.373, 0.627 which are higher than 0.040, 0.358, 0.445 of the BIC,
respectively. Similarly for the true change occurs at the end of sample size, that
is, the performance of the MIC is better than that of the BIC. It indicates the ad-
vantage of the MIC over the BIC by considering the model complexity associated
with the change location as described in previous section.
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Table 5 Power comparison between MIC, BIC and LRT for α = 0.01

(μn,σn,λn)

n k (μ1, σ1, λ1) Model (3, 3, 0) ( 5
2 , 5

2 ,2) (3, 3, 2) ( 3
2 , 3

2 , 3
2 )

50 10 (2, 2, 1) MIC 0.030 0.035 0.152 0.060
(2, 2, 1) BIC 0.019 0.009 0.035 0.038
(2, 2, 1) LRT 0.056 0.057 0.190 0.065

25 (2, 2, 1) MIC 0.135 0.087 0.393 0.088
(2, 2, 1) BIC 0.070 0.054 0.263 0.048
(2, 2, 1) LRT 0.182 0.104 0.430 0.086

40 (2, 2, 1) MIC 0.050 0.026 0.047 0.007
(2, 2, 1) BIC 0.030 0.042 0.118 0.002
(2, 2, 1) LRT 0.118 0.052 0.221 0.038

100 25 (2, 2, 1) MIC 0.231 0.130 0.545 0.080
(2, 2, 1) BIC 0.217 0.181 0.625 0.054
(2, 2, 1) LRT 0.264 0.220 0.720 0.208

50 (2, 2, 1) MIC 0.512 0.203 0.918 0.321
(2, 2, 1) BIC 0.269 0.302 0.768 0.156
(2, 2, 1) LRT 0.558 0.308 0.897 0.278

75 (2, 2, 1) MIC 0.219 0.106 0.685 0.154
(2, 2, 1) BIC 0.262 0.063 0.733 0.066
(2, 2, 1) LRT 0.469 0.204 0.778 0.138

150 35 (2, 2, 1) MIC 0.445 0.474 0.883 0.373
(2, 2, 1) BIC 0.342 0.168 0.899 0.385
(2, 2, 1) LRT 0.462 0.386 0.922 0.395

75 (2, 2, 1) MIC 0.827 0.647 0.987 0.492
(2, 2, 1) BIC 0.753 0.490 0.986 0.407
(2, 2, 1) LRT 0.852 0.603 0.991 0.500

110 (2, 2, 1) MIC 0.725 0.344 0.970 0.262
(2, 2, 1) BIC 0.680 0.408 0.947 0.296
(2, 2, 1) LRT 0.779 0.414 0.968 0.285

3.3 Consistency of the estimator k̂

We also investigate the consistency of the estimator k̂ of the true change location k

through a numerical study. The results are listed in Table 6. 1000 simulations have
been conducted under different sample sizes n = 50,100,150,200 and n = 300
with true change location k at n/2 and n/4. The parameter is set to be θ1 = (2,2,1)

before the change and to be θn = (−1,1.5,1.5) after the change. Furthermore, we
compare the bias and mean square error (MSE) of the k̂ for the MIC and the BIC.
The results are listed in Table 6. Generally, we have been observed that, the MSE
of MIC are smaller than the MSE of BIC, and also we observed that in most cases
the bias of MIC is smaller than the bias of BIC.
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Table 6 The consistency of change location estimator k̂

P (|k̂ − k| ≤ δ) Bias(k̂) MSE(k̂)

δ n k MIC BIC MIC BIC MIC BIC

1 50 12 0.851 0.854 0.205 0.182 0.205 0.182
25 0.870 0.860 0.187 0.194 0.187 0.194

100 25 0.883 0.879 0.196 0.199 0.196 0.199
50 0.887 0.886 0.206 0.205 0.206 0.205

150 37 0.914 0.887 0.201 0.185 0.201 0.185
75 0.910 0.909 0.173 0.173 0.173 0.173

200 50 0.895 0.910 0.191 0.199 0.191 0.199
100 0.913 0.913 0.210 0.210 0.210 0.210

300 75 0.892 0.904 0.169 0.196 0.169 0.196
150 0.910 0.910 0.223 0.223 0.223 0.223

2 50 12 0.922 0.923 0.347 0.320 0.489 0.458
25 0.940 0.930 0.327 0.334 0.467 0.474

100 25 0.956 0.952 0.342 0.345 0.488 0.491
50 0.957 0.955 0.346 0.343 0.486 0.481

150 37 0.972 0.956 0.317 0.323 0.433 0.461
75 0.969 0.969 0.291 0.293 0.409 0.413

200 50 0.966 0.962 0.333 0.303 0.475 0.407
100 0.961 0.961 0.306 0.306 0.402 0.402

300 75 0.964 0.966 0.303 0.320 0.457 0.444
150 0.975 0.975 0.353 0.353 0.483 0.483

3 50 12 0.962 0.965 0.467 0.446 0.849 0.836
25 0.966 0.961 0.405 0.427 0.701 0.753

100 25 0.973 0.976 0.393 0.417 0.641 0.707
50 0.979 0.979 0.412 0.415 0.684 0.697

150 37 0.985 0.981 0.356 0.398 0.550 0.686
75 0.988 0.988 0.348 0.350 0.580 0.584

200 50 0.988 0.989 0.399 0.384 0.673 0.650
100 0.987 0.987 0.384 0.384 0.636 0.636

300 75 0.985 0.981 0.376 0.365 0.646 0.579
150 0.989 0.989 0.395 0.395 0.609 0.609

It is noticed that in Table 5, MSE(k̂) and Bias(k̂) are exactly same for δ = 1.
The reason is that when the estimated change location k̂ satisfied the condition
|k̂ − k| ≤ 1, the value of k̂ − k is either 0,1 or −1. Therefore, |k̂ − k| is equal to
(k̂ − k)2. Consequently, MSE and Bias are same for δ = 1.
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4 Applications

We apply our method to Chile and Mexico stock market datasets to detect possible
changes. The stock returns for both countries were recorded weekly from Octo-
ber 31, 1995, to October 31, 2000. Both data have previously been analyzed by
Arellano-Valle, Castro and Loschi (2013) and Ngunkeng and Ning (2014) by ap-
plying a Bayesian method and a method based on Bayesian information criterion
(BIC) approach respectively, for skew normal models.

Let Ft be the stock return index values at week t . In general, we study the stock
return rates instead of stock returns directly which is defined as

Rt = Ft+1 − Ft

Ft

, t = 1,2, . . . , n. (4.1)

To test the independence of the transformed data, Hsu (1979) proposed several
methods to check independence for such a transformed data set. Here we use the
Portmanteau test given by

Qm = n

m∑
i=1

r2
i , (4.2)

where ri is the autocorrelation coefficient (ACF) at lag i and m is the lag up to
which the auto-correlation coefficient function is considered.

4.1 Chilean stock market

For the Chile stock return rates, we obtain,

Q24 = 261 ×
24∑
i=1

r2
i = 261 × 0.1210905 = 31.725 < χ2

0.95(24) = 36.415.

Hence, we fail to reject the null hypothesis of independence. Therefore, the Rt

series for Chilean stock return rates are independent. Left graph in Figure 1 shows
the ACF of the Rt series data and the right graph in Figure 1 shows the normal Q–
Q plot of Rt series which indicates that the normality assumption fails. Applying
normality tests such as Shapiro–Wilk test also concludes the validity of normality
is violated.

We apply the proposed MIC procedure associated with the test statistic Sn to
this data to test the hypotheses in Section 2. Figure 2 below shows the stock return
index and stock return rate for the Chilean stock market data with possible change
locations identified by the proposed procedure and the corresponding MIC values
is shown in Figure 3.

The binary segmentation method is implemented in the detecting procedure to
detect all possible changes in the data.
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Figure 1 Left: The graph of ACF values. Right: The normal Q–Q plot of Rt .

Figure 2 Left: The graph for stock return index. Right: The graph for stock return rate with change
locations for the Chilean data set.

Figure 3 The graph of MIC values for Chilean stock return rate.

• Consider the sequence Rt from 1 to 261. The test statistic MIC(261) =
−1016.9941 and min1≤k<261 MIC(k) = −1051.0883 and hence the statistic
Sn = MIC(261)−min1≤k<261 MIC(k)+3 log(261) = 50.7877. With the discus-
sion in Section 3.1 on the computation of critical values, the bootstrap method
proposed in Section 3.1 is used here. We obtain the approximated p-value <
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0.001 with B = 2000. Therefore, we conclude that there is a change in the data
and the estimated change location k̂ = arg min1≤k<261 MIC(k) = 112. It corre-
sponds to the change location 113th position in original {Ft } series with the
associated value 736.133 of the stock return index.

• Then we consider the subsequence Rt from 1 to 112. Similar as the previous
step, the test statistic Sn is calculated as 7.824 with the approximated p-value to
be 0.5105 under B = 2000 bootstrap samples. Thus we accept null hypothesis
and conclude there is no change in this subsequence.

• Meanwhile, we consider another subsequence Rt from 113 to 261. We calculate
the value of test statistic Sn = 21.956 with the approximated p-value = 0.003
which leads us to reject the null hypothesis and find another change in Rt series
at 169th position. That is, the change occurs at 170th position in the original Ft

series corresponding 519.747 of the stock return index.
• With the binary segmentation method, we repeat the above detecting process for

170 to 261 and for 113 to 170 and found out that no more changes exist in both
subsequences.

In summary, in the Chilean stock return data set, we are able to locate two change
locations which are 113th and 170th positions corresponding to 26th December,
1997 and 29th January, 1999, respectively. These changes may be caused by the
result of the 1997 Asian financial crises which reached its climax by mini crash
in the October 27, 1997 and may also be caused partly by 1998 Russian financial
crises, which led to devaluation of the ruble and its government suspension on
foreign creditor payments.

Arellano-Valle, Castro and Loschi (2013) detected a single change in the same
data by a Bayesian approach and concluded that the change approximately hap-
pened during the first week of February in 1998 but their method can not provide
the estimates of change point locations. Ngunkeng and Ning (2014) proposed a
detection procedure based on BIC which detected two change locations which are
January 29, 1999 and December 26, 1997.

We also apply the likelihood ratio test (LRT) procedure proposed by Said, Ning
and Tian (2017) to detect possible multiple changes in the data set. We reject the
null hypothesis of test statistic for large value of Zn, where

Zn = max
1≤k<n

{
−2 ln

( supμ,σ,λ LH0(xi;μ,σ,λ)

supμ1,σ1,λ1,μn,σn,λn
LH1(xi;μ1, σ1, λ1,μn, σn, λn)

)}
.

The calculated test statistic Zn = 50.8996 > C0.05,261 = 16.842 leads to reject the
null hypothesis associated with the estimated change location at 113th position.
With the binary segmentation method, we repeat the same procedure for subse-
quence from 114 to 261 and we obtain Zn = 22.4407 > C0.05,150 = 16.668 which
leads us to reject null hypothesis. Consequently, the estimated change occurs at
170th position. We repeat the same procedure for remaining subsequences and we
fail to locate more changes.
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Compared to the proposed test procedure to their methods, the proposed MIC
procedure detected two different changes in data set in 26th December, 1997 and
29th January, 1999 respectively which concur with all of the three approaches, es-
pecially in Ngunkeng and Ning (2014) and Said, Ning and Tian (2017). There are
two major differences between the proposed MIC procedure and the one based on
BIC proposed by Ngunkeng and Ning (2014). First, the MIC procedure incorpo-
rates the effect of change locations by considering the complexity of the model,
which leads to more powerful than the one based on traditional BIC especially for
the change locations toward to the beginning or the end of a data. Simulations re-
sults in Section 3 also indicate this. Another difference is that the proposed MIC
procedure is associated with a test statistic which can reveal the significance of
changes statistically in terms of the critical values and p-values, instead of sim-
ply comparing BIC values under the null and alternative models as the one in
Ngunkeng and Ning (2014).

4.2 Mexican stock market

To test for the independence in Mexican stock market data, we have the following
results,

Q24 = 261 ×
24∑
i=1

r2
i = 261 × 0.0910859 = 23.77342 < χ2

0.95(24) = 36.415.

Hence, we fail to reject the null hypothesis which indicates the Rt series for Mex-
ican stock market data are independent. The left graph in Figure 4 shows the ACF
values of the Rt series data and the right graph in Figure 4 shows the normal Q–
Q plot of Rt series which indicates that the normality assumption fails. Applying
normality tests such as Shapiro–Wilk test also concludes the validity of normality
is violated.

Now, we apply the proposed MIC method with the binary segmentation proce-
dure to Rt time series data.

Figure 4 Left: The graph of ACF values. Right: The Q–Q plot test for the transformed data.



296 K. K. Said, W. Ning and Y. Tian

• We first screen the whole Ft series from 1 to 261 for potential changes. We
calculate Sn = MIC(n) − min1≤k<261 MIC(k) + 3 log(n) = 38.1982. With the
bootstrap method given in Section 3.1, the approximated p-value < 0.001
with B = 2000. Therefore, we reject the null hypothesis and conclude there
is a change. Simultaneously, we obtain the estimated change location k̂ =
arg min1≤k<261 MIC(k) = 94, which is corresponding to 95th position in Ft se-
ries with the value 1284.851. This change occurred in August 22, 1997.

• Similarly, we check all possible subsequences by the binary segmentation
method. We find one more change occurring at 142th position in Ft series which
corresponding to the value 1055.913 in stock return. Such a change occurred in
July 10, 1998.

In summary, we have found the changes at 95th and 142th positions which cor-
respond to August 22, 1997 and July 10, 1998, respectively. These changes may
be caused by the results of the 1995 Mexico’s crises which involved in emerging
markets occurring in January, 1996, Asian financial crises which had global ef-
fects and reached its climax in October 1997; and 1998 Russian financial crises.
Figure 5 shows the Mexico monthly stock return rate and the monthly sock re-
turn index with identified change locations and Figure 6 shows the MIC values of
Mexico stock return rate.

Arellano-Valle, Castro and Loschi (2013) analyzed the same data using the
Bayesian approach. Their method detected a single change in the data and con-
cluded that the change approximately happened during the first week of Septem-
ber, 1997 but did not give the estimated change point. They discussed that the
data presents positive asymmetry before and after the change point. Furthermore,
they pointed out that the mean return of the data is positive before and after the
change point. Comparing to their method, the proposed MIC procedure can detect
multiple changes in data associated with reasonable interpretations. Furthermore,
we can obtain the point estimated values of change locations instead of approxi-
mate time windows of change locations only as Arellano-Valle, Castro and Loschi
(2013) did. Therefore, based on the estimated change points, we can fit the data by

Figure 5 Left: Mexico weekly stock return rate. Right: Stock return index with change locations.
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Figure 6 The graph of MIC values of Mexican stock return rate.

skew normal distributions with different parameters. Consequently, the estimated
values of shape parameters can be obtained through the data fitting which can ex-
plicitly indicate the change of asymmetry and the exact magnitude of change in
skewness.

Said, Ning and Tian (2017) proposed the detecting procedure for multiple
change using likelihood ratio test (LRT) procedure. We analyze the Mexican stock
market data using their procedure and we obtain that

Zn = max
1≤k<n

{
−2 ln

( supμ,σ,λ LH0(xi;μ,σ,λ)

supμ1,σ1,λ1,μn,σn,λn
LH1(xi;μ1, σ1, λ1,μn, σn, λn)

)}

= 38.6335 > C0.05,261 = 16.842,

which lead us to reject the null hypothesis and conclude that there is a change
occurring at 95th position corresponding with August 22, 1997. We repeat the
same procedure with the help of binary segmentation method and no more change
is found. Compared to the LRT procedure, the proposed MIC approach locate
two different changes on the same data set, which are 95th and 131st positions
respectively while LRT procedure only detect single change.

5 Discussion

We propose a skew normal change point model based on the modified information
criterion (MIC). The procedure for detecting simultaneous changes in all three pa-
rameters in a skew normal distribution is established. Simulations are conducted to
illustrate the performance of the proposed test procedure under different scenarios.
Comparisons with the procedures based on the traditional Schwarz information cri-
terion (BIC) and the likelihood ratio test (LRT) are investigated. The advantages of
the proposed MIC procedure are illustrated through simulations. Since the analytic
null distribution of the associated test statistic is not available, critical values are
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simulated at different significance levels. The convergence of the estimated change
location is verified numerically. Finally, such a proposed procedure with the binary
segmentation method is applied to two stock market data and several changes are
identified successfully with interpretations.

In our current work, the associated test statistic Sn is studied only numerically
and analytical results are not obtained. Chen, Gupta and Pan (2006) derived the
asymptotic distributions of Sn as the standard chi-square distribution with the de-
gree of freedom d where d is the number of parameters in Sn, as long as the
conditions W1–W7 are satisfied by the distribution. However, for the skew nor-
mal distribution, it does not satisfy the condition W5, therefore, the asymptotic
distribution of Sn does not follow the chi-square distribution with the degrees of
freedom 3 in our case. We have verified this through the simulations which indi-
cate the failure of the goodness-of-fit test for this distribution. Furthermore, we
have conducted extensive simulations to explore the possible asymptotic distribu-
tion of Sn with various values of parameters and sample sizes. Interestingly, we
find out that, for the large sample sizes (in our simulations, n ≥ 200), as the in-
crease of the sample size, the behavior of the test statistic gets closer to that of the
chi-square distribution with the degrees of freedom 7. It also passes the goodness-
of-fit test by Kolmogorov–Smirnov test with such a chi-square distribution. In our
ongoing work, we plan to take a deeper look at this relationship and derive its
analytic distribution and properties.
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