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Abstract. Whole robustness is a nice property to have for statistical models.
It implies that the impact of outliers gradually vanishes as they approach plus
or minus infinity. So far, the Bayesian literature provides results that ensure
whole robustness for the location-scale model. In this paper, we make two
contributions. First, we generalise the results to attain whole robustness in
simple linear regression through the origin, which is a necessary step towards
results for general linear regression models. We allow the variance of the error
term to depend on the explanatory variable. This flexibility leads to the second
contribution: we provide a simple Bayesian approach to robustly estimate
finite population means and ratios. The strategy to attain whole robustness is
simple since it lies in replacing the traditional normal assumption on the error
term by a super heavy-tailed distribution assumption. As a result, users can
estimate the parameters as usual, using the posterior distribution.

1 Introduction

Conflicting sources of information may contaminate the inference arising from
statistical analysis. The conflicting information may come from outliers and also
prior misidentification. In this paper, we focus on robustness with respect to out-
liers in a Bayesian simple linear regression model through the origin. We say that a
conflict occurs when a group of observations produces a rather different inference
than that proposed by the bulk of the data and the prior. Light-tailed distribution
assumptions on the error term can lead to an undesirable compromise where the
posterior distribution concentrates on an area that is not supported by any source
of information. We believe that the appropriate way to address the problem is to
limit the influence of outliers in order to obtain conclusions consistent with the
majority of the observations.

Box and Tiao (1968) were the first to introduce a robust Bayesian linear re-
gression model. They proposed to assume that the distribution of the error term is
a mixture of two normals with one component for the nonoutliers and the other
one, with a larger variance, for the outliers. This approach has been generalised by
West (1984) who modelled errors with heavy-tailed distributions constructed as
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scale mixtures of normals, which include the Student distribution. More recently,
Peña, Zamar and Yan (2009) introduced a different robust Bayesian method where
each observation has a weight decreasing with the distance between this observa-
tion and most of the data. They proved that the Kullback–Leibler divergence from
the posterior arising from the nonoutliers only to the posterior arising from the
sample containing outliers is bounded.

So far, the literature only provides solutions to attain whole robustness for the
estimation of the slope in the model of regression through the origin (e.g. if we as-
sume that the error term has a Student distribution instead of a normal, see the
results of Andrade and O’Hagan (2011) in a context of location-scale model).
However, only partial robustness is reached for the estimation of the scale pa-
rameter of the error term. Partial robustness means that the outliers have a sig-
nificant but limited influence on the inference, as the conflict grows infinitely. In
this paper, we go a step further: we attain whole robustness to outliers for both
the slope and scale parameters, in the sense that the impact of outliers gradually
vanishes as they approach plus or minus infinity. To achieve this, we generalise the
results of Desgagné (2015), which ensure whole robustness for both parameters
of the location-scale model simultaneously, to the simple linear regression model
through the origin. Our work is thus aligned with the theory of conflict resolu-
tion in Bayesian statistics, as described by O’Hagan and Pericchi (2012) in their
extensive literature review on that topic.

The strategy to attain whole robustness for all parameters is, instead of assum-
ing the traditional normality of the errors in the model, to assume that they have
a super heavy-tailed distribution. The general model (with no specific distribution
assumption on the error term) is described in Section 2.1. The class of super heavy-
tailed distributions that we consider, which are log-regularly varying distributions,
is presented in Section 2.2. When assuming a super heavy-tailed distribution on
the error term, the resulting model is characterised by its built-in robustness that
resolves conflicts in a sensitive and automatic way, as stated in our robustness
results given in Section 2.3. The main result is the convergence of the posterior
distribution towards the posterior arising from the nonoutliers only, when the out-
liers approach plus or minus infinity. Although our results are Bayesian analysis-
oriented, they reach beyond this paradigm through the robustness of the likelihood
function, and therefore, of both slope and scale maximum likelihood parameter
estimation. These are the results that ensure that whole robustness is reached for
the considered model.

We believe our work will eventually lead to whole robustness results for the esti-
mation of the parameters of the usual multiple linear regression model, which will
in turn allow to introduce Bayesian robust ANOVA and t-test procedures. In fact, a
preliminary numerical investigation suggests that similar results to those presented
in this paper hold for multiple linear regressions. However, precise conditions and
results will need to be specified. This can be achieved by the (non-trivial) extension
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Figure 1 Example of data sets containing outliers with slope estimates under normal (orange
dashed line), and super heavy-tailed (blue solid line) distribution assumptions; the data sets are
provided in the supplementary material (Desgagné and Gagnon (2019)).

of the proof presented in the following for the simple linear regression through the
origin.

In addition to representing a crucial step towards whole robustness for the more
general case of multiple linear regressions, whole robustness for the simple linear
regression through the origin finds an important application in the estimation of
ratios and finite population means. As shown in Figure 1, one may encounter the
presence of outliers in achieving this task. In Gwet and Rivest (1992), the ratio
aimed to be estimated was the area under wheat in 1936 to the total cultivated
area in 1931 in a given administrative geographical unit of Uttar Pradesh state
in India. In Chambers (1986), it was the total population in 1970 in East Balti-
more to the number of occupied dwelling in 1960 in the same area. In Section 3,
we illustrate the relevance of our robust approach through analyses in economic
contexts. More precisely, the following contexts are considered: robust estimation
of the personal disposable income per capita and of the average weekly house-
hold expenditure on food (using the ratio estimator). In Section 3, we also detail
the link between simple linear regression through the origin and finite popula-
tion sampling, and present a simulation study. In all analyses, our approach is
compared with the nonrobust (with the normal assumption) and partially robust
(with the Student distribution assumption) approaches. It is showed that our model
performs as well as the nonrobust and the partially robust models in absence of
outliers, in addition to being completely robust. It indicates that, by only chang-
ing the assumption on the error term, we obtain adequate estimates in absence
or presence of outliers. These estimates are computed as usual from the posterior
distribution.
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2 Resolution of conflicts in simple linear regression through the origin

2.1 Model

(i) Let Y1, . . . , Yn ∈R be n random variables and x1, . . . , xn ∈ R\{0} be n known
constants, where n > 2 is assumed to be known. We assume that

Yi = βxi + εi, i = 1, . . . , n,

where ε1, . . . , εn ∈ R and β ∈ R are n + 1 conditionally independent random
variables given σ > 0 with a conditional density for εi given by

εi | β,σ
D= εi | σ D∼ 1

σ |xi |θ f

(
εi

σ |xi |θ
)
, i = 1, . . . , n,

θ ∈ R being a known constant.
(ii) We assume that f is a strictly positive continuous probability density func-

tion on R that is symmetric with respect to the origin, and that is such that
both tails of |z|f (z) are monotonic, which implies that the tails of f (z) are
also monotonic. The density f can have parameters, for example, a shape
parameter; however, their value is assumed to be known.

(iii) We assume that the prior of β and σ , denoted π(β,σ ), is bounded on σ > 1,
and is such that π(β,σ )/(1/σ) is bounded on 0 < σ ≤ 1, for all β ∈ R. To-
gether, these assumptions are equivalent to: π(β,σ )/max(1, 1/σ) is bounded
on σ > 0. A large variety of priors fit within this assumed structure; for in-
stance, this is the case for all proper densities. In addition, non-informative
priors such as π(β,σ ) ∝ 1/σ , the usual one for this type of random variables,
and π(β,σ ) ∝ 1 satisfy these assumptions.

From this perspective, x1, . . . , xn represent observations of the explanatory vari-
able, the dependent variable and the error term are respectively, represented by the
continuous random variables Y1, . . . , Yn and ε1, . . . , εn, and the parameter β rep-
resents the slope of the regression line. Note that no assumptions are made on the
explanatory variable, except that the value 0 cannot be observed.

The scale of the distribution of the error term is σ |xi |θ and, therefore, the vari-
ability of the errors increases (decreases) as xi moves away from 0 when θ > 0
(θ < 0). This model can thus be used in a context of heteroscedasticity. When
the classical framework is considered, that is, a frequentist setting with the as-
sumption that f is the standard normal density, σ |xi |θ also represents the stan-
dard deviation of the error εi . In this situation, the maximum likelihood estimator
of β is the weighted average of the yi/xi given by β̂ = ∑n

i=1 wi(yi/xi), where
wi = |xi |2(1−θ)/

∑n
j=1 |xj |2(1−θ).

An important drawback of the classical framework is that outliers have a sig-
nificant impact on the estimation, due to the normal assumption. In this paper,
we study robustness of the estimation of β and σ . The objective is to find suffi-
cient conditions to attain whole robustness. The nature of the results presented in
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Section 2.3 is asymptotic, in the sense that some yi ’s approach +∞ or −∞. The
known vector xn := (x1, . . . , xn) is considered as fixed. In Section 3.1, we explain
that studying this theoretical framework is sufficient to attain, in practice, robust-
ness against any type of outliers (i.e. outliers because of their extreme x value,
extreme y value, or both).

Among the n observations of Y1, . . . , Yn, denoted by yn, we assume that k > 2
of them, denoted by the vector yk, form a group of nonoutlying observations, m of
them are considered as “negative slope outliers”, with relatively small (large) val-
ues of yi when xi is positive (negative), and p of them are considered as “positive
slope outliers”, with relatively large (small) values of yi when xi is positive (neg-
ative), with k + m + p = n. Note that we use the letter m for “minus” because the
related outliers attract the slope towards negative values, and analogously, we use
the letter p for “positive”. For i = 1, . . . , n, we define the binary functions ki,mi

and pi as follows: if yi is a nonoutlying value, ki = 1; if it is a negative slope
outlier, mi = 1 and if it is a positive slope outlier, pi = 1. These functions take
the value of 0 otherwise. Therefore, we have ki + mi + pi = 1 for i = 1, . . . , n,
with

∑n
i=1 ki = k,

∑n
i=1 mi = m and

∑n
i=1 pi = p. We assume that each outlier

approaches −∞ or +∞ at its own specific rate, to the extent that the ratio of two
outliers is bounded. More precisely, we assume that yi = ai +biω, for i = 1, . . . , n,
where ai and bi are constants such that ai ∈ R and

(i) bi = 0 if ki = 1,
(ii) bi < 0 if yi is “small”, that is if xi < 0,pi = 1 or xi > 0,mi = 1,

(iii) bi > 0 if yi is “large”, that is if xi < 0,mi = 1 or xi > 0,pi = 1,

and we let ω → ∞.
Let the joint posterior density of β and σ be denoted by π(β,σ | yn) and the

marginal density of (Y1, . . . , Yn) be denoted by m(yn), where

π(β,σ | yn) = [
m(yn)

]−1
π(β,σ )

n∏
i=1

1

σ |xi |θ f

(
yi − βxi

σ |xi |θ
)
, β ∈ R, σ > 0.

Let the joint posterior density of β and σ arising from the nonoutlying observa-
tions only be denoted by π(β,σ | yk) and the corresponding marginal density be
denoted by m(yk), where

π(β,σ | yk) = [
m(yk)

]−1
π(β,σ )

n∏
i=1

[
1

σ |xi |θ f

(
yi − βxi

σ |xi |θ
)]ki

, β ∈ R, σ > 0.

Note that if the prior π(β,σ ) is proportional to 1, the likelihood functions, given
by the product term in the posteriors above, can also be expressed as follows:

L(β, σ | yn) = m(yn)π(β,σ | yn) and L(β, σ | yk) = m(yk)π(β,σ | yk). (1)

Proposition 1. Considering the Bayesian context given in Section 2.1, the joint
posterior densities π(β,σ | yk) and π(β,σ | yn) are proper.

The proof of Proposition 1 can be found in the supplementary material.
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2.2 Log-regularly varying distributions

As mentioned in the Introduction, our approach to attain robustness is to replace
the traditional normal assumption on the error term by a log-regularly varying
distribution assumption. The definition of such a distribution is now presented.

Definition 1 (Log-regularly varying distribution). A random variable Z with a
symmetric density f (z) is said to have a log-regularly varying distribution with
index ρ ≥ 1 if zf (z) ∈ Lρ(∞), meaning that zf (z) is log-regularly varying at ∞
with index ρ ≥ 1.

Log-regularly varying functions is an interesting class of functions with use-
ful properties for robustness. By definition, they are such that g ∈ Lρ(∞) if
g(zν)/g(z) converges towards ν−ρ uniformly in any set ν ∈ [1/τ, τ ] (for any
τ ≥ 1) as z → ∞, where ρ ∈ R. This implies that for any ρ ∈ R, we have
g ∈ Lρ(∞) if and only if there exists a constant A > 1 and a function s ∈ L0(∞)

(which is called a log-slowly varying function) such that for z ≥ A, g can be
written as g(z) = (log z)−ρs(z). An example of log-regularly varying distribu-
tions is presented in Section 3.1. The purpose of this section was to provide an
overview of the tail behaviour of such distributions. For more information on
log-regularly varying distributions, we refer the reader to Desgagné (2013) and
Desgagné (2015).

2.3 Resolution of conflicts

The results of robustness are now given in Theorem 1.

Theorem 1. Consider the model and the context described in Section 2.1. If we
assume that

(i) zf (z) ∈ Lρ(∞), with ρ ≥ 1 (i.e. that f is a log-regularly varying distribution),
(ii) k > max(m,p) (i.e. that both the negative and positive slope outliers are fewer

than the nonoutliers),

then, recalling that yi = ai + biω with bi = 0 for the nonoutliers and bi 	= 0 for
the outliers, we obtain the following results:

(a)

lim
ω→∞

m(yn)∏n
i=1[f (yi)]mi+pi

= m(yk),

(b)

lim
ω→∞π(β,σ | yn) = π(β,σ | yk),

uniformly on (β, σ ) ∈ [−λ,λ] × [1/τ, τ ], for any λ ≥ 0 and τ ≥ 1,
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(c)

lim
ω→∞

∫ ∞
0

∫ ∞
−∞

∣∣π(β,σ | yn) − π(β,σ | yk)
∣∣dβ dσ = 0,

(d) as ω → ∞,

β,σ | yn
D→ β,σ | yk,

and in particular

β | yn
D→ β | yk and σ | yn

D→ σ | yk,

(e)

lim
ω→∞

[
m(yk)/m(yn)

]
L(β, σ | yn) = L(β, σ | yk),

uniformly on (β, σ ) ∈ [−λ,λ] × [1/τ, τ ], for any λ ≥ 0 and τ ≥ 1.

The proof of Theorem 1 can be found in the supplementary material. Note that,
when x1 = · · · = xn = 1, the simple linear regression model through the origin
becomes the location-scale model, and this highlights the fact that our results gen-
eralise those of Desgagné (2015).

Theorem 1 is particularly appealing for its simplicity, and therefore, for its
practical use. Indeed, condition (i) only indicates that modelling must be done
using a density f with sufficiently heavy tails, specifically with a log-regularly
varying distribution (see Definition 1). For that purpose, Desgagné (2015) intro-
duced the family of log-Pareto-tailed symmetric distributions, which belongs to the
family of log-regularly varying distributions and therefore satisfies condition (i).
This new family includes, for instance, piecewise densities constructed from well-
known symmetric densities like the normal, uniform or Student by replacing their
extremities by log-Pareto tails, that is, tails that behave like (1/|z|)(log |z|)−φ

with φ > 1. A special case of log-Pareto-tailed symmetric distributions, called
the log-Pareto-tailed standard normal (LPTN) distribution with parameters α > 1
and φ > 1, is given in Section 3.1. It exactly matches the standard normal on
the interval [−α,α], with log-Pareto tails. This is the super heavy-tailed distri-
bution that we use in our numerical analyses. Note that we can also construct
symmetric densities with log-Pareto tails that are not piecewise through transfor-
mations of the Pareto distribution. For instance, from a Pareto random variable
Y with density g(y) = φθφy−(φ+1), y > θ , we can make the change of variable
|Z| = eY − eθ ⇔ Y = log(|Z| + eθ ) to obtain a double-log-Pareto distribution
with density

f (z) = (1/2)φθφ(|z| + eθ )−1[
log

(|z| + eθ )]−(φ+1)
,

−∞ < z < ∞, θ > 0, φ > 0.
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Condition (ii) indicates that both the negative and positive slope outliers must be
fewer than the nonoutlying observations, i.e. m < k and p < k. In other words, the
nonoutlying observations must form the largest group. For instance, with a sample
of size n = 25, the model rejects up to 16 outliers if they are split in m = 8 negative
and p = 8 positive slope outliers, which leaves k = 9 nonoutliers. At the other
end of the spectrum, in the situation where all outliers are of the same type, for
instance all positive slope outliers (which implies that m = 0), the model rejects
up to p = 12 outliers, which leaves k = 13 nonoutliers. Numerical simulations
seem to confirm our expectation that a larger difference between k and max(m,p)

results in a more rapid rejection of the outliers.
The breakdown point is generally defined as the largest proportion of outliers

that an estimator can handle. In our situation, for a sample size of n, the condition
k > max(m,p) translates into a breakdown point of �(n − 1)/2�/n, that is the
integer part of (n − 1)/2 divided by n, if we consider only positive slope outliers
(or only negative slope outliers). As n → ∞, the breakdown point converges to
0.5, usually considered as the maximum desired value.

Not only do the conditions of Theorem 1 are simple and intuitive, the results are
also easy to interpret. The asymptotic behaviour of the marginal m(yn) is described
by result (a). While this result is more of theoretical interest, it is the cornerstone
of this robustness theory; it leads to results (b) to (e), which are more practical.
Result (b) indicates that the posterior density, arising from the whole sample, con-
verges towards the posterior density arising from the nonoutliers only, uniformly
in any set (β, σ ) ∈ [−λ,λ] × [1/τ, τ ]. The impact of the outliers then gradually
decreases to nothing as they approach plus or minus infinity.

Result (b) leads to result (c): the convergence in L1 of the posterior density,
arising from the whole sample, towards the posterior density arising from the
nonoutlying observations only. This last result implies the following convergence:
P(β, σ ∈ E | yn) → P(β, σ ∈ E | yk) as ω → ∞, uniformly for all rectangles
E ∈ R × R

+. This result is slightly stronger than convergence in distribution (re-
sult (d)) which requires only pointwise convergence. Then, the convergence of the
posterior marginal distributions is directly obtained. Therefore, any estimation of
β and σ based on posterior quantiles (for example posterior medians and Bayesian
credible intervals) is robust to outliers. Note that results (a) to (d) are also valid if
we assume that n ≥ 2, k ≥ 2 (instead of n > 2, k > 2), provided that we assume
that σπ(β,σ ) is bounded (instead of min(σ,1)π(β,σ ) is bounded).

Result (e) indicates that, for a given sample, the likelihood (up to a multi-
plicative constant that does not depend on β and σ ) converges to the likeli-
hood arising from the nonoutliers only, uniformly in any set (β, σ ) ∈ E, where
E = [−λ,λ] × [1/τ, τ ]. Consequently, the maximum of L(β, σ | yn) thus con-
verges to the maximum of L(β, σ | yk) on the set E and, therefore the maximum
likelihood estimate also converges, as ω → ∞. Note that, using results (b) to (d),
we know that, for both π(β,σ | yk) and π(β,σ | yn), the volume on Ec over the
volume on E converges to 0 as λ and τ increase; this relation holds in particular if
π(β,σ ) ∝ 1 and, in this case, the posterior is proportional to the likelihood.
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3 Finite population means and ratios

To use the model described in Section 2.1, users have to set the value of θ . Dif-
ferent particular values lead to interesting special cases. For instance, when θ = 0,
the resulting model is the classical homoscedastic model, with Var(εi) = σ 2 and
β̂ = ∑n

i=1 xiyi/
∑n

j=1 x2
j , considering the classical framework. When θ = 1, the

estimator of β is the unweighted mean of the yi/xi , that is β̂ = (1/n)
∑n

i=1 yi/xi .
Probably the most interesting special case results from θ = 1/2 and xi > 0 for
all i. Indeed, considering again the classical framework, the estimator of β is
β̂ = ∑n

i=1 yi/
∑n

i=1 xi , which is commonly used to estimate the following finite
population ratio:

∑N
i=1 yi/

∑N
i=1 xi , where yi and xi are measures of the variable

of interest and of the auxiliary variable on unit i, respectively, and N is the popu-
lation size. The estimator β̂ = ∑n

i=1 yi/
∑n

i=1 xi is also used to estimate the finite
population mean μy of a variable of interest y using auxiliary information of a
variable x as follows: μ̂y = β̂ ×μx , where μx is the known population mean of x.
This last estimator is known as the ratio estimator and to be more accurate than the
simple location model when the variable of interest is correlated with the auxiliary
variable. Therefore, robust estimators of β lead to robust estimators of finite pop-
ulation means and ratios. To our knowledge, Gwet and Rivest (1992) introduced
the first frequentist outlier resistant alternatives to the ratio estimator, using well
known M- (Huber (1973)) and GM- (Mallows (1975)) estimators. Their research
was inspired by the work of Chambers (1986), the first author to use regression
M-estimators in survey sampling.

In Section 3.1, we present real-life situations in which ratio estimation is useful,
while illustrating the theoretical results of Theorem 1. First, in a context of esti-
mation of personal disposable income (PDI) per capita, we show that, when we
artificially move an observation, its impact on the estimation grows until it reaches
a certain threshold. Beyond this threshold, the impact decreases to nothing as the
observation approaches plus or minus infinity. Second, a more traditional Bayesian
analysis is made, in which we study the proportion of income spent on food. More
precisely, we present the posterior distributions, with particular emphasis on the
impact of outliers, and we compute various estimates from the posteriors. In Sec-
tion 3.2, again in a context of finite population sampling, a simulation study is
conducted to evaluate the accuracy of the estimates arising from our model. In all
analyses, we compare its performance with those of the nonrobust (the model with
the normal assumption) and partially robust (the model with the Student distribu-
tion assumption) models. As mentioned in Section 1, the model of Box and Tiao
(1968) can be viewed as a special case of the partially robust model. We therefore
omit the comparison with their model. In the simulation study, we also consider the
following frequentist competitors: the M- and S- (Rousseeuw and Yohai (1984))
estimators. R functions that are used for the computations are provided in Section 2
of the supplementary material.
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3.1 Illustration of the results of Theorem 1

In the first context, we are interested in the estimation of the PDI per capita when
the available data are the total disposable income (yi) for n households (in this
analysis n = 20), and the number of individuals (xi) in each of these households.
The data are presented in Table 1. The PDI per capita, which is a population mean
per individual, would be directly computed by

∑N
i=1 yi/

∑N
i=1 xi (where N is the

number of households in the population) if the information was available for all
the households. We therefore use the simple linear regression model through the
origin with θ = 1/2 to estimate this ratio (see Section 2.1 for details about the
model).

In order to illustrate the threshold feature, an observation is randomly chosen
(in this analysis, it is the 11th observation), and y11 is gradually moved from the
value 100 (a nonoutlier) to 385 (a large outlier), while x11 = 3 remains fixed. The
parameters β and σ are estimated for each data set related to a different value of
y11 using maximum a posteriori probability (MAP) estimation with a prior propor-
tional to 1 (which corresponds to maximum likelihood estimation). This process is
performed under three models, each corresponding to a different assumption on f :
a standard normal density (in this case, β̂ = ∑20

i=1 yi/
∑20

i=1 xi , the classical ratio
estimator), a Student density (the partially robust model) or a LPTN density (our
robust model). The results are presented in Figure 2.

The inference is clearly not robust when it is assumed that the error has a normal
distribution (orange dashed line) since the values of the point estimates of β and
σ increase with y11. Regarding the second model, the degrees of freedom of the
heavy-tailed Student distribution have been arbitrarily set to 10 and a known scale
parameter of 0.88 has been added to this distribution in order to have the same
2.5th and 97.5th percentiles as the standard normal. The estimation of β is robust
as the impact of the outlier slowly decreases after a certain threshold. However,
the estimation of σ is only partially robust, that is, the impact of the outlier is lim-
ited, but does not decrease when the outlying value increases. For the last model,
we set α of the LPTN to 1.96 so that this distribution matches the standard nor-
mal on the interval [−1.96,1.96], implying that both distributions have the same
2.5th and 97.5th percentiles. Therefore, all three distributions studied in this sec-
tion have 95% of their mass in the interval [−1.96,1.96]. The other parameter of
the LPTN φ is equal to 4.08 according to the procedure described in Section 4 of

Table 1 Total disposable income for household i in thousands of dollars (yi ) and the
number of individuals in household i (xi ), for i = 1, . . . ,20

yi 20.8 9.6 38.6 74.1 108.8 98.7 44.8 77.2 93.2 107.2
xi 1.0 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

yi y11 93.6 113.7 123.5 93.5 148.1 147.1 154.0 149.5 173.5
xi 3.0 4.0 4.0 4.0 4.0 5.0 5.0 5.0 6.0 6.0
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Figure 2 Estimation of the PDI per capita (β) and σ when y11 increases from 100 to 385 under
three different assumptions on f : standard normal density (orange dashed line), Student density
(green dot-dashed line) and LPTN density (blue solid line).

Figure 3 Densities of the standard normal (orange dashed line) and of the LPTN with α = 1.96
and φ = 4.08 (blue solid line).

Desgagné (2015) (this procedure ensures that f is continuous and a probability
density function). The density of the LPTN distribution, depicted in Figure 3, is
given by

f (x) =
{
ϕ(x) if |x| ≤ α (the standard normal part),

ϕ(α)
(
α/|x|)(logα/ log |x|)φ if |x| > α (the log-Pareto tails),

(2)

where φ = 1+2ϕ(α)α log(α)/(1−q) and q = �(α)−�(−α), ϕ and � being the
probability density function and cumulative distribution function of the standard
normal distribution, respectively.

For our robust model, it can be seen that y11 has an increasing impact on the
estimation until this observation reaches a threshold. In this analysis, the threshold
is around y11 = 127.9, and based on the data set with y11 = 127.9, β̂ = 28.6 and
σ̂ = 12.4, which is interpreted as: the personal disposable income per capita is
approximately 28,600. Beyond this threshold, the impact of the outlier gradually
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decreases to nothing as the conflict grows infinitely. The point estimates converge
towards 27.1 for β and 10.8 for σ , which are the point estimates when (x11, y11)

is excluded from the sample. Whole robustness is therefore attained for both β

and σ . Note that an increase in the value of the parameter α would result in an
increase in the value of the threshold. Setting α = 1.96 seems to be suitable for
practical use.

In the second context, we are interested in the estimation of the proportion of
weekly income spent on food for a population, when data are available per house-
hold. If the information was available for the population, we would directly com-
pute the proportion by

∑N
i=1 yi/

∑N
i=1 xi , where N is the number of households

in the population, and yi and xi are respectively the weekly expenditure on food
and the weekly income, for household i. This ratio can thus be approximated us-
ing the simple linear regression through the origin with θ = 1/2, and again, we
compare our robust model with the nonrobust and partially robust models. We use
the same Student and LPTN distributions as in the first context above, but we set
the prior π(β,σ ) ∝ 1/σ . A Markov chain Monte Carlo (MCMC) method is im-
plemented for the estimation (see Section 2 of the supplementary material for the
R functions). It is run for 10,000,000 iterations.

Note that the ratio
∑N

i=1 yi/
∑N

i=1 xi can be viewed as the following weighted
average:

∑N
i=1 wi(yi/ xi), where wi := xi/

∑N
i=1 xi . This means that proportion

of weekly income spent on food for a population,
∑N

i=1 yi/
∑N

i=1 xi , is also a
weighted average of proportions of weekly income spent on food per household,
where the weight is proportional to the weekly income.

The data set, comprised of the weekly expenditures on food and weekly in-
comes for twenty households, is presented in Table 2 and depicted in Figure 4(a).
The posterior distributions of β and σ are presented in Figures 4(b) and (c). The
posterior medians of β are 0.283, 0.306 and 0.319 with 95% highest posterior den-
sity (HPD) intervals of (0.217,0.348), (0.243,0.367) and (0.240,0.376) for the
nonrobust, partially robust and robust models, respectively. As a result, the pro-
portion of weekly income spent on food for this population is estimated at 0.319
(considering our robust model) with a 95% HPD interval of (0.240,0.376). The
average weekly household expenditure on food of this population can also be es-
timated using the ratio estimator. Considering our robust model, it is estimated at
μ̂y = β̂ × μx = 0.319 × 210 = 66.99 (considering an average weekly household
income of 210 for this population) with a 95% HPD interval of (50.40,78.96).
The posterior medians of σ are 2.180, 2.031 and 1.634 with 95% HPD intervals
of (1.565,3.016), (1.319,2.958) and (0.962,2.674), for the nonrobust, partially
robust and robust models, respectively.

We observe the presence of two clear outliers: (x17, y17) = (250.2,6.1) (be-
cause of its extremely low y value) and (x20, y20) = (696.4,41.1) (because of
its extremely high x value). In order to draw conclusions based on the bulk of
the data and to evaluate the impact of outliers, we redo the analysis while ex-
cluding these two outliers. The results are presented in Figure 5. The estimates
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Table 2 Weekly expenditure on food (yi ) and weekly income (xi ) for household i in dollars, i =
1, . . . ,20

yi 31.7 68.4 54.4 53.5 78.4 66.4 64.1 44.6 99.0 53.3
xi 102.9 144.9 155.8 176.5 177.4 182.2 197.9 199.2 211.3 215.9

yi 67.3 68.6 63.0 100.6 82.2 113.4 6.1 76.6 92.7 41.1
xi 216.0 216.7 220.3 222.8 229.0 250.0 250.2 275.4 342.4 696.4

Figure 4 Expenditure on food as a function of the income with an estimation of the expenditure
on food β̂xi based on the posterior median, (b)–(c) posterior densities of β and σ arising from the
original data with 95% HPD intervals (horizontal lines); for each graph, the orange dashed, green
dot-dashed and blue solid lines are respectively related to the nonrobust, partially robust and robust
models.

arising from the three models are now similar. The posterior medians of β are
0.342, 0.339 and 0.343 with 95% HPD intervals of (0.302,0.382), (0.298,0.380)

and (0.303,0.382) for the nonrobust, partially robust and robust models, respec-
tively. Therefore, the proportion of weekly income spent on food for this pop-
ulation is estimated at 0.343 (considering our robust model) with a 95% HPD
interval of (0.303,0.382), based on the bulk of the data. Considering our robust
model, the average weekly household expenditure on food is now estimated at
μ̂y = β̂ × μx = 0.343 × 210 = 72.03 (considering an average weekly household
income of 210 for this population) with a 95% HPD interval of (63.63,80.22),
using the ratio estimator. The posterior medians of σ are 1.177, 1.268 and 1.190
with 95% HPD intervals of (0.825,1.656), (0.850,1.823) and (0.854,1.661), for
the nonrobust, partially robust and robust models, respectively.

Based on the original data set, the inference arising from our robust model is
the one that best reflects the behaviour of the bulk of the data, compared to the in-
ferences arising from the nonrobust and partially robust models. Our robust model
therefore succeeds in limiting the influence of outliers in order to obtain conclu-
sions consistent with the majority of the observations.

Note that an outlier with an extreme x value, as (x20, y20) = (696.4,41.1), can
be viewed as an observation with a fixed x value and an extreme y value (in this
case, as an observation with a fixed x value of 696.4 and an extremely low y value
of 41.1, compared to the trend emerging from the bulk of the data). This explains
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Figure 5 Expenditure on food as a function of the income with an estimation of the expenditure on
food β̂xi based on the posterior median, when the outliers are excluded, (b)–(c) posterior densities of
β and σ arising from the data set excluding the outliers with 95% HPD intervals (horizontal lines);
for each graph, the orange dashed, green dot-dashed and blue solid lines are respectively related to
the nonrobust, partially robust and robust models.

why our robust model produces robust inference in the presence of this type of
outliers.

3.2 Simulation study

We now evaluate the accuracy of the estimates arising from our robust model in
a context of finite population sampling. More precisely, the model Yi = βxi + εi

with εi | σ
D∼ 1/(σx

1/2
i )f (εi/(σx

1/2
i )) and xi > 0, i = 1, . . . , n, is used to anal-

yse the data, where f is assumed to be a LPTN density in our robust model. We
consider two sets of parameters for the LPTN: (α,φ) = (1.96,4.08) as in Sec-
tion 3.1, and (α,φ) = (1.50,2.18). Our model is compared with the same linear
regression model, but where f is assumed to be a standard normal density in the
nonrobust model, and where f is assumed to be a Student density with 10 degrees
of freedom and a known scale parameter of 0.88 in the partially robust model, as in
Section 3.1. We set π(β,σ ) ∝ 1 and we estimate β and σ using MAP estimation
(which therefore corresponds to maximum likelihood estimation) for these three
models. Given that the obtained estimates are the same as under the frequentist
paradigm, we also compare with the M- and S-estimators.

We set n = 20 and x1, x2, . . . , x20 = 1,2, . . . ,20. We simulate 1,000,000 data
sets using values for β and σ arbitrarily set to 1 and 1.5, respectively, and we
carry out this process for each of the three scenarios that we now describe. In the
first one, f is a standard normal distribution; therefore, the probability to observe
outliers is negligible. In the second scenario, f is a mixture of two normals where
the first component is a standard normal distribution and the second has a mean
of 0 and a variance of 102, with weights of 0.9 and 0.1, respectively. This last
component can contaminate the data set by generating extreme values. In the third
and last scenario, f is also a mixture of two normals, but the contamination is due
to the second component’s location. More precisely, the first component is again a
standard normal, but the second has a mean of 10 and a variance of 1, with weights
of 0.95 and 0.05, respectively.
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Table 3 MSE of the estimators of β under the three scenarios

Assumptions on f Scenarios

100%N (0,1) 90%N (0,1) + 10%N (0,102) 95%N (0,1) + 5%N (10,1)

Standard normal 0.011 0.117 0.110
Student (10 d.f.) 0.011 0.027 0.033

LPTN
with α = 1.96 and φ = 4.08 0.011 0.020 0.018
with α = 1.50 and φ = 2.18 0.013 0.016 0.013

M-estimator 0.011 0.017 0.017
S-estimator 0.029 0.027 0.027

Table 4 MSE of the estimators of σ under the three scenarios

Assumptions on f Scenarios

100%N (0,1) 90%N (0,1) + 10%N (0,102) 95%N (0,1) + 5%N (10,1)

Standard normal 0.06 12.98 5.03
Student (10 d.f.) 0.06 4.02 1.99

LPTN
with α = 1.96 and φ = 4.08 0.07 0.60 0.22
with α = 1.50 and φ = 2.18 0.09 0.20 0.11

M-estimator 0.14 0.24 0.21
S-estimator 0.11 0.23 0.15

Within each simulation scenario, we evaluate the performance of each model
and estimator using sample mean square errors (MSE), based on the true values
β = 1 and σ = 1.5. The results are presented in Tables 3 and 4.

If we first compare the models that we considered in Section 3.1 (the models
with the normal, Student and LPTN with α = 1.96 and φ = 4.08 assumptions), we
observe that they have almost identical performances for both the estimation of β

and σ , when there are no outliers (the 100% N (0,1) scenario). This was expected
given that the three related densities are very similar, especially on the interval
[−1.96,1.96] where they all have 95% of their mass. They however differ in the
thickness of their tails, and this feature plays a major role when the sample contains
outliers, which is frequently the case for the two other scenarios. As expected, the
presence of outlying observations has a major impact on the estimations when the
traditional standard normal assumption is used. For the model with the Student
distribution assumption, outliers influence the estimation of σ significantly, while
having a lesser effect on β̂ , which reflects the partial robustness of this approach.
The impact on the estimation of both β and σ is limited for our robust alternative,
as suggested by the theoretical results.



220 A. Desgagné and P. Gagnon

Our robust model with α = 1.96 and φ = 4.08 performs better than the fre-
quentist competitors regarding the estimation of σ in the absence of outliers. The
latter however produce more accurate estimates in the probable presence of out-
liers. There is a trade-off between the extent to which a model (or a loss function
for the frequentist competitors) matches the traditional normal one, and the level
of robustness it features. We clearly observe this by decreasing the value for α

of the LPTN to 1.5, which leads to a density that matches that of the normal on
[−1.5,1.5] (instead of on [−1.96,1.96]), but has heavier tails (φ = 2.18).

4 Conclusion

In this paper, we have provided a simple Bayesian approach to robustly estimate
both parameters β and σ of a simple linear regression through the origin, in which
the variance of the error term can depend on the explanatory variable. It leads to ro-
bust estimators of finite population means and ratios. The approach is to replace the
traditional normal assumption on the error term by a super heavy-tailed distribu-
tion assumption. In particular, we considered log-regularly varying distributions.
Whole robustness is attained provided that both the negative and positive slope
outliers are fewer than the nonoutlying observations, that is, m < k and p < k, as
stated in Theorem 1.

The theoretical results have been illustrated in Section 3 through typical real-
life situations in which ratio estimation is used, and a simulation study. All the
analyses leading to robust inference have been done using the log-Pareto-tailed
standard normal (LPTN) density given in (2). Our model has been compared with
the nonrobust (with the normal assumption) and partially robust (with the Stu-
dent distribution assumption) models. The conclusion is: our model performs as
well as the nonrobust and the partially robust models in absence of outliers, in
addition to being completely robust. Therefore, our recommendation is to assume
that the error has the density given in (2) and obtain adequate results, regardless
of whether there are outliers, by computing estimates as usual from the posterior
distribution.
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material (Desgagné and Gagnon (2019)), you will find the proofs of Proposition 1
and Theorem 1 from our paper, and the R functions that were used for the compu-
tations.
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