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Extreme-cum-median ranked set sampling

Shakeel Ahmed and Javid Shabbir
Quaid-i-Azam University

Abstract. A mixture of Extreme Ranked Set Sampling (ERSS) and Median
Ranked Set Sampling (MRSS) is introduced to obtain a more representative
sample using three out of five number summary statistics [i.e., Minimum,
Median and Maximum]. The proposed sampling scheme provides unbiased
estimator of mean for symmetric population and gives moderate efficiency
for both symmetric and asymmetric populations under perfect as well as
imperfect rankings. Expressions for bias and asymptotic variance are pre-
sented. A simulation study is also conducted to observe the performance of
the proposed estimator. Application of proposed sampling scheme is illus-
trated through a real life example.

1 Introduction

Ranked Set Sampling (RSS), introduced by McIntyre (1952) for estimating the
yield of herbage in agriculture researches, involves randomly selecting m sets of
units, each of m units, from an infinite population of interest. The units in each set
can assumed to be ranked visually or through some concomitant variable. From
the first set of m units, the lowest ranked unit is selected. From the second ranked
set of m units, second lowest unit is selected. The process is continued until the
mth ranked unit is measured from the mth ranked set. This procedure is repeated r

times to obtain n = mr units.
Takahasi and Wakimoto (1968) introduced a very essential statistical basis for

the theory of RSS introduced by McIntyre (1952). They showed that the sam-
ple mean under RSS is an unbiased estimator of the population mean and more
efficient than the sample mean under simple random sampling with replacement
(SRSWR) for same number of units. Dell and Clutter (1972) proved that mean of
the RSS is an unbiased estimator of the population mean, whether there are er-
rors in ranking or not and more efficient than the mean of SRSWR. Stokes (1980)
showed that the variance estimator based on RSS is an asymptotically unbiased and
more efficient than the usual variance estimator based on SRS, when the sample
size is large. Stokes and Sager (1988) analyzed the empirical distribution function
based on RSS and proved that it is an unbiased estimate of the underlying distribu-
tion function. Cobby et al. (1985) and Ridout and Cobby (1987) worked on error
in ranking with application of RSS to real life situations.
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Samawi, Abu-Dayyeh and Ahmed (1996) suggested ERSS on basis of the fact
that for sets containing a larger number of units, visual recognition of the ith
ranked unit (other than the smallest and the largest) is difficult and expensive.
Muttlak (1997) introduced the MRSS procedure to obtain a better representative
units. After that Muttlak (2003) suggested quartile ranked set sampling (QRSS)
for this purpose. Similarly, Patil, Surucu and Egemen (2002), Chen, Bai and Sinha
(2002) and Al-Omari and Bouza (2014) have written detail notes on ranked set
sampling. Balci, Akkaya and Ulgen (2013) suggested ranked set sample by se-
lecting extremes of the samples and called this sampling scheme as RSS(E). Later
on, Biradar and Santosha (2015) have made a modification in RSS namely Inde-
pendent extreme ranked set sampling (IERSS) in the case of both even as well as
odd sample sizes. The main objective was to propose non-parametric estimators of
the population mean using these two extremes RSS and are compared with mean
estimator under SRSWR.

In Fat-tailed distributions as the Cauchy distribution, students t-distribution,
uniform distribution (and such other stable distributions with the exception of the
normal distribution) units that deviate from the mean by five or more standard de-
viations (beyond 5-sigma limit) have higher frequency as appose to normal distri-
bution where extreme units are less likely to occur. As a consequence, application
of MRSS and ERSS for sampling from such distributions provides a non represen-
tative sample. For example, in estimating the ratio of width to length of petal and
sepal of certain flowers (Iris flower data is used in Section 5) or a ratio of width
to length of leaves on plants in a certain garden in agriculture experiments, use of
ERSS or MRSS may provide a bad representation of population as these variables
follow Cauchy distribution (Cauchy random variable is the ratio of two normal
random variables). Similarly, many other phenomena in biological science and
agriculture setting have fat tail distribution. In such situations, application of these
two sampling schemes simultaneously may provide more representative sample
than their individual application.

To overcome the above stated deficiency in ERSS and MRSS, we propose an
estimator of finite population mean by using a new ranked set sampling procedure
obtained by combining ERSS and MRSS. The expressions for bias and variances
under assumption of symmetric distribution are derived. We conduct a simulation
study for purpose of comparison of EMRSS with ERSS and MRSS. We also give
a numerical example before concluding the work.

2 MRSS and ERSS based on 2m units

Consider an infinite population consisting variable of interest Y with distribution
function F(y) and probability density function f (y) having mean μ and vari-
ance σ 2. Let Yi(i)j be the ith unit from ith sample in j th cycle on the study
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variable Y . Then a ranked set sample of size 2m in j th (j = 1,2, . . . , r) cycle
is {Y1(1)j , Y2(2)j , . . . , Y2m(2m)j }.

The sample mean under RSS is given by

ȳrss =
∑r

j=1(
∑2m

i=1 Yi(i)j )

2mr
. (2.1)

It is easy to prove that ȳrss is an unbiased estimator with variance

V (ȳrss) = 1

2mr

[
σ 2 − 1

m

2m∑
i=1

℘2
(i)

]
. (2.2)

Further {Y1(1)j , Y2(1)j , . . . , Ym(1)j ;Ym+1(2m)j , . . . , Y2m(2m)j } and {Y1(m)j ,

Y2(m)j , . . . , Ym(m)j ;Ym+1(m+1)j , . . . , Y2m(m+1)j } be an ERSS and MRSS of size
2m in cycle j , respectively. The mean estimators under ERSS and MRSS are
given by

ȳe =
∑r

j=1(
∑m

i=1 Yi(1)j + ∑2m
i=m+1 Yi(2m)j )

2mr
, (2.3)

and

ȳm =
∑r

j=1(
∑m

i=1 Yi(m)j + ∑2m
i=m+1 Yi(m+1)j )

2mr
(2.4)

with biases

E(ȳe − μ) = ℘(1) + ℘(2m)

2
and E(ȳm − μ) = ℘(m) + ℘(m+1)

2
,

where

℘(1) = μ(i) − μ, ∀i = 1,2, . . . ,2m.

It is straight forward to show that ȳe and ȳm are unbiased when the underlying
distribution is symmetric about mean that is, ℘(2m) = −℘(1) and ℘(m+1) = −℘(m).
Assuming symmetric distribution, we obtain variance of ȳe and ȳm as follows:

V (ȳm) = 1

2mr

[
σ 2 − 1

2

(
℘2

(m) + ℘2
(m+1)

)]
(2.5)

and

V (ȳe) = 1

2mr

[
σ 2 − 1

2

(
℘2

(1) + ℘2
(2m)

)]
. (2.6)

We can easily show that the estimators in Equations (2.3) and (2.4) are more effi-
cient than mean estimator under SRSWR based on 2mr observations.

Note that ERSS gives a sample consisting only extreme units in the data which
ignore middle units of population in this way it is very sensitive to outliers. On the
other hand, MRSS includes only middle units of population in sample that may
some time gives a less representative sample (in case of fat tailed distributions)
although it gives an efficient estimate of population mean. A mixture of these two
sampling schemes which may provide a more representative sample with moderate
efficiency by including middle as well as extreme units is given in next section.



EMRSS 27

3 Extreme-cum-median ranked set sampling (EMRSS)

Taking motivation from Balci, Akkaya and Ulgen (2013) and Biradar and San-
tosha (2015), we provide a new sampling procedure, named Extreme-cum-Median
Ranked Set Sampling (EMRSS), that provide a more representative sample than
median and extreme ranked set sampling with moderate efficiency. This procedure
works as follow:

1. Select 2m independent random samples each of size 2m and rank each sample
in ascending order according to certain ranking mechanism.

2. In Step 2, we work as follow:
(i) When m is odd, we initiate with selecting smallest ranked unit from first

(m−1
2 ) samples, largest unit from next (m−1

2 ) samples and mth unit from mth
sample which complete the application of ERSS. We continue the process by
selecting m + 1 unit from (m + 1)th sample, mth unit from (m + 2) to (m+1

2 +
m)th samples and (m+1)th unit from last (m−1

2 ) samples to complete an MRSS
from remaining samples.

(ii) When m is even, we start with selection of smallest ranked unit from first
m
2 samples and largest unit from next m

2 samples to complete the application of
ERSS. From remaining m sets; we select mth unit from (m+1) to 3m

2 th samples
and (m + 1)th unit from last m

2 samples.
3. Repeat Steps (1) and (2) r time to obtain n = 2mr units.

To understand our selection procedure, we present two examples as follow:

Example 1. To explain the EMRSS with odd set size, we take m = 5. The sam-
pling layout is given below

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(1) Y1(2) Y1(3) Y1(4) Y1(5) Y1(6) Y1(7) Y1(8) Y1(9) Y1(10)

Y2(1) Y2(2) Y2(3) Y2(4) Y2(5) Y2(6) Y2(7) Y2(8) Y2(9) Y2(10)

Y3(1) Y3(2) Y3(3) Y3(4) Y3(5) Y3(6) Y3(7) Y3(8) Y3(9) Y3(9)

Y4(1) Y4(2) Y4(3) Y4(4) Y4(5) Y4(6) Y4(7) Y4(8) Y4(9) Y4(10)

Y5(1) Y5(2) Y5(3) Y5(4) Y5(5) Y5(6) Y5(7) Y5(8) Y5(9) Y5(10)

Y6(1) Y6(2) Y6(3) Y6(4) Y6(5) Y6(6) Y6(7) Y6(8) Y6(9) Y6(10)

Y7(1) Y7(2) Y7(3) Y7(4) Y7(5) Y7(6) Y7(7) Y7(8) Y7(9) Y7(10)

Y8(1) Y8(2) Y8(3) Y8(4) Y8(5) Y8(6) Y8(7) Y8(8) Y8(9) Y8(10)

Y9(1) Y9(2) Y9(3) Y9(4) Y9(5) Y9(6) Y9(7) Y9(8) Y9(9) Y9(10)

Y10(1) Y10(2) Y10(3) Y10(4) Y10(5) Y10(6) Y10(7) Y10(8) Y10(9) Y10(10)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The above layout shows 10 ranked sets of observations each of size 10. The bold
underlined units are selected for actual measurement.
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Example 2. Similarly, to explain the EMRSS with even set size, we take m = 4.
The sampling layout is given by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1(1) Y1(2) Y1(3) Y1(4) Y1(5) Y1(6) Y1(7) Y1(8)

Y2(1) Y2(2) Y2(3) Y2(4) Y2(5) Y2(6) Y2(7) Y2(8)

Y3(1) Y3(2) Y3(3) Y3(4) Y3(5) Y3(6) Y3(7) Y3(8)

Y4(1) Y4(2) Y4(3) Y4(4) Y4(5) Y4(6) Y4(7) Y4(8)

Y5(1) Y5(2) Y5(3) Y5(4) Y5(5) Y5(6) Y5(7) Y5(8)

Y6(1) Y6(2) Y6(3) Y6(4) Y6(5) Y6(6) Y6(7) Y6(8)

Y7(1) Y7(2) Y7(3) Y7(4) Y7(5) Y7(6) Y7(7) Y7(8)

Y8(1) Y8(2) Y8(3) Y8(4) Y8(5) Y8(6) Y8(7) Y8(8)z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The above layout shows 8 ranked sets of units (sampling units) each of size 8.
The bold underlined units are selected for actual measurement.

These layouts can be replicated r time, adding subscript j to Yi(i)j and
by varying j from 1 to r , to obtain an EMRS sample having size n = 2rm.
Let {Y1(1)j , . . . , Ym−1

2 (1)j
; Ym−1

2 +1(2m)j
, . . . , Ym−1(2m)j ; Ym(m)j ; Ym+1(m+1)j ;

Ym+2(m)j , . . . , Y 3m+1
2 (m)j

; Y 3m+1
2 +1(m+1)j

, . . . , Y2m(m+1)j } and {Y1(1)j , . . . , Ym
2 (1)j ;

Ym
2 +1(2m)j , . . . , Ym(2m)j ;Ym+1(m)j , . . . , Y 3m

2 (m)j
;Y 3m

2 +1(m)j
, . . . , Ym(2m)j } be an

EMRSS of size 2m in cycle j for odd and even m respectively. For each case,
we have sample mean under EMRSS as follow

ȳ(o)
em = 1

2rm

r∑
j=1

[(m−1
2∑

i=1

Yi(1)j +
m−1∑

i=m−1
2 +1

Yi(2m)j + Ym(m)j

)

(3.1)

+
(
Ym+1(m+1)j +

3m+1
2∑

i=m+2

Yi(m)j +
2m∑

i= 3(m+1)
2

Yi(m+1)j

)]

and

ȳ(e)
em = 1

2rm

r∑
j=1

[( m
2∑

i=1

Yi(1)j +
m∑

i=m
2 +1

Yi(2m)j

)

(3.2)

+
( 3m

2∑
i=m+1

Yi(m)j +
2m∑

i= 3m
2 +1

Yi(m+1)j

)]

with

Bias
(
ȳ(o)
em

) = 1

2m

[(
m − 1

2
℘(1) + m − 1

2
℘(2m) + ℘(m)

)
(3.3)

+
(
℘(m+1) + m − 1

2
℘(m) + m − 1

2
℘(m+1)

)]
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and

Bias
(
ȳ(e)
em

) = 1

2m

[(
m

2
℘(1) + m

2
℘(2m)

)
+

(
m

2
℘(m) + m

2
℘(m+1)

)]
. (3.4)

By writing in simplest form

Bias
(
ȳ(o)
em

) = 1

2m

[
m − 1

2
(℘(1) + ℘(2m)) + m + 1

2
(℘(m) + ℘(m+1))

]

and

Bias
(
ȳ(e)
em

) = 1

4

[
(℘(1) + ℘(2m)) + (

℘(m + 1)
)]

,

where ℘(i) = μ(i) −μ and μ(i) represents population mean of ith order statistic for

(i = 1,2, . . . ,2m). Here, ȳ
(o)
em and ȳ

(e)
em will be unbiased only if Y has symmetric

distribution that is, ℘(m+1) = −℘(m) and ℘(2m) = −℘(1). We obtain variance of

ȳ
(o)
em and ȳ

(e)
em assuming that the underlying distribution is symmetric about μ.

Var
(
ȳ(o)
em

) = 1

(2rm)2

r∑
j=1

[(m−1
2∑

i=1

σ 2
(1) +

m−1∑
i=m−1

2 +1

σ 2
(2m) + σ 2

(m)

)

+
(
σ 2

(m+1) +
3m+1

2∑
i=m+2

σ 2
(m) +

2m∑
i= 3(m+1)

2

σ 2
(m+1)

)]

= 1

(2rm)2

r∑
j=1

[{m−1
2∑

i=1

(
σ 2 − ℘2

(1)

) +
m−1∑

i=m−1
2 +1

(
σ 2 − ℘2(2m)

)

+ (
σ 2 − ℘2(m)

)} +
{(

σ 2 − ℘2
(m+1)

) +
3m+1

2∑
i=m+2

(
σ 2 − ℘2

(m)

)

+
2m∑

i= 3(m+1)
2

(
σ 2 − ℘2

(m+1)

)}]
.

Simplest form of variance is

Var
(
ȳ(o)
em

) = 1

2rm
σ 2 − 1

4rm2

[
m − 1

2

(
℘2

(1) + ℘2
(2m)

) + m + 1

2

(
℘2

(m) + ℘2
(m+1)

)]

= Var(ȳsrs) − 1

4rm2

[
m − 1

2

(
℘2

(1) + ℘2
(2m)

)
(3.5)

+ m + 1

2

(
℘2

(m) + ℘2
(m+1)

)]
.
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From Equations (2.5) and (3.5), we notice that Var(ȳ(o)
em) ≤ Var(ȳm) if

℘2
(1) + ℘2

(2m) ≤ (
℘2

(m) + ℘2
(m+1)

)
. (3.6)

Further from Equations (2.6) and (3.5), we observe that Var(ȳ(o)
em) ≤ Var(ȳe) if

℘2
(1) + ℘2

(2m) ≥ (
℘2

(m) + ℘2
(m+1)

)
. (3.7)

Inequalities (3.6) and (3.7) reveal the conditions in which we prefer EMRSS over
MRSS and ERSS respectively. Similarly

Var
(
ȳ(e)
em

) = 1

(2rm)2

r∑
j=1

[( m
2∑

i=1

σ 2
(1) +

m∑
i=m

2 +1

σ 2
(2m)

)

+
( 3m

2∑
i=m+2

σ 2
(m) +

2m∑
i= 3m

2

σ 2
(m+1)

)]

= 1

(2rm)2

r∑
j=1

[{ m
2∑

i=1

(
σ 2 − ℘2

(1)

) +
m−1∑

i=m
2 +1

(
σ 2 − ℘2(2m)

)}

+
{ 3m

2∑
i=m+2

(
σ 2 − ℘2

(m)

) +
2m∑

i= 3m
2

(
σ 2 − ℘2

(m+1)

)}]
.

Simplifying, we have

Var
(
ȳ(e)
em

) = 1

2rm
σ 2 − 1

4rm2

[
m − 1

2

(
℘2

(1) + ℘2
(2m)

) + m + 1

2

(
℘2

(m) + ℘2
(m+1)

)]

= Var(ȳsrs) − 1

4rm2

[
m

2

(
℘2

(1) + ℘2
(2m)

)
(3.8)

+ m

2

(
℘2

(m) + ℘2
(m+1)

)]
,

where Var(ȳsrs) = 1
2rm

σ 2 is the variance of ȳsrs with n = 2rm. This shows the
superiority of EMRSS over SRSWR with same sample size in terms of efficiency.

From Equations (2.5) and (3.8), we notice that Var(ȳ(o)
em) ≤ Var(ȳm) if

℘2
(1) + ℘2

(2m) ≤ (
℘2

(m) + ℘2
(m+1)

)
. (3.9)

Further from Equations (2.6) and (3.8), we see that Var(ȳ(o)
em) ≤ Var(ȳe) if

℘2
(1) + ℘2

(2m) ≥ (
℘2

(m) + ℘2
(m+1)

)
. (3.10)

Inequalities (3.9) and (3.10) show the conditions in which we prefer EMRSS over
MRSS and ERSS, respectively.
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4 Empirical study

For purpose of the efficiency and bias comparisons, we conduct a simulation study
by generating a hypothetical population of size 1000 on two variables Y (the study
variable) and X (a concomitant variable correlated with Y ). The values of X are
generated using different distributions mentioned in caption of Tables 1–8. After
that Y is computed such that Y = (ρ × X) + e, where e is normaly distributed
error term, having zero mean and unit variance, independent of Y . The procedure
of RSS, MRSS, ERSS and EMRSS is applied to estimate population mean of Y .

Table 1 AB and RE under Normal(5,1)

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0005 0.0006 0.0167 3.1314 4.1016 2.4311 5.1323
4 0.0012 0.002 0.015 4.009 5.1792 2.9046 5.5618
5 0.0001 0.0017 0.0097 4.7232 6.9291 2.8897 7.5682

5 6 0.0013 0.0021 0.0094 5.6941 7.9063 3.4649 7.7904
7 0 0.0017 0.0068 6.2995 9.6398 3.2775 9.4978
8 0.0009 0.0019 0.007 7.1629 10.3364 3.9064 9.8288
3 0.0003 0.0005 0.0169 3.1476 4.0856 2.4488 5.3077
4 0.001 0.0015 0.0149 4.0046 5.3378 2.868 5.736

10 5 0.0001 0.0013 0.0099 4.6909 6.7885 2.898 7.6062
6 0.0012 0.0019 0.0094 5.4645 7.5657 3.2978 7.5436
7 0.0001 0.0017 0.0069 6.4544 9.3844 3.2447 9.2297
8 0.001 0.0019 0.0069 7.1998 10.2368 3.8461 9.6834

Table 2 AB and RE under Weibull(1.5,5)

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0785 0.1092 0.0836 2.9376 4.069 2.0198 5.4133
4 0.0899 0.1488 0.085 3.6049 5.3921 2.2392 5.4063
5 0.0961 0.1779 0.0518 4.2907 6.5971 2.2453 6.8137

5 6 0.101 0.2062 0.051 5.1071 7.958 2.3236 6.9271
7 0.1033 0.2276 0.0297 5.7251 9.0975 2.4035 7.743
8 0.1054 0.2478 0.029 6.3733 10.6377 2.4268 7.7882
3 0.0785 0.1089 0.0847 2.9511 4.081 2.0599 5.3258
4 0.0899 0.1483 0.0851 3.7027 5.358 2.2152 5.4629

10 5 0.096 0.1789 0.0511 4.287 6.7012 2.2989 6.5905
6 0.1009 0.2057 0.0509 4.9923 8.028 2.3056 6.8929
7 0.1034 0.2275 0.0295 5.6519 9.089 2.3642 7.5508
8 0.1057 0.2477 0.029 6.536 10.8502 2.4188 7.6387
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Table 3 AB and RE under Uniform(0, 1)

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0146 0.0155 0.1171 3.1987 4.278 2.2933 5.4687
4 0.01 0.0051 0.085 4.157 5.3486 2.876 5.628
5 0.0176 0.0233 0.0734 4.8964 7.139 2.8616 7.9177

5 6 0.0142 0.0023 0.0489 5.7951 7.6916 3.3781 7.7221
7 0.0154 0.0209 0.0531 6.2704 10.1769 3.2807 9.3923
8 0.018 0.0002 0.0302 7.0944 10.091 3.9091 9.6747
3 0.0143 0.0154 0.117 3.2652 4.2963 2.4024 5.4438
4 0.0098 0.0048 0.0865 4.1352 5.2994 2.9538 5.7113

10 5 0.017 0.0223 0.0712 4.6022 6.9861 2.7285 7.4647
6 0.0139 0.0027 0.0485 5.5044 7.5863 3.389 8.0759
7 0.0158 0.0225 0.0524 6.2808 9.8752 3.2368 9.4496
8 0.0178 0.0003 0.0296 7.3374 10.1235 3.9387 9.8072

Table 4 AB and RE under Gamma(4,3)

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0138 0.016 0.0563 3.1642 4.2259 2.3145 5.4877
4 0.0156 0.0206 0.0541 3.7758 5.5858 2.5987 5.848
5 0.0183 0.0235 0.0367 4.7468 7.1835 2.8996 7.7715

5 6 0.0195 0.0257 0.0356 5.5917 8.7557 3.0517 7.9716
7 0.02 0.0258 0.0273 6.2134 10.0244 3.2978 9.5799
8 0.0203 0.0275 0.0275 7.1932 11.8527 3.6392 10.2764
3 0.0132 0.0153 0.0566 3.154 4.3525 2.3174 5.5388
4 0.0163 0.0206 0.0535 3.9316 5.92 2.6061 5.9407

10 5 0.0182 0.0233 0.0363 4.5348 7.065 2.7109 7.3477
6 0.0192 0.0251 0.0356 5.4887 8.6775 3.0781 7.8993
7 0.0201 0.0258 0.0279 6.2698 10.3035 3.2456 9.6882
8 0.0202 0.0275 0.0275 6.839 11.6733 3.4981 9.6977

The process is replicated 10,000 times to see the long-run behavior of the mean
estimators. The results obtained from simulation study are presented in Tables 1–8.
We compute the absolute bias (AB) and relative efficiency (RE) of the means
estimator (ȳ•) for different ranked set sampling schemes with respect to mean
estimator under SRSWR as follows:

AB =
∣∣∣∣
∑100,000

j=1 (ȳ• − μ)

100,000

∣∣∣∣ and RE = Var(ȳsrs)

Var(•) . (4.1)
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Table 5 AB and RE under Normal(5, 1) with imperfect ranking

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0002 0.001 0.0132 1.8096 1.9305 1.5829 2.65
4 0.0008 0.0071 0.0288 1.863 2.1748 1.602 2.0936

5 5 0.0012 0.002 0.009 1.9614 2.0876 1.7928 2.9789
6 0 0.0107 0.0199 2.0653 2.4369 1.7639 2.1932
7 0.0017 0.003 0.0075 2.0555 2.2628 1.7817 3.224
8 0.0003 0.0135 0.0139 2.2421 2.6114 1.8578 2.3055
3 0.0006 0.0006 0.0135 1.7623 1.8514 1.6346 2.6866
4 0.0014 0.0068 0.029 1.8341 2.1584 1.568 2.0833

10 5 0.0012 0.002 0.0091 2.0345 2.1322 1.8166 3.0383
6 0.0014 0.0068 0.029 1.8341 2.1584 1.568 2.0833
7 0.0002 0.0109 0.0198 2.1389 2.4775 1.7388 2.2435
8 0.0002 0.0135 0.0139 2.2837 2.5841 1.8925 2.3354

Table 6 AB and RE under Weibull(5, 1.5) with Imperfect ranking

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0841 0.1239 0.0793 2.4961 3.4896 1.6411 4.387
4 0.1149 0.1949 0.1624 3.2778 4.6891 2.1122 2.8033

5 5 0.0935 0.2161 0.0386 3.3486 4.9917 1.6698 4.8715
6 0.1252 0.2705 0.1709 4.0992 6.3877 2.3904 3.3865
7 0.0984 0.2842 0.008 4.1034 6.1822 1.7583 5.3783
8 0.1299 0.3251 0.1792 5.1031 7.7224 2.552 3.7354
3 0.0838 0.1243 0.0799 2.435 3.5872 1.6485 4.2576
4 0.1143 0.1947 0.1628 3.1553 4.632 2.0637 2.7638

10 5 0.0936 0.2157 0.0386 3.4231 5.0596 1.7014 4.9701
6 0.125 0.2695 0.1713 4.1554 6.3588 2.3668 3.3209
7 0.0978 0.2841 0.0078 4.0036 6.1803 1.6812 5.2811
8 0.1299 0.3246 0.1791 5.0198 7.6715 2.5471 3.7639

Note: In Tables 1–4, ranking is performed on the study variable Y itself while
in Tables 5–8 ranking is performed on X (imperfect ranking).

Absolute Bias (AB) and Relative Efficiency (RE) of mean estimators of all
considered sampling schemes are provided for several combinations of r and m in
Tables 1–8. Tables 1–4 present AB and RE for perfect ranking while Tables 5–8
give AB and RE for imperfect ranking. AB and RE for even choices of set sizes
(m) are shown in shaded rows as behavior of estimators under EMRSS may differ
for even and odd set sizes. This can be noticed from Example 1 and Example 2
of EMRSS procedure given in Section 2. With respect to AB , EMRSS perform
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Table 7 AB and RE under Uniform(0,1) with imperfect ranking

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0312 0.0287 0.0251 1.1184 1.0891 1.141 1.6567
4 0.027 0.0121 0.0937 1.0647 1.1231 1.0464 1.2201

5 5 0.0588 0.0229 0.0133 1.183 1.127 1.1892 1.6825
6 0.0465 0.0123 0.0775 1.0932 1.2055 1.0445 1.1847
7 0.0862 0.0143 0.034 1.1585 1.1304 1.2202 1.7499
8 0.0654 0.0172 0.0734 1.1374 1.1648 1.0341 1.1664
3 0.0343 0.0267 0.0237 1.1078 1.1051 1.1606 1.7018
4 0.0294 0.013 0.0915 1.0996 1.1335 1.0065 1.236

10 5 0.0615 0.0221 0.0151 1.0909 1.1033 1.1259 1.6208
6 0.0478 0.0128 0.0799 1.0952 1.1904 1.0461 1.1982
7 0.0866 0.014 0.0335 1.1697 1.1294 1.2165 1.7533
8 0.0671 0.0166 0.0719 1.1472 1.177 1.0139 1.1538

Table 8 AB and RE under Gamma(4, 3) with imperfect ranking

Absolute Bias (AB) Relative Efficiency (RE)

r m ȳm ȳe ȳem ȳrss ȳm ȳe ȳem

3 0.0808 0.1101 0.0738 1.4542 1.5857 1.3107 2.274
4 0.0583 0.0991 0.1031 1.4321 1.5754 1.2646 1.5612

5 5 0.102 0.1778 0.0464 1.5836 1.7534 1.3494 2.4664
6 0.0712 0.1396 0.1024 1.4846 1.5437 1.2207 1.4824
7 0.1112 0.2223 0.0275 1.621 1.8196 1.3001 2.4442
8 0.079 0.1717 0.1053 1.5617 1.6147 1.2551 1.4729
3 0.0832 0.1108 0.0724 1.4363 1.5592 1.2901 2.2832
4 0.0608 0.0983 0.1061 1.4696 1.544 1.2795 1.5441

10 5 0.1017 0.1768 0.0476 1.5935 1.7237 1.2789 2.4111
6 0.0706 0.1397 0.1036 1.5013 1.6188 1.2741 1.5401
7 0.1111 0.2215 0.0288 1.5991 1.7385 1.2857 2.3308
8 0.0785 0.1713 0.1041 1.5579 1.6064 1.2471 1.4395

better than MRSS and ERSS when data is generated from Weibull distribution
for both perfect and imperfect ranking. Among all other distributions, EMRSS
perform better than ERSS only for certain choices of m. On the other hand EMRSS
performs better than ERSS for all choices of r and m in term of efficiency for all
distributions used for generating data. In context of efficiency EMRSS performs
better than MRSS only for smaller choices of m. RE of all estimators increase
with increase in set size m. Furthermore, relative efficiency of mean estimator
under EMRSS is higher for perfect ranking as compared to imperfect ranking (see
Tables 1–8) because imperfect ranking involve judgmental ranked units.



EMRSS 35

5 Application

Iris flower data set is used to illustrate the application of EMRSS and compared it
with three well-known existing ranked set sampling schemes in terms of relative
efficiency. The data consist of N = 150 flowers with 5 variables. Petal width is
taken as the study variable and suppose that we are interested in estimating aver-
age width of petals. For m = 4, we take 8 independent samples each consisting 8
flowers and ranked them according to petal width. The ranked sets are presented
in Table 9.

The observations in bold form are taken from units that are selected under
EMRSS. We obtain RSS, ERSS and MRSS from the above ranked sets in sim-
ilar way. Table 10 provides ultimate ranked set samples obtained from Table 9,
respective sample means and a 95 percent confidence limits for population mean
in each case. In this example, we use r = 1 for simplicity.

Table 9 Ranked sets

Ranks

Samples 1 2 3 4 5 6 7 8

1 1.2 1.3 1.3 1.8 2 2.1 2.2 2.4
2 0.1 0.2 0.2 1 1.2 1.4 1.9 2.3
3 0.1 0.2 1.1 1.3 1.4 2.1 2.4 2.4
4 0.1 0.3 1.0 1.0 1.4 1.5 2.3 2.4
5 0.2 0.2 0.2 1.0 1.6 1.7 1.9 2.3
6 0.1 0.2 1.0 1.3 1.4 1.4 1.8 1.9
7 0.1 0.2 0.3 1.2 1.3 1.5 1.6 1.9
8 0.2 0.2 0.2 1.3 1.3 1.5 2.2 2.3

Table 10 Ranked Sets Samples

Sample number RSS ERSS MRSS EMRSS

1 1.2 1.2 1.8 1.2
2 0.2 0.1 1 0.1
3 1.1 0.1 1.3 2.4
4 1 0.1 1 2.4
5 1.6 2.3 1.6 0.2
6 1.4 1.9 1.4 0.1
7 1.6 1.9 1.3 1.9
8 2.3 2.3 1.3 1.9

ȳ(•) 1.3 1.2375 1.3375 1.275

ȳ(•) − 1.96 ×
√

V (ȳ(•)) 1.086468 1.03043 1.08111 1.063593

ȳ(•) + 1.96 ×
√

V (ȳ(•)) 1.513531 1.44456 1.59388 1.486406
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Table 11 Variance and Relative Efficiency

Variance

m ȳrss ȳe ȳm ȳem

4 0.01805953 0.01791547 0.02620678 0.01646436
5 0.01186896 0.01116143 0.01711133 0.0116339
6 0.008625955 0.007666784 0.01222065 0.004757325
7 0.006512832 0.00544884 0.00886409 0.004189423

Relative Efficiency

m ȳrss ȳe ȳm ȳem

4 4.021466 4.053802 2.771259 4.41109
5 4.895174 5.205482 3.395449 4.99408
6 5.612965 6.315189 3.961915 10.1774
7 6.372104 7.616382 4.681862 9.906006

The last three rows of Table 10 provides (ȳ(•)) sample mean obtained using
proposed and existing ranking mechanisms, lower and upper confidence limits for
true population mean of petal width. To compute these limits variances of the mean
estimators are obtained through repeated sampling from the population of 90 units
(see detail later). In Table 11, variance and relative efficiency of mean estimator
under different ranked set sampling are presented.

The first four rows of Table 11 are obtained by applying formulas given in Equa-
tions (2.2), (2.5), (2.6) and (3.8), where σ 2

i = σ 2 − ℘(i) for i = 1,2,3, . . . ,2m is
obtained using following algorithm.

1. Select 2m samples each of size 2m for m = 4,5,6,7 from population of 150
Iris flowers.

2. Ranked each sample within itself from smallest to largest according to petal
width and compute σ̂ 2

(i)k = 1
2m

∑2m
j=1(yj (i)k − μ(i)k)

2.
3. Repeat Steps (1) and (2) 10,000 times.
4. Compute σ 2

(i) = ∑10,000
k=1 σ̂ 2

(i)k/10,000 for i = 1,2, . . . ,2m.

The variance and relative efficiency of estimators under RSS, ERSS, MRSS and
EMRSS with respect to variance of mean estimator under SRSWOR are given in
Table 11. The numerical results suggest that EMRSS performs better than well
known existing ranked set sampling schemes for all choices of m except of m = 5.
For m = 5, EMRSS is slightly less efficient than ERSS. The petal width of Iris
flowers has a fat tailed distribution as shown in Figure 1.

The histogram in Figure 1 shows that the distribution of petal width is departed
from normality. It also reveals that much data is dense at left tail of the distribution
as it can be seen from 0 to 0.25 the bar is too high while it is low between 0.5
and 1.



EMRSS 37

Figure 1 Histogram of Petal width.

6 Conclusion

A comparatively more representative, efficient and easy to handle ranked set sam-
pling procedure is proposed and applied to estimate population mean of the study
variable. The proposed sampling scheme is a mixture of ERSS and MRSS. It is
shown both mathematically and through simulation study that under certain con-
ditions EMRSS performs better than ERSS and MRSS for estimating population
mean. Alternatively, we can conclude that it performs better than ERSS for all
choices of m but it works better than MRSS only for relatively small m. The nu-
merical application shows that EMRSS perform well when underlying distribu-
tion has fat tail. The suggested sampling scheme can be utilized in research areas
where ranking all observations is tedious but obtain median and extreme values
(five number summary statistics) are easy.
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