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Abstract. Fisher information is a very important and fundamental criterion
in statistical inference especially in optimal and large sample studies in esti-
mation theory. It also plays a key role in physics, thermodynamic, informa-
tion theory and other applications. In the literature there have been defined
two forms of Fisher information: one for the parameters of a distribution
function and one for the density function of a distribution. In this paper, we
consider a nonnegative continuous random (lifetime) variable X and define
a time-dependent Fisher information for density function of the residual ran-
dom variable associated to X. We also propose a time-dependent version of
Fisher information distance (relative Fisher information) between the densi-
ties of two nonnegative random variables. Several properties of the proposed
measures and their relations to other statistical measures are investigated. To
illustrate the results various examples are also provided.

1 Introduction

The concept of Fisher information is a fundamental concept in statistical infer-
ence and plays a crucial role in many other disciplines such as information theory
and coding, derivation of physical laws in statistical physics and thermodynam-
ics, probability theory, Kinetic theory, astronomy as well as biosciences (see, for
example, Frieden (2004), Pardo, Morales and Taneja (1995), Shao (2003)). Fisher
information provides a way of quantifying the amount of information that obser-
vations of a random sample carry about an unknown parameter or vector of pa-
rameters in a statistical model. Let us consider a random variable X (continuous
or discrete) with a distribution function Fy having a probability density function
fo, where 6 € ® C R. We assume throughout the paper that fj(x) is differentiable
with respect to both 6 and x. The Fisher information of random variable X (or
distribution Fjy) about the parameter 6, based on an observation x of X, is defined
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310gf9(X)>2
00

=/(%>2f9(x)dx.

In fact, the Fisher information /(6) measures how high the peaks are in the log-
likelihood function. It plays crucial role, in both classic and Bayesian statistical
inference, in derivation of optimal estimators particularly in large sample studies
when one is interested to study asymptotic properties of estimators; see, for exam-
ple Lehmann and Casella (1998) and Shaked and Shanthikumar (2007). Another
form of the Fisher information which is known in the literature as the Fisher in-
formation of the density function and has different applications is considered by
authors. If a random variable X has density f(x), under the condition that the
derivative of f exists for all values on its support, the Fisher information of the
density is defined as

1(9)=E(
(1.1)

1= [ Pfws, (1.2)
where p(x) = ]}/((;)) is called the score function corresponding to f. The quantity
I (f) provides information about the density itself; (see, for example, Yafiez et al.
(2008)). Recently, attention have been shown to / (/) and its applications in differ-
ent areas. In physics theory, I (f) is used as a measure of the state of disorder of a
system or phenomenon; see Frieden (2004) for more details. Brown (1982) applied
1 (f) to prove central limit theorem based on Cramér-Rao inequality. Johnson and
Barron (2004) and Johnson (2004) used I (f) to prove central limit theorem under
different conditions. Papaioannou and Ferentinos (2005) studied several proper-
ties of the Fisher information in form (1.2). Bercher and Vignat (2009) obtained
the minimum Fisher information distributions in the class of distributions with
restricted support and fixed variance. Kostal, Lansky and Pokora (2013) studied
some measures of dispersion based on Fisher information. Yafiez et al. (2008)
showed that the two measures in (1.1) and (1.2) are connected through a measure
of gain in information from a Bayesian experiment.

Note that when 6 is a location parameter, that is, fy(x) = f(x — 6), by the
fact that, under regularity conditions, df (x —6)/06 = —df (x — 6)/0dx, the Fisher
information 7 (#) in (1.1) and Fisher information of the density function I (f) in
(1.2) are identical, see Johnson (2004).

The Fisher information distance (or relative Fisher information) is also defined
in the literature. Let X and Y be two continuous nonnegative random variables
with absolutely continuous density functions f and g, respectively. The Fisher
information distance between X and Y (or f and g) is defined by

D(f.8) = [ (01() = pe())” Fx) dx, (13)
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where pr(x) and pg(x) are the score functions corresponding to f and g, re-
spectively. The Fisher information distance between Y and X is defined simi-
larly. The Fisher information and Fisher information distance are studied and ap-
plied by different authors in various of subject of applications. We refer, among
others, to Bobkov, Chistyakov and Gtze (2014), Johnson (2004), Otto and Vil-
lani (2000), Venkatesan and Plastino (2014), Walker (2016), Yamano (2013) and
Zegres (2002).

The aim of the present paper is to investigate properties of Fisher information
of the density function, / (f), and Fisher information distance D( f, g). In the first
part of the paper, we propose a time-dependent version of I (f) as measure of
information for nonnegative random variables denoting a duration. Duration study
is a subject of interest in many branches of science such as reliability, survival
analysis, actuary, economics, business etc. Let X be a nonnegative random variable
denoting a duration such as a lifetime where we assume that it has the distribution
function F, and the probability density function f. Capturing effects of the age ¢
of an individual or an device under study on the information about the remaining
lifetime is important under different purposes. For example, in reliability when a
component or a system of components is working at time 7, one is interested in
the study of the information of the density of the lifetime of component or system
beyond z. In such case, the random variable of of interest is the residual random
variable, X; = X|X > t, on the set

S ={x:x >t} te0,b),b <o0.

Hence, the distribution of interest for computing information is the residual distri-
bution with survival function

F(x) s

- - X s

Fi(x)=1 F(1) ! (L.4)
1 otherwise,

provided that F (1) < 0o, where F =1 — F denotes the survival function of X
(Barlow and Proschan (1981)). We denote the Fisher information of residual ran-
dom variable X; by I (f;t). In Section 2, we obtain the functional form of 7 (f; t).
We show that the underlying distribution function F can be represented in terms
of I(f;t) and the score function p(x). It is argued in the class of nonnegative
continuous random variables, the exponential distribution can be characterized as
a distribution for which I(f;t) is constant. We prove, in Section 2, that when
two random variables are ordered in the sense of likelihood ratio order, then under
some conditions, the corresponding residual random variables are ordered in the
sense of residual Fisher information. It is shown that the Fisher information of the
equilibrium distribution associated to X is closely related to the hazard rate and
mean residual life of X. In particular, we show that when the random variable X
has increasing (decreasing) hazard rate then the Fisher information of the equi-
librium is increasing (decreasing). The correlation between the cumulative hazard
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rate and the score function of X are explored in Section 2. Section 3 is devoted to
Fisher information distance D( f, g). We propose a time-dependent version of this
distance which is useful for measuring the distance between two residual lifetime
distributions. We show that the Fisher information distance between the residual
random variable associated to weighted distribution and its parent distribution can
be represented as the conditional expectation of square of the weight function.
Several examples are shown as special cases. For instance, the distance between
the distribution of order statistics and the underlying distribution and also distance
between different order statistics are investigated in Section 3. In this section, we
also study the Fisher information distance between escort distributions which play
important role in thermodynamics and physics. Throughout the paper, several il-
lustrative examples are also provided.

2 Fisher information of the residual life distributions

Let f;(x) denote the density function corresponding to F;(x). That is, filx) =

%, x > t. Then we have the following definition.

Definition 2.1. Let X; be a residual random variable with an absolutely contin-
uous density function f;(x). The residual Fisher information of f;(x) is defined
as

dfi(x)

b 2
. _ dx
1= (ﬁ(x)) Jix)dx
PP f)dx 2.1)
B F(t)
= E(p*(X)|X > 1),

where ¢ > 0 and b < 0o the right extremity of the support of X, thatis, F(b) = 1.

The idea here is to measure the relative changes of the residual density after time
t; that is, how much small changes in x, x > ¢, affect the the residual density. Obvi-
ously, as t — 0, I (f; t) tends to the Fisher information 7 (f) = é’pz(x)f(x) dx.
It can be easily shown that 7 (f, ) can be represented as

JPCL ST dx
F(1) ’

I(f;1)=4

see also, Johnson (2004), p. 24.
Let us look at the following examples.
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Figure 1 The plots of (a): 1 (f;t) for Gamma(2, 1), (b): I(f;t) for Gamma(4, 1).

Example 2.1. Let X be distributed as gamma with density
ﬂOl
f(X)ZWxa_le_ﬂx, x>0,a,B>0.

Then we have pz(x) = ("‘X;1 — ,8)2, and hence for @ > 2 we obtain

B*((a — )T (@ — 2, B1) = 2(« — DT (@ — 1, B1) + T'(a, B1))

I'(a, Bt) ’
where I'(a, 1) = too x4 le™*dx is incomplete Gamma function. Figure 1(a) de-
picts the plot of I(f;¢) for « =3 and 8 = 1 and Figure 1(b) depicts the plot of

I(f;t) fora =4 and B = 1. It is evident from the plots that the residual Fisher
information first decreases for a period of time and then increases.

I(f;0) =

Example 2.2. Let X have beta distribution with density function

fx)= Xl = x)f O<x<l,aa>0,8>0,

B(a, B)
where B(a, B) = fol x* (1 = x)B~dx.

Then pz(x) = ("‘T_l — %)2. Hence for o, 8 > 2
(@ —D?B(t,a —2,8) —2(a — 1)(B— DB, a—1,8—1)
B(t,a, B)

(B—1?B(t,a, B —2)
B(t,a, B)

I(f;t)=

’
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where B(t, «, B) = ftl x¢ 11 = x)~1dx. It can be easily seen that for 8 =1 and
o =72 we get

B(t,0,1) f'tdx —2log:

B(,2,1) ftlxdx 1=

which is a decreasing function of # on t € (0, 1). Fora =1 and 8 = 3, we get
4B, 1,1) 12

B(t,1,3)  (1—-1)?

which is an increasing function of ¢ on (0, 1).
Under the assumption that 7 (f; ¢) is differentiable in terms of ¢, we have

I'(f;t)y=r®((f:1)— p*®)), (2.2)
1)

where r(t) = % is the hazard rate of X. The following conclusions are immedi-
ate from equation (2.2). First, note that / (f;¢) is a decreasing (increasing) func-
tion of 7 if and only if I(f;¢) < (>) p2(1). If I(f;t) is constant, then we have
(I(f;t) — pz(t)) = (0. This, in turn, implies after differentiating both sides of this
last equation that p(x) = ¢, where c is constant. After some algebraic manipula-
tions, we get f(¢) = ke‘’, where k is normalizing constant. If ¢ is positive, f is
increasing in its support and hence the right extremity » should be finite. If ¢ is
negative, f is decreasing in its support and we arrive at the exponential distribu-
tion. Assuming that I (f; 1) # p%(t), we get

I'(f:1)
I(f;1)—p%@)’

I(f;0)=

I(f;1)=

r(t) =
which implies, based on relation
F(r)=e Jor®adx (2.3)

that for all 7 > 0, the survival function F can be represented as

_ _ [t M(i
F(t)=e b 172w 4

Definition 2.2. Let X and Y be two random variables with residual Fisher infor-
mation functions I (f;t) and I (f,t) respectively. X is said to be less than Y in
residual Fisher information, denoted by X <ppr Y, if I (f;t) < I(g;t), for all z.

By definition, we can easily see that, for b = oo, if X <ppr ¥ and I(f;t) (or
1(g; 1)) is increasing then a1 X + by <ppra2Y + by, when ay < aj and by < by.

Theorem 2.1. Let X be a nonnegative random variable with an absolutely contin-
uous density function f and ¢ be a nonnegative, increasing, twice differentiable
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and invertible function. Then the residual Fisher information of ¢ (X), denoted by
Iy(x) (1), is given as

1 o7l 1 / ~
=L [ LTI g

2
F'() dx. (24
F@~' o) Joto ¢'0)?Lf () ¢/(x)} faydx. 24

Proof. Using the definition of residual Fisher information we have

oo () = —— /b[(—ﬁfslifc)f))’rf(«p—‘(x))
PO Fo 1) Jr Jow) ] /(97! )

1 o~ ') f/(x) ¢//(x):|2
F(¢_1(t)) /Q;l(t) ¢/(x)2|:f(x) & (x) fx)dx 0
Example 2.3. Suppose that X has density f(x) = ax®"!, 0 <x < 1. Then we

have ?l((;)) =2l [etgp(X)=X",n < 5, then we easily obtain

X

a(l— )2 — 5"
—2n 1 —t¢n

Iyx)(t) =

The following theorem shows that if X and Y are ordered in the sense of like-
lihood ratio order, then they are also ordered in DFI order under some conditions.
Recall that for two random variables X and Y with densities f and g, respectively:

e X issaid to be less than Y in likelihood ratio order, X <;. Y, if % is increasing
in x for all x in the union of supports of X and Y.

e X is said to be less than Y in hazard rate order, X <y, Y, if rx(x) > ry(x), for
all x in the union of supports of X and Y, where rx (x) (ry (x)) is the hazard rate
of X(Y).

Theorem 2.2. Let X and Y have densities f and g, respectively. Assume that f is
increasing and g is log-convex. If X <1, Y, then X <ppr Y.

; ; 8(x) s s ho ; ) o g
Proof. X <j; Y implies that F(r 18 increasing in x, or equivalently HOENT0)

for all x. Since f is assumed to be increasing we get (o (x)? < (of (x))?. From
this, we have

J o) f@ydx _ [ (pg () f (x) dx
20 - F(@) '

(2.5)

Since g is log-convex the score function pg(x) is an increasing function of x.
Hence from the assumption 0 < pr(x) < pg(x), and that X <, ¥ = X <p, ¥, we
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J (g CN*f ) dx [ (pg(x)) g (x) dx
F(t) - G@)
where the inequality follows from the fact that X <p, ¥ implies E(¢(X)|X > 1) <

E(¢(Y)|Y > t) for any increasing function ¢ (x). (see Salicrd and Taneja (1993)).
From (2.5) and (2.6), we get the result. O

: (2.6)

Example 2.4. Let X be distributed as f(x) = %x, 1 <x <2 and Y be distributed
as g(x) = efie, I < x < 2. clearly f(x) is increasing and g(x) is log-convex.
Also, as the ratio e*/x is increasing on (1,2), we have X <j Y. Hence using

above theorem, we have X <pg Y.

Assume that F(x) is the survival function of a nonnegative continuous random
variable X with finite mean p. The random variable X, is said to be the equilibrium
random variable corresponding to the random variable X, if the density function
of X, is given by

F(x)
folx) = o x> 0. (2.7)

The equilibrium distributions arise in renewal theory as the asymptotic distri-
butions of the waiting time till the next event and the time since the last event at
time ¢. It is also known that a delayed renewal process has stationary increments if
and only if the distribution of the actual remaining life is (2.7). The random vari-
able X, with density (2.7) is also referred to as the “asymptotic age” by Salicrd
and Taneja (1993). The cited monograph gives several ordering results on these
distributions. The following theorem shows a representation result for the residual
Fisher information of equilibrium distribution. Before presenting the theorem, we
recall that the mean residual lifetime (MRL) of continuous random variable X with
survival function F is defined at time # as as

b =
F(x)d

mt)=EX —t|X > 1) = J F)dx
F(1)

provided that F (1) > 0. Note that m(0) = p is the mean of X.

Theorem 2.3. The residual Fisher information of X, can be represented as

E(r(X)|X
I(fe;z)z%)”),

where r(t) and m(t) denote the hazard rate and the MRL of X, respectively.
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Proof. We have

I(fe;1) = E((;ﬁg:;)zlxe > t)

s

ftb F(x)dx
_ fth(r(x)_)zﬁ'(x)dx 2.8)
ftb F(x)dx
_Jr@f@)dx
ftb F(x)dx
_ Er(X)|X >1)
IO -

Corollary 2.1. From (2.8), we get that the Fisher information of X, is given by
I(fe;0)=1(fe) = w, where [ is the mean of X. Also, it should be pointed
out that if r(t) is increasing (decreasing) then E(r(X)|X > t) is increasing (de-
creasing). Hence from the fact that a random variable with increasing (decreasing)
hazard rate has decreasing (increasing) MRL (see Barlow and Proschan (1981)),
the representation (2.8) implies that if X has increasing (decreasing) hazard rate
then the residual Fisher information I ( fe;t) is increasing (decreasing) in t.

Corollary 2.2. From Theorem 2.3, we have I (f.;t) = c, where c is positive con-
stant if and only if X is exponential distribution. The proof of “if” part is trivial.
To prove the “only if” part note that when I (f,;t) = c, we get, for all t > 0,

/OO r(x) f(x)dx = c/OO F(x)dx.
t t

Derivative of both sides of this equation implies that r(t) = \/c, which in turn
implies that X is exponential with mean 1//c.

The following lemma gives a useful property of the score function which is in
fact the time-dependent version of Stein identity for nonnegative random variables
(see Johnson (2004), p. 22).

Lemma 2.1. Let X be a nonnegative random variable with density f and score

function p(x) = é/((;()) . For any function g such that limy 3 g(x) f (x) = 0, we have

E(gX)p(X)|X > 1) =—(r()g(t) + E(g(X)'|X > 1)),

where r(t) is the hazard rate of X.
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Proof.

1 b

EgX)p(X)IX > 1) = oo | spe £ dx
B 1
F@)

=—(r(Hg) + E(g' (X)X > 1)). -

b
/t g0 f'(x) dx

The lemma gives the following immediate lower bound for 7 (f; t) in terms of
hazard rate.

Theorem 2.4. Let the conditions of Lemma 2.1 are met. Given a random variable
X with residual Fisher information I (f;t) and hazard rate r(t), we have

I(f;1) =7,

where equality holds if and only if X is exponential.

Proof. Lemma 2.1 with g(x) =1, gives E[p(X)|X > t] = —r(¢). Hence, we get
Var(p(X)|X > t) = E[p*(X)|X > t] — E*[p(X)|X > 1]
=I1(f;)=r’() =0,

Using equation (2.3) an immediate consequence of the theorem is that, for all
t>0,

Fit) > e BVTT

where, under the conditions of theorem, the equality holds if and only if X is
exponential. O

The quantity R(x) = [y r(t)dt = —log F(x) in known in reliability engineer-
ing as the cumulative hazard rate and plays important role in the study of ag-
ing properties of lifetime random variables. In the following, we get some results
which show, under some smooth conditions, that the Fisher information can be
represented through a function of the the hazard rate and the covariance between
the score function and cumulative hazard.

Lemma 2.2. We have

b
E[p" CORCO] = [ FGE[0" (01X > u]du.
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Proof.

b
E[o* CORCO] = [ 0 (0REo) £0) d

b x
_ / (/ r(u)du)pk(x)f(x)dx
0 0

:/Obr(u)</l;bpk(x)f(x)dx)du

b
:/0 F@E[pF (X)X > u]du. -

The lemma gives the following special cases. For k = 1, under the condition of
Lemma 2.1 as E[p(X)|X > u] = —r(u), we get

E[pfs(X)R(X)] = —E[r(X)].

In particular, under the condition lim,_.¢ f(x) = 0, we get Var(ps(X)) = 1(f).
On the other hand since E(R(X)) = Var(R(X)) = 1, we have

T = - EUC0]
Corr(p(X), R(X))’
where Corr(p(X), R(X)) denotes the correlation between p(X) and R(X). This

representation also shows that p(X) and R(X) are negatively correlated. For k = 2,
based on the definition of 7(f;¢), we obtain

b
E[p}ORGO] = [ @) E[0* (01X > u] du
=E[I(f; X)].

Example 2.5. Let X have Weibull distribution with density
f(x):ﬂkﬁxﬁ_lexp(—()»x)ﬁ), x>0,8,1>0.

2
Then for f > 2, 1(f) = (B — 1)*APT'(1 - 3) and also, E[r(X)] = BLE[XF~!] =
1
B-—Drrl’(1 — %), the correlation coefficient between R and p is

Er]  Td-%

VI() T —2)

3 Fisher information distance of residual life distributions

Corr(pf(X), R(X)) = —

Assuming that f;(x) and g;(x) denote the density functions corresponding to resid-
ual random variables (X |X > t) and (Y|Y > t), respectively. We define the resid-
ual Fisher information distance (RFID) between the two residual distributions as:
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Definition 3.1. The RFID between f; and g; is defined as
b d@ﬂ % 2
p(rgin= (ﬁ&) B g@)) fulx)dx
_ [P pr () = pg ()2 f (x) dx (3.1)
F(1)
= E((py(X) = pg(X))’IX > 1).

Clearly, RFID reduces to D(f, g) in (1.3),if t — O.

Remark 3.1. One can easily see that there are two equivalent forms of represen-
tations for D(f, g; t) as follows:

I Gy 5 e dx [P (G log FE37 f () dx
F() F(r) '

D(f,g:1)=4
See also Johnson (2004).
In the following we give an example.

Example 3.1. Let X;,i = 1,2, be distributed as gamma with density
'qui ai—1 _—PBix .
filx) = ——x"" e P x>0,0;,8 >0,i=1,2.
I'(ai)

Then, it can be easily verified that for «; = ap, we have D(f1, f2;t) = (B2 — ,81)2
which is free of ¢. In the case when, 81 = B, and o] > 2, we have

1
D(fi, f:1) = (a —a>2E(—X -
1 2 2 1 X%‘ 1 )
5 (@2 —ap)*T(ay — 2, fit)

=Fi (a1, Bit)

where I'(ay, 1) = [ x* ~le=* dx, is incomplete gamma function. It is clear that
D(f1, fa; t) is always a decreasing function of ¢. If t =0, we obtain

(e —a) T (a1 —2)
D(f1, f2) = Bi T

’

Weighted distributions arise naturally in different areas of statistics; (see Rao
(1997)). Let f is a density function with support S and w is a function such that
E(w(X)) < oco. The weighted distribution associated to f is

Cw@) ()

gx) = EwX)

es. (3.2)
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The following theorem shows how the distance between the density f and corre-
sponding weighted distribution g is related to weight w.

Theorem 3.1. Let f be a density function and g be weighted distribution associ-
ated to f with weight w. Then

D(f,g:1) = E((%)Z‘X > z). (3.3)

Proof. The result follows from the fact that the score function of g is given by
pe() = 5 + 0y (). O

Example 3.2. Let g(x) = ’g((;;) be the density of size-biased distribution corre-
sponding to f. Then D(f, g;t) = E( 2|X >t). Also D(g, f;t) = E( 2|X >
1), where X, is distributed as g.

The following theorem shows a relation between Fisher information and Fisher
information distance under some conditions.

Theorem 3.2. Let X and Y have densities f and g and distribution functions F
and G, respectively. If 16(x)(G(t)) is the residual Fisher information of G(X) at
G(1).

(a) If g is increasing then Igx)(G(t)) < ﬁD(f, g ).
(b) If g is decreasing then I x)(G (1)) > %D(f, g:n).

Proof. (a) From Theorem 2.1, and the assumption that g is increasing, we have

_ L e 1 1w g/(x)}2
o060 =70 [ a2 T g ) L0
O 1T ) g/(x)}2
= - d
“fal 7o [ fo g ] TN
1
e (t)D(f gt
(b) Part (b) follows similar to part (a) from the assumption that g is decreas-
ing. g

3.1 Distance between order statistics

Order statistics have applications in various directions such as statistical inference,
reliability engineering, quality control, etc. If X1, ..., X}, is arandom sample from
an absolutely continuous distribution F with density f and survival function F,
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the density function of the kth order statistics, Xy, associated to sample is given
by
!

_ n k=1, ~ gn—k
fk;n(X)—(k_l)(n_k)f(x)F () F770(x).

This distribution can be considered as a weighted distribution of the form (3.2)
with w(x) = FK=1(x) F*~¥(x). Hence, the score function of Xj., is

Pkn(X) = pr(x) + (k= Dri(x) — (n — k)ra(x),

where p(x) is the score function, r1(x) = f;g)) is revered hazard rate and > (x) =
Iég ; is the hazard rate of F, respectively. Then it can be shown that

e The RFID of the underlying distribution f and the distribution of kth order
statistic is

D(f. fim: 1) = E([(k = Dri(X) — (n = )ra(X)PI1X > 1).
In particular, the RFID of f and smallest order statistic, Xi.,, is

D(f. fin:t) = (n — D?E([rn(X)]1X > 1).
If for example X has Weibull distribution with parameters 8 and A, then for
B>3
2
(n—1)2B2APT (3 — % A1)
(1, AtP)

In this case D(f, f1.x;t) is decreasing for 8 < 1 and is increasing for 8 > 1.
In special case when 8 =1, f is exponential with parameter A and we get
D(f, fin;t) =[rA(n — 1)]2 which is free of ¢.

The RFID of f and largest order statistic, X, is

D(f, fum:) = — D2E([rn(OT1X > 1).

If, for example, X has power distribution with density f(x) = ax®*~!, 0 <
x < 1, then for o > 2

D(f. fin:t) = (n — D?E([n(X)]1X > 1) =

ad 1 —r22

a—2 1—to
e The RFID of k;th and k»th order statistics in a sample of size n is

D(fiyms fiomi 1) = (ka — k)2 E([r1 (Xkyn) + 12Xy ) 1 X kg > 1)

If we take ¢ (x) = log ;g ; , then ¢ (x) is known as the log of odds corresponding

to F. One can easily verify that D(f,.n, fk,:n; t) can also be represented as

dl Xtin) \ 2
D(fklsn,sz:n;l)=(k2—k1)2E<(%> ‘Xkl;n > t).
ki:n

D(f, fum: 1) = — D?E([ri(XOPIX > 1) = (n — 1)
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e The RFID of kth order statistic in two samples of sizes n; and n» is
2
D(fk:np fk:nz; t)=(ny — nl)zE([rZ(Xk:nl)] |Xk:n1 > t)-

3.2 Results on escort distributions

Let X be a random variable with density function f. The random variable Y is
said to be the escort random variable corresponding to X if for any positive real
number c, the density function of Y is given by

fex)
JE fe(xydx’

provided that fé’ f€(x)dx < oo. The escort distribution g.(x) can also be repre-
sented as

gc(x) = 0<x<b, 3.4)

Cw@) ()

ge(x) = Elw(X)] )

where w(x) = f c=1(x). That is, gc(x) is a weighted distribution associated to f.
The escort distributions are proved to have applications on different areas. Beck
and Schlogl (1993) showed that escorts distributions play the key role for various
analogies between chaos theory and thermodynamics. Bercher (2015) showed that
escorts distribution can be applied in coding theory to modify the weights of the
words when the words with low probabilities are important. The cited author has
also proved that the escort distributions are appearing as solution of a minimum
Kullback-liebler discrimination associated to state transition model framework.
Now, we propose the following definition.

Definition 3.2. Two random variables X and Y with score functions pr(x) and
pg(x) are said to have proportional scores if pg(x) = cor(x), where c is positive
constant.

Theorem 3.3. Let X and Y be two absolutely continuous nonnegative random
variables with score functions p ¢ (x)) and pg(x), respectively. Then X and Y have
proportional scores if and only if Y is escort random variable associated to X.

Proof. The proof of “if” part is straightforward. We prove the “only if” part. As-
sume that X and Y have proportional scores. That is, for ¢ > 0,

g0 _ '
g0 f

Integrating both sides of this differential equation gives

log g(x) = c[log f (x) + k],
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where we assume that k is a finite constant. This implies that
g(0) = fe()eke.
Since f and g are density functions we should have eke = ( fob fe(x) dx)~1. This
completes the proof. U
It is easy to show that if g, is escort distribution associated to f of the form of
(3.4) then
D(f,ge;1) = (c = DXI(f.0).
This is so, because if (3.4) holds, p,.(x) = cps(x), which in turn implies that
Py @) = pg. (1) f (x) dx
F(1t)
= (=D (f.0),
where F(r) is the survival function of X. Similarly, it can be easily seen that
D(ge. i) = 21 (g,

D(f7gc;l):

Example 3.3. Suppose that the underlying distribution is exponential with density
function f(x) = Aexp(—Ax), x > 0, A > 0. Then the escort density function g.(x)
is again exponential with density

gc(x) = chexp(—cix), x> 0. 3.5)

We have I(f,t) = 12, and hence I(ge,t) = czkz. Also D(f, ge;t) = czD(gc, f;
1) =(c—1)%2

Example 3.4. Suppose that f is Gamma(w, 8) with density

1
f(x)=—1_,( )ﬂaxa_le_ﬂx, x>0,8>0,a>0.
o

It can be easily shown that the escort distribution g, is Gamma((c(e — 1) + 1), ¢f)
with density function

1
_ cla—D+1_cle—1) —cBx
ge(x) = Fe@—D+ 1)(6,3) X e . (3.6)

Hence for « > 2 and c(a — 1) > 1, we have
B2(( — DT (o — 2, Bt) — 2( — DT (a — 1, Bt) + T(a, B1))
[(a, B1) ’
B2 ((cla — )T (cla — 1) — 1, ¢Bt) — 2(c(a — 1) (c(a — 1), cB1))
['(clw—1)+1,cBt)
(el —1)+1,cpt)
I'(cla —1)+1,cBt)’

I(f;0) =

I(ge;t) =
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and
D(f, gc;1)
1)252((06 — 1) (¢ —2,B1) —2(a — DT'(a — 1, B1) + T'(a, B1))
c— )
I'(«, Bt)
In particular, at t2= 0, we get I(f) = a‘%zz and I(g.) = % Also
D(f,g) = (c — 1)* L.

=(

In the following theorem, we give conditions under which the residual Fisher
Information of f and its associated escort distribution are ordered in the sense of
residual Fisher information.

Theorem 3.4. Let X and Y be two random variables such that pg(x) = cpr(x).

(a) If f(x) and p]%(x) are both increasing then, forc > 1, I(f;t) <1(g;1t).
®) If f(x) and p}(x) are both decreasing then, forO <c < 1, I(f;t) > 1(g;t).

Proof. (a) First note that the assumptions that f(x) is increasing and ¢ > 1 imply
g) _ [
f&) 7w’

is increasing in x, that is, X <p. Y. This in turn, implies that X <y, Y. Now, we
have

b 2
e pp ) fx)dx
I(f;0) = 20
b 2
P () dx ol
F(t)
b 2
_ pg(X)g(x)dx T

G(1)
where the second inequality follows from the assumptions that ,oé (x) is increasing

and X <p; Y (see Theorem 2.2). Under the conditions that imposed, part (b) can
be proved similar to part (a). g

Example 3.5.

(a) Let X be distributed as f(x) = ke*’, 0 < x < I, where k = (Jjl ¢* dx)~! is
normalizing constant. Then clearly f(x) is increasing on (0, 1). We have

gx) = k(c)ecxz, O0<x<l,
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where k(c) is normalizing constant. Then pg(x) = (2¢x)?, which is an in-
creasing function of x. Hence from part (a) of the theorem we have, for ¢ > 1,
I(f;1) <1(ge,1).

E

(b) Let X be distributed as f(x) = “<5—, x > 0. Then f(x) is a decreasing func-

tion on (0, co0). The escort function corresponding to f is with pj% (x) = ﬁ

which is decreasing on (0, co). Hence for ¢ € (0,1), we have I(f;t) >
I(g;1).

4 Conclusions

In this paper, we considered a continuous nonnegative random variable X and in-
troduced a time-dependent Fisher information, I (f, t), for the density function of
the residual random variable X|X > ¢, r > (0. We also proposed a time-dependent
Fisher information distance, I (f, g; t), between the densities of two residual life-
time random variables. We obtained the functional form of 7/(f;¢) and showed
that the underlying distribution function F can be represented in terms of 1 (f; )
and the score function associated to X. It was shown that in the class of nonneg-
ative continuous random variables, the exponential distribution can be character-
ized as a distribution with constant I (f;¢). It was proved that when two random
variables are ordered in the sense of likelihood ratio order then, under some con-
ditions, the corresponding time-dependent Fisher information of the two random
variables are ordered. We showed that the time-dependent Fisher information of
the equilibrium distribution associated to X is closely related to the hazard rate
and the mean residual life of X. The correlation coefficient between the cumula-
tive hazard rate and the score function of X is investigated. It was shown that the
time-dependent Fisher information distance I (f, g; t) between a density f and as-
sociated weighted density g can be represented as the conditional expectation of
square of the weight function. The Fisher information distance 7 (f, g; t) between
the distributions of order statistics were investigated. We also studied / (f, g; ¢) in
a class of distributions called escort distributions.
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