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Abstract. In extreme value theory, the generalized Pareto distribution (GPD)
is a family of continuous distribution used to model the tail of the distribution
to values higher than a threshold u. Several works have used this method to
approximate the tail of distribution. In this paper, we propose two extensions
of GPD, including an additional shape parameter, to provide a more flexi-
ble distribution for exceedance. Some properties of these approximations are
presented. Inference for these extensions were performed under the Bayesian
paradigm, and the results showed fit improvement when compared with the
standard GPD in applications to environmental and financial data.

1 Introduction

1.1 Extreme value theory

Extreme value analysis has become of fundamental importance in recent decades
and it can basically be divided into two areas; maxima and exceedance analysis.
The first consists in observing the maximum observation of each block of size n,
where the limit distribution when n → ∞ is known as Generalized Extreme Value
(GEV) distribution (von Mises, 1954; Jenkinson, 1955). The other approach con-
sists in modeling the tail of the data, from a threshold u, using the limit distribution
known as GPD. Coles (2001), Embrechts, Kluppelberg and Mikosch (1997) and
Ferreira and de Haan (2006) are some important references about the main models
of extreme values as well as its properties.

In both approaches, the distribution is a limit case, and what is done in practice
with data analysis is to choose a measure which is high enough (n to the maxi-
mum or u for excesses), such as the resulting observations can be well modeled by
the boundary case. However, measures that are too high can result in quite a few
observations, resulting in large variance estimates. Because of this limitation, it is
necessary to search for more flexible models for the distribution of extreme values.

The cumulative distribution function (c.d.f.) and probability density function
(p.d.f.) of the GPD are given by (Pickands, 1975)

G(x;u,σ, ξ) =
⎧⎨
⎩

1 − [
1 + ξ(x − u)/σ

]−1/ξ
, ξ �= 0,

1 − exp
[−(x − u)/σ

]
, ξ → 0,

(1.1)
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and

g(x;u,σ, ξ) =
⎧⎨
⎩

σ−1[
1 + ξ(x − u)/σ

]−(1+ξ)/ξ
, ξ �= 0,

σ−1 exp
[−(x − u)/σ

]
, ξ → 0.

(1.2)

Functions (1.1) and (1.2) are defined in x > u for ξ > 0 and 0 ≤ (x−u) ≤ −σ/ξ

for ξ < 0. Pickands (1975) and Davison and Smith (1990) show properties that
justify the use of GPD, such as the threshold stability, that is, if X follows the
GPD, then the conditional distribution of (X − u|X > u) has also GPD.

In extreme values it is of utmost importance to have the knowledge of extreme
measures for the data. An extreme quantile of distribution is a value zp such that
P(X < zp) = p, for values of p close to 1. For the GPD, the quantile function can
be obtained inverting equation (1.1), obtaining

zp =
⎧⎪⎨
⎪⎩

u + [(1 − p)−ξ − 1]σ
ξ

, ξ �= 0,

u − σ log(1 − p), ξ → 0,

(1.3)

where p ∈ (0,1).
This formula is valid only if we consider all the observations above the thresh-

old. However, in real data, most of the data is below the threshold, and the value of
u is estimated as the quantile 1 − Nu/N , where N is the total number of observa-
tions, and Nu is the number of observations above the threshold. In this case, the
quantile function zp represented by all observations, including values below the
threshold, is given by replacing p in equation (1.3) for p∗ = 1 − (1 − p)N/Nu.

Consider a random variable with twice differentiable distribution function
FX(x) as well as density function fX(x). Pickands (1986) showed that the scaled
excess random variable (X − u)/h(u)|X > u converges in distribution to the GP
distribution if limu→xFX h′

X(u) = ξ , where xFX = sup{x : FX(x) < 1}, h(x) is
the reciprocal hazard function of X given by hX(x) = [1 − FX(x)]/fX(x) and
h′

X(x) = dhX(x)/dx. Thus, for the GPD, we have

lim
u→xFX

h′
X(u) =

⎧⎨
⎩

ξ, ξ �= 0,

0, ξ → 0.

1.2 Generalization of distributions

There has been an increased interest in defining new classes of univariate contin-
uous distribution introducing additional shape parameters to the baseline model,
as lifetime (Gupta and Kundu, 2001), Environmental (Ristić and Balakrishnan,
2012), Medical (Ortega, Cordeiro and Kattan, 2012) and Economical (McDonald
and Xu, 1993), there is a need for more flexible models for real data, as well as
increasing some levels of skewness and kurtosis.
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Marshall and Olkin (1997) derived an important method of including an ex-
tra parameter to a given baseline model thus defining extended distribution. The
Marshall and Olkin (“MO” for short) transformation furnishes a wide range of
behaviors with respect to the baseline distributions. The geometrical and inferen-
tial properties associated with the generated distribution depend on the values of
the extra parameter. These characteristics provide more flexibility to the MO gen-
erated distributions. Let G(x) = 1 − G(x) and g(x) = dG(x)/dx be the survival
and density functions of a continuous random variable X with baseline c.d.f. G(x).
Then, the MO extended distribution has survival function given by

F(x; δ) = δG(x)

1 − δG(x)
= δG(x)

G(x) + δG(x)
, x ∈ X ⊆R, δ > 0, (1.4)

where δ = 1 − δ. Note that, when δ = 1, F(x) = G(x). The family (1.4) has p.d.f.
given by

f (x; δ) = δg(x)

[1 − δG(x)]2
, x ∈ X ⊆R, δ > 0.

Recently, Cordeiro, Alizadeh and Marinho (2016) proposed and studied a broad
family of univariate distributions through a particular case of half-logistic distri-
bution. This new family stems from the general class: if G(x) denotes the baseline
c.d.f. of a random variable, then a generalized class of distributions can be defined
by

F(x;λ) = 1 − [1 − G(x)]λ
1 + [1 − G(x)]λ , x ∈ X ⊆R, (1.5)

where λ > 0 is an additional shape parameter. This family of distributions has
p.d.f. given by

f (x;λ) = 2λg(x)[1 − G(x)]λ−1

{1 + [1 − G(x)]λ}2 . (1.6)

Equation (1.6) will be most tractable when G(x) and g(x) have simple expres-
sions.

In extreme value modeling, Nascimento, Bourguignon and Leão (2016) pro-
vided new extended models to the GEV distribution as a baseline function, show-
ing advantages compared with the standard GEV distribution. In the exceedance
analysis, the most recent generalizations of the GP distribution were proposed
by Papastathopoulos and Tawn (2013), which extended the GDP by defining the
beta GDP, gamma GDP and exponentiated Pareto distributions, respectively, based
on the class of generalized distributions introduced by Eugene, Lee and Famoye
(2002), Zografos and Balakrishnan (2009) and Mudholkar and Hutson (1996).
Papastathopoulos and Tawn (2013) referred to their generalizations as EGP1,
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EGP2 and EGP3 distributions, respectively. The generalized distributions are ob-
tained by taking any parent G(x) distribution in the c.d.f. of beta and gamma dis-
tributions with one and two additional shape parameters, which role is to introduce
skewness and to vary tail weight. In fact, Papastathopoulos and Tawn (2013) wrote:
“The inclusion of this parameter offers additional structure for the main body of
the distribution, improves the stability of the modified scale, tail index and return
level estimates to threshold choice and allows a lower threshold to be selected”.
However, the distributions given by Papastathopoulos and Tawn (2013) are com-
plicated. The c.d.f. and p.d.f. of the generalizations involve the incomplete beta
function and the incomplete gamma function.

This paper presents two new models for exceedance, based on extensions of the
standard GPD, with the hope it yields a “better fit” in certain exceedance analy-
sis (see Section 5). The inclusion of additional parameters in the GDP role is to
introduce skewness, generate a distribution with heavy tails, offer additional struc-
ture for the main body of the distribution and improve the stability of the modified
scale (Papastathopoulos and Tawn, 2013), that is, the new models are more flex-
ible than the GPD. Initially, we show cumulative, density, quantile function, and
some of the properties. These new generalizations have some advantages in terms
of tractability, since it does not involve any special function such as do the beta
and gamma functions. Furthermore, the proposed distributions have only two and
three parameters, in contrast with some generalizations of the GPD which have
four parameters (Papastathopoulos and Tawn, 2013). The parameter estimation of
these new models are done under the Bayesian paradigm.

The paper will unfold as follows. We defined two generalizations of the GDP:
the Marshall–Olkin GPD and the half-logistic GPD. Some statistical properties of
the new distributions are derived. In Section 3, inference procedure is carried out
under the Bayesian paradigm. In Section 4, a simulation study is performed in or-
der to assess the accuracy of the estimators. In Section 5, four illustrative applica-
tions in environmental and financial data sets are investigated. Finally, concluding
remarks are presented in Section 6.

2 Construction of extension for exceedance

In this section, we present two density functions that are generalizations of the
GPD density.

2.1 The Marshall–Olkin generalized Pareto distribution (MOGPD)

Taking the GPD as the baseline model in (1.1), and applying the Marshall–Olkin
generalization as in (1.4), we have

F(x;u,σ, ξ, δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − [1 + ξ(x − u)/σ ]−1/ξ

1 − δ[1 + ξ(x − u)/σ ]−1/ξ
, ξ �= 0,

1 − exp[−(x − u)/σ ]
1 − δ exp(−x/σ)

, ξ → 0,
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where x > u for ξ > 0 and 0 ≤ (x − u) ≤ −σ/ξ for ξ < 0 with δ = 1 − δ, δ > 0.
The respective p.d.f. is

f (x;u,σ, ξ, δ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ[1 + ξ(x − u)/σ ]−(1+ξ)/ξ

σ {1 − δ[1 + ξ(x − u)/σ ]−1/ξ }2
, ξ �= 0,

δ exp[−(x − u)/σ ]
σ {1 − δ exp[−(x − u)/σ ]}2

, ξ → 0.

The MOGPD includes the GDP when δ = 1. When δ → 0+, the MOGPD con-
verges to a distribution degenerated at zero. Hence, the parameter δ can be inter-
preted as a degeneration parameter.

The quantile function of the MOGPD is

zp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u +
[( 1−p

1−δp
)−ξ − 1]σ
ξ

, ξ �= 0,

u − σ log
(

1 − p

1 − δp

)
, ξ → 0,

(2.1)

where p ∈ (0,1). There are some advantages of the MOGPD over the EGP1 and
EGP2 distributions (Papastathopoulos and Tawn, 2013), especially in terms of
tractability since its distribution and quantile functions do not involve any special
functions.

Proposition 2.1. If X is a MOGPD, then

lim
u→xFx

h′
X(u) =

⎧⎨
⎩

ξ, ξ �= 0,

0, ξ → 0.

The proof is shown in the Appendix.

2.2 The half-logistic generalized Pareto distribution (HLGPD)

Taking the GPD as the baseline model in (1.1), and applying the half-logistic gen-
eralization as in (1.5), we have

F(x;u,σ, ξ, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − [1 + ξ(x − u)/σ ]−λ/ξ

1 + [1 + ξ(x − u)/σ ]−λ/ξ
, ξ �= 0,

1 − exp[−λ∗(x − u)]
1 + exp[−λ∗(x − u)] , ξ → 0,

where x > u for ξ > 0 and 0 ≤ (x − u) ≤ −σ/ξ for ξ < 0, with λ > 0 is an
additional shape parameter (Cordeiro, Alizadeh and Marinho, 2016), and λ∗ =
λ/σ .
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The p.d.f. of the HLGPD is

f (x;u,σ, ξ, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2λ[1 + ξ(x − u)/σ ]−(λ+ξ)/ξ

σ {1 + [1 + ξ(x − u)/σ ]−λ/ξ }2 ξ �= 0,

2λ∗ exp[−λ∗(x − u)]
{1 + exp[−λ∗(x − u)]}2 , ξ → 0.

Note that the p.d.f. above is very simple, since it does not involve any special
function such as does the beta function.

The quantile function of HLGPD is given by

zp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u + [(1−p
1+p

)−ξ/λ − 1]σ
ξ

, ξ �= 0,

u − 1

λ∗ log
(

1 − p

1 + p

)
, ξ → 0,

(2.2)

where p ∈ (0,1).

Remark 2.1. If we consider λ∗ = λ/σ and ξ∗ = ξ/σ , the HLGPD can be written
in function of just two parameters λ∗ and ξ∗, and the density can be rewritten as,
for ξ �= 0

f
(
x;u, ξ∗, λ∗) = 2λ∗[1 + ξ∗(x − u)]−(λ∗+ξ∗)/ξ∗

{1 + [1 + ξ∗(x − u)]−λ∗/ξ∗}2 . (2.3)

For inference purposes in the next sections, it would be preferable to use the
re-parametrized density in (2.3) for the HLGPD.

Remark 2.2. The HLPGD with λ = 1 is the MOGPD with δ = 2.

Proposition 2.2. If X is a HLGPD, then

lim
u→xFx

h′
X(u) =

⎧⎨
⎩

ξ

λ
, ξ �= 0,

0, ξ → 0.

The proof is shown in the Appendix.

2.3 Return levels

In extreme value analysis, something that is of much more importance than the
knowledge about central position and dispersion of the distribution is how to pre-
dict the frequency of rare events, as they usually cause catastrophes and damage
to society as a whole. With the fact that these events are in tail of the distribution,
they are represented by a high quantile. So it is through the high quantiles of these
distributions that we take a measure called return levels.



A Bayesian approach to extended models for exceedance 807

The t − th return level is the event expected once every t periods of time, given
by the quantile p = 1 − 1/t of distribution. As an example, the return level in
t = 10 is such a rare event that it is expected to occur once every 10 time peri-
ods, represented by the quantile p = 1 − 1/10 = 0.90. In exceedance distribution,
a heavy tail represents higher frequencies of extreme events, and these values rep-
resent a lower quantile than a distribution with a light tail. In this section, we show
the results of standard GPD quantiles compared with the generalizations.

Proposition 2.3. Let zM,p be the quantile p of MOGPD with parameters (σ, ξ, δ)

and let zG,p be the quantile p for the GPD with parameters (σ, ξ). Then,

1. If δ < 1, zG,p > zM,p .
2. If δ > 1, zG,p < zM,p .

The proof is presented in the Appendix.

Proposition 2.4. Let zH,p be the quantile p of HLGPD with parameters (σ, ξ, λ)

and let zG,p be the quantile p for the GPD with parameters (σ, ξ). Then,

1. If ξ = 0, zG,p > zH,p for λ > λ∗∗ and zG,p < zH,p for λ < λ∗∗.
2. If ξ < 0, then zG,p > zH,p and if ξ > 0, then zG,p < zH,p ,

where λ∗∗ = − log(1 + p).

The proof is presented in the Appendix.

3 Estimation and inference

3.1 Likelihood function

Inference for the proposed model can be performed using classical methods based
on the maximum likelihood estimators, or under the Bayesian approach. In both
cases the knowledge of likelihood function is necessary. In exceedance models, we
perform the likelihood function in the upper points of a threshold.

Let x1, . . . , xn be observed values from the MOGPD with parameters σ, ξ and δ.
Let θ1 = (σ, ξ, δ)
. The total log-likelihood function for θ1 is given by (ξ �= 0)

�MOGPD(θ1) = −n log(σ/δ) − (1/ξ + 1)

nu∑
i=1

log
[
1 + ξ(xi − u)/σ

]

− 2
nu∑
i=1

log
{
1 − δ̄

[
1 + ξ(xi − u)/σ

]−1/ξ }
,

where nu is the number of points above the threshold, provided that 1 + ξ(xi −
u)/σ > 0, for i = 1, . . . , n.
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Now, let x1, . . . , xn be observed values from the HLGPD with parameters σ, ξ

and δ. Let θ2 = (σ, ξ, λ)
. Then, the total log-likelihood function for θ2 is given
by (ξ �= 0)

�HLGPD(θ2) = −n log
[
σ/(2λ)

] − (λ/ξ + 1)

nu∑
i=1

log
[
1 + ξ(xi − u)/σ

]

− 2
nu∑
i=1

log
{
1 + [

1 + ξ(xi − u)/σ
]−λ/ξ }

,

provided that 1 + ξ(xi − u)/σ > 0, for i = 1, . . . , n.
The maximum likelihood estimators are defined as the values that maximize

the log-likelihood function. However, the classical regularity conditions for the
asymptotic properties of maximum likelihood estimators are not satisfied. When
ξ < −1, the maximum likelihood estimators do not exist. For −1 < ξ < −0.5, they
can have problems (Castillo and Hadi, 1997). For more details, see Smith (1985).
Thus, in this paper, the parameter estimation of these new distributions was done
under the Bayesian paradigm. The Bayesian approach directly allows the use of the
likelihood function, while other works, for example Papastathopoulos and Tawn
(2013), perform the inference based on quantiles of the exceedance distribution.
They use asymptotic properties to find the distribution of the parameters, whereas
the posterior distribution is exact.

3.2 Bayesian approach and MCMC

The Bayesian paradigm is used to make the inference for the models proposed
in this work. For the GPD distribution, works as Do Nascimento, Gamerman and
Lopes (2012) show how to proceed with inference for this model, and as their
work, we used the Jeffreys prior proposed in Eugenia Castellanos and Cabras
(2007) that obtained the non-informative prior for (σ, ξ) as

π(σ, ξ) ∝ σ−1(1 + ξ)−1(1 + 2ξ)−1/2, ξ > −0.5, σ > 0. (3.1)

They also showed that this prior leads to proper posterior distributions.
Gamma prior with large variance is used for the additional shape parameter for

each generalization, of the δ for MOGPD and λ for HLGPD. We choose prior
Gamma(a, b) with values of a = 0.001 and b = 0.001 in a non-informative prior
scenario with mean 1 and variance 1000. Combining the prior with the likelihood
information, we obtained the posterior distribution for each generalization.

Let x = (x1, . . . , xn)

 be observed values from the MOGPD with parameters

σ, ξ and δ. Let θ1 = (σ, ξ, δ)
. The posterior distribution of θ1 is given by (ξ �= 0)

πM(θ1|x) ∝ δa−1e−bδ

σ (1 + ξ)(1 + 2ξ)1/2

(
δ

σ

)nu
nu∏
i=1

{ [1 + ξ
σ
(xi − u)]− (1+ξ)

ξ

[1 − δ̄(1 + ξ
σ
(xi − u))

− 1
ξ ]2

}
,
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where nu is the number of points above the threshold, provided that 1 + ξ(xi −
u)/σ > 0, for i = 1, . . . , n.

Let x = (x1, . . . , xn)

 be observed values from the HLGPD with parameters

σ, ξ and δ. Let θ2 = (σ, ξ, λ)
. The proportional of posterior distribution of θ2 is
given by (ξ �= 0)

πH (θ2|x) ∝ λa−1e−bλ

σ (1 + ξ)(1 + 2ξ)1/2

(
2λ

σ

)nu
nu∏
i=1

{ [1 + ξ
σ
(xi − u)]− (λ+ξ)

ξ

[1 + (1 + ξ
σ
(xi − u))

− λ
ξ ]2

}

provided that 1 + ξ(xi − u)/σ > 0, for i = 1, . . . , n.
Inference cannot be performed analytically and, because of that, approximat-

ing MCMC methods were used (Gamerman and Lopes, 2006), notwithstanding,
other methods for estimation should be used as quadrature rules. That can be seen,
for example, in Santos, Gamerman and Franco (2017). Convergence was assessed
by running two parallel chains with different starting values. The algorithm con-
sists in sample points for (σ, ξ) and the additional parameter accepts these points
according to the Metropolis rule. The sampling of (σ, ξ) is similar to Do Nasci-
mento, Gamerman and Lopes (2012). With the MOGPD, for the δ parameter, we
performed the Metropolis step using the Gamma distribution as proposed. For the
HLGPD, the parameter λ∗ is also proposed from the Gamma distribution. In all the
situations, the proposal distribution has the mean located at the previous step of the
chain, and the variance is chosen to result in a reasonable convergence rate, usu-
ally around 0.44 according to the optimal rate proposed by Roberts and Rosenthal
(2009).

4 Simulation study

Simulations were performed in different types of configuration with the parame-
ters, from the following two extensions, the HLGPD and MOGPD. The objective
of the simulation study is to verify some aspects of Bayesian inference, such as
parameter identifiability and algorithm efficiency in retrieving the true values of
the parameters.

In total K = 500 replications were simulated with sample size n = 1000
points in a configuration where (σ,u) = (20,50). We simulated points for ξ =
(−0.4,0.5), with the purpose of verifying the behavior of the extension for the
short and heavy tail. With the additional shape parameter in MOGPD, it was sim-
ulated points with parameters δ = (0.3,0.8,2) and for HLGPD, the points were
simulated with additional parameters λ = (0.3,0.8,2). By consequence of Re-
mark 2.1, the HLGPD can reduce to a two parameter problem, and estimation
and inference were performed to the parameters λ∗ = λ/σ and ξ∗ = ξ/σ , since
the joint estimation of the 3 parameters of the HLGPD model could cause non-
identifiability problems or higher variance of the estimates.
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For each one of the K = 500 replications of sample size n = 1000, the infer-
ence was performed using both new generalized model, proposed in this work, and
standard GPD and EGPD’s distributions of Papastathopoulos and Tawn (2013) in
order to make comparisons i.e., we generated observations of the proposed dis-
tributions and fitted it with the true distribution (proposed distributions) and the
GPD and EGPD’s for each replicate. The Deviance Information Criterion (DIC,
Spiegelhalter et al. (2002)) and Root Mean Square Error of each replicate was
collected to compare this fit measure of the proposed model against GPD model.
A criteria to show if the estimation of the proposed distribution fits better than
the GPD was the Wilcoxon test that compares the median of 500 DIC’s produced
by the proposed model against the median of 500 DIC’s of the GPD and EGPD’s
models.

Table 1 shows the main results for the 500 replications in each parameter con-
figuration. We can see that in most of the configurations, the average in posterior
means of the parameters is near the true value, with a low average of the Root
Mean Square Error. The model is less precise in MOGPD when ξ = 0.5. In all
replication scenarios, the DIC average to the proposed model is lower than the
DIC of the GPD and EGPD’s fit, showing the advantage of using an extension. For
the MOGPD model, the difference between the DIC of the GPD is less significant
when δ = 0.8 and ξ = −0.4, due to this case, it is the most similar to the GPD
(δ = 1). For all the other cases, the MOGPD fit showed being significantly dif-
ferent and better than the other extensions. For the HLGPD model, the difference
between the DIC is more significant in cases where λ = 0.3. For ξ > 0, the results
of DIC suggest a similar adjustment between the HLGPD, GPD, and EGPD fits for
λ = 0.8 and λ = 2. Looking at the coverage probability of 95% credibility interval,
we can note that in almost all scenarios, more than 90% of replicates contain the
true value of the parameter inside the credibility interval. The exception was the
case MOGPD when ξ = 0.5, which is less precise.

Figure 1 shows the return level plot estimated by the proposed model in one of
the replications, compared with the true returns. We can see the efficiency of the
estimation procedures in all of the configurations, the true return line is inside of
the credibility interval in estimated returns.

5 Applications to real data

In order to show the utility of the new distributions, extreme data was analyzed in
the environmental and financial areas. Environmental data consists of daily river
flow and rainfall observations, which were previously analyzed by Do Nascimento,
Gamerman and Lopes (2012) using the GPD distribution. Financial data consists of
daily stock returns, used previously in Nascimento, Gamerman and Lopes (2016).
In order to avoid excess clustering and decrease the dependence between consecu-
tive days, maxima of sets of m days were considered. When analyzing SP500 and
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Table 1 Summary statistics for 500 replicates

APM AMSE CPI APM AMSE CPI APM AMSE CPI

MOGPD δ = 0.3, ξ = −0.4 δ = 0.8, ξ = −0.4 δ = 2, ξ = −0.4

δ 0.307 0.059 0.896 0.801 0.150 0.926 2.008 0.362 0.924
σ 20.24 2.81 0.876 20.43 2.46 0.908 20.28 2.028 0.938
ξ −0.402 0.081 0.916 −0.409 0.065 0.920 −0.405 0.051 0.940
DICMOGPD 6139.6 Wx.test – 7052.0 Wx.test – 7497.8 Wx.test –
DICGPD 6170.4 <0.001 – 7053.9 0.320 – 7548.2 <0.001 –
DICEGPD1 6159.7 <0.001 – 7053.1 0.459 – 7505.9 <0.001 –
DICEGPD2 6159.4 <0.001 – 7053.5 0.458 – 7507.9 <0.001 –
DICEGPD3 6159.0 <0.001 – 7052.1 0.439 – 9999.7 <0.001 –

δ = 0.3, ξ = 0.5 δ = 0.8, ξ = 0.5 δ = 2, ξ = 0.5
δ 0.171 0.219 0.226 0.455 0.657 0.374 1.319 1.741 0.574
σ 54.22 36.18 0.218 72.95 56.69 0.372 96.46 83.73 0.372
ξ 0.302 0.219 0.256 0.409 0.310 0.386 0.330 0.207 0.572
DICMOGPD 7015.8 Wx.test – 8613.7 Wx.test – 9967.1 Wx.test –
DICGPD 7071.4 <0.001 – 8647.9 <0.001 – 9996.0 <0.001 –
DICEGPD1 7071.2 <0.001 – 8646.7 <0.001 – 9996.5 <0.001 –
DICEGPD2 7070.8 <0.001 – 8646.7 <0.001 – 9996.5 <0.001 –
DICEGPD3 7070.9 <0.001 – 8646.5 <0.001 – 9996.8 <0.001 –

HLGPD λ = 0.3, ξ = −0.4 λ = 0.8, ξ = −0.4 λ = 2, ξ = −0.4
λ 0.301 5.699 0.934 0.789 15.21 0.914 2.019 37.98 0.936
ξ −0.399 7.500 0.952 −0.399 7.601 0.922 −0.389 7.610 0.932
DICHLGPD 7320.2 Wx.test – 7667.24 Wx.test – 6664.8 Wx.test –
DICGPD 8580.1 <0.001 – 7788.1 <0.001 – 6688.4 <0.001 –
DICEGPD1 8006.6 <0.001 – 7694.1 <0.001 – 6674.8 0.002 –
DICEGPD2 7850.7 <0.001 – 7685.2 <0.001 – 6674.6 0.002 –
DICEGPD3 8106.2 <0.001 – 7703.7 <0.001 – 6674.9 <0.001 –

λ = 0.3, ξ = 0.5 λ = 0.8, ξ = 0.5 λ = 2, ξ = 0.5
λ 0.307 5.692 0.938 0.807 15.192 0.950 2.023 37.97 0.912
ξ 0.516 9.483 0.930 0.509 9.491 0.954 0.520 9.480 0.922
DICHLGPD 15,621.2 Wx.test – 10,788.6 Wx.test – 7918.0 Wx.test –
DICGPD 15,621.8 0.462 – 10,790.6 0.853 – 7923.4 0.185 –
DICEGPD1 17,221.2 <0.001 – 10,790.1 0.380 – 7921.6 0.453 –
DICEGPD2 17,195.2 <0.001 – 10,788.1 0.640 – 7921.2 0.458 –
DICEGPD3 17,303.5 <0.001 – 10,791.6 0.500 – 7921.0 0.446 –

APM represents the average of posterior means, AMSE the average of the Root mean square error,
and CPI is the coverage probability of 95% of the credibility intervals. DICm is the adjustment
measure calculated for each simulation using the m model for estimation. Wx.test is the Wilcoxon-
test and presents the p-value of test comparing the median the DIC to the 500 replicates from the
proposed model compared with other useful models.
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Figure 1 Return Level plots for the simulations. Top: HLGPD with ξ = 0.5 with λ = 2 (left) and
λ = 0.8 (right). Bottom: MOGPD with ξ = 0.5 and δ = 0.3 (left) and ξ = −0.4 and δ = 0.8 (right).
Full lines: Posterior mean estimated by the proposed model. Dashed line: 95% C.I of the proposed
model. Grey line: True value.

Petrobrás data, we considered groups of m = 5 and m = 3 days, respectively. To
the environmental data sets, which presents stronger daily dependence, we consid-
ered groups of m = 15. The previous work that used these applications treated the
estimation of the threshold, and we will use these values which were obtained as
fixed parameter for this work, as the main objective here is to compare the new
distributions with the GPD. Figure 2 shows the histogram of the data sets to the
values higher than to respective thresholds.

The proposed distributions were applied in several real data applications to envi-
ronmental and financial data sets. We compared the two distributions of this work
with standard GPD and the generalizations proposed in work by Papastathopoulos
and Tawn (2013).

For each application, the best model was chosen using the DIC criteria. Table 2
shows the DIC fit measures for application data, where the GPD are the results for
standard GPD; the MOGPD and HLGPD are the results for extensions of models
described in Sections 2.1 and 2.2, respectively; the EGP1, EGP2 and EGP3 are
the results of Examples 1, 2 and 3 of extensions proposed in Papastathopoulos and
Tawn (2013), described on page 134.

Table 3 presents posterior mean and 95% credibility intervals for the parame-
ters to each model. In the MOGPD case, values of δ ≈ 1 show the proximity of
the estimation with the standard GPD. As for the HLGPD, the estimation we do
not directly do for λ, but λ∗ = λ/σ and ξ∗ = ξ/σ . We are not able to compare this
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Figure 2 Posterior predictive distribution for data. First line Left: Espirito Santo; Right:
Grandola.Second line Left: Petrobrás; Right: SP500. Full line: Estimation using the best model ac-
cording to DIC. Dashed line: Estimation using standard GPD.

Table 2 DIC measures for applications

Model GPD MOGPD HLGPD EGP1 EGP2 EGP3

Rainfall–Grandola 864.76 859.48 868.93 865.70 865.59 865.75
River–Espirito Santo 1232.98 1232.42 1234.95 1234.08 1234.44 1234.51
Financial–Petrobrás 3151.17 3127.71 3133.54 3143.79 3143.89 3143.96
Financial–SP500 4697.55 4694.88 4693.25 4698.42 4697.80 4698.90

extension with the GPD (λ = 1). A method to perform this comparison in the case
for HLGPD is to use the estimation of ξ/σ of the standard GPD and compare with
ξ∗ from HLGPD. We can see that for the two environmental applications, which
the MOGPD model presented lower DIC, the value of the additional parameter δ

is significantly lower than 1, while for Petrobrás this parameter is higher than 1.
In the SP500 financial application, the credibility interval of parameter δ contains
the particular case of GPD in the MOGPD model, while in the HLGPD model, the
estimation of ξ∗ was very close to ξ/σ from the GPD, indicating that this appli-
cation is the one that the extensions have pointed out to be closer to the standard
GPD.



814
F.Ferraz

do
N

ascim
ento

and
M

.B
ourguignon

Pereira

Table 3 Posterior means and 95% CI of the parameters in each model

MOGPD HLGPD GPD

Model δ ξ σ λ∗ ξ∗ ξ σ ξ/σ

Grandola 0.39 (0.23; 0.69) −0.37 (−0.49; −0.03) 27.05 (15.42; 36.77) 0.17 (0.12; 0.23) 0.05 (0.01; 0.12) 0.03 (−0.18; 0.29) 12.15 (8.88; 16.03) 0.01 (−0.01; 0.03)
Esp. Santo 0.50 (0.29; 0.98) −0.12 (−0.34; 0.27) 643.1 (300.8; 873.6) 0.006 (0.004; 0.009) 0.002 (0.0006; 0.006) 0.11 (−0.09; 0.40) 339.6 (240.3; 457.4) 0.0004 (−0.001; 0.002)
Petrobrás 1.61 (1.16; 2.31) 0.22 (0.15; 0.32) 1.36 (1.01; 1.79) 0.88 (0.80; 0.98) 0.23 (0.16; 0.31) 0.16 (0.10; 0.23) 1.90 (1.73; 2.08) 0.09 (0.05; 0.12)
SP500 1.17 (0.87; 1.71) 0.11 (0.02; 0.18) 1.07 (0.83; 1.38) 1.43 (1.33; 1.53) 0.31 (0.23; 0.39) 0.07 (0.03; 0.12) 1.19 (1.12; 1.27) 0.06 (0.02; 0.11)
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Figure 3 Return Level plots for environmental data. Left: Grandola; Right: Espirito Santo. Full
line: Estimation using the best model according to DIC, with respective 95% CI. Dashed line: Esti-
mation using standard GPD. Grey line: Empirical returns.

5.1 Environmental data sets: River flood and rainfall

The first analysis consists in the measurement of the amount of rain in Grandola
monitoring station in the South of Portugal. The data was recorded daily from 1931
to 2008. A sample size of 925 fortnightly maxima was analysed. The second envi-
ronmental analysis consists in the measurement of the levels of the Espirito Santo
river flow located in Northeast of Puerto Rico in f t3/s. The data was recorded on
a daily basis from April 1967 to September 2002 and it was also analyzed in other
works such as Do Nascimento, Gamerman and Lopes (2012). A size of 864 fort-
nightly maxima data was analysed. The threshold parameter here is fixed, and was
chosen according to the work by Do Nascimento, Gamerman and Lopes (2012),
who proposed a Bayesian approach to this parameter.

Table 2 shows that using an extension of GPD proposed in this work is the
one which obtained better results. For Grandola and Espirito Santo data sets, the
MOGPD presented a better fit. It is possible to observe this in the examples of
Papastathopoulos and Tawn (2013), which produced very similar measurements,
as this example comes from the same family of generalizations. Figure 2 shows
the predictive lines of MOGPD and GPD curves fitting the datasets. The MOGPD
curve appears to be in a different shape as a consequence of the additional pa-
rameter, and the datasets would be better fitted comparing with the standard GPD
fitting.

Figure 3 shows the return level plot of Grandola and Espirito Santo river, using
MOGPD (the best according to DIC) and standard GPD. It is possible to verify that
the proposed model fits near the empirical quantile, and the return estimation by
the MOGPD is usually a bit higher than the standard GPD. A rainfall of 65 mm is
expected to occur in the Grandola station once every t = 55 periods of time, while
a river quota of 1400f t3/s is expected to occur once every t = 73 periods of time.

5.2 Financial data sets: Petrobrás and SP500 index

The proposed models were applied in a study of two financial time series: Petro-
brás and SP500 returns. The first is the biggest (non-banking) company in Brazil,
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Figure 4 Return Level plots for financial data. Left: Petrobrás; Right: SP500. Full line: Estima-
tion using the best model according to DIC, with respective 95% CI. Dashed line: Estimation using
standard GPD. Grey line: Empirical returns.

while the second is a stock market index based on the markets capitalizations of
500 large companies which have common stock listed on the NYSE or NASDAQ.
We collected daily closing prices pt , and converted to returns xt = pt/pt−1 − 1,
and then transformed to absolute returns yt = 100×|xt − x̄|, where x̄ is the sample
average of xt . The subtraction of x̄ from each xt is used to avoid zeros and the mul-
tiplication of 100 is introduced for convenience of the presentation. The threshold
parameter here is fixed, and chosen according to the work of Nascimento, Gamer-
man and Lopes (2016), that analysed this same data set, proposing a Bayesian ap-
proach to this parameter. For SP500 data we analyzed data from January 2nd 1950
to February 18th 2014 or 3345 5-day maxima. For Petrobrás data we analysed data
from October 8th 2000 to February 18th 2014 or 1131 3-day maxima.

Table 2 shows that the HLGPD of Section 2.2 presented the best fit measures for
the SP500, while MOGPD had the best fit to Petrobrás. The second line of Figure 2
shows the predictive distribution of the financial examples of the best model (ac-
cording of DIC) compared with standard GPD. We can verify that, although there
is some difference between the curves, in both applications the predictive curve
fits well the true histogram of the data.

Figure 4 shows the return level of the best extension model (according to DIC)
against GPD. We can confirm that the proposed extension model and empirical
returns present similar results. The return level of 10% is expected to occur once
every 33 periods of times to Petrobrás, and as for SP500 data this same number of
periods represents a return of approximately 5%.

6 Concluding remarks

In this paper, we proposed two extensions to the GPD, as a flexible alternative
to standard GPD for exceedance analysis. Although GPD is considered a limit
distribution of exceedance, as in practice we do not work in the limiting situation,
the flexibility of the GPD extensions proposed can present better results. Therefore,
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we proposed a Bayesian approach to the estimation of the extensions, as well as
the extensions of Papastathopoulos and Tawn (2013).

We showed important properties of each generalization, and performed an infer-
ence for each case. The inference procedure showed efficiency to recover value of
parameters and quantile, with low variability, based on results of 500 replications.
Application in real data sets showed an advantage in considering a new parame-
ter in GPD. This work can be extended as well as proposing new generalizations
to GPD, and to propose a method which chooses the best generalization for each
data set. We hope these new models may attract wider applications for exceedance
analysis.

Appendix

Proof of the Proposition 2.1

Let f and F the density and cumulative distribution of MOGPD, respectively.
Then, for ξ �= 0, we have

1 − F(x;u,σ, ξ, δ)

f (x;u,σ, ξ, δ)
= [1 + ξ(x − u)/σ ]{1 − δ[1 + ξ(x − u)/σ ]−1/ξ }

σ

= σ−1[
1 + ξ(x − u)/σ

] − σ−1δ
[
1 + ξ(x − u)/σ

]−1/ξ+1
.

Thus,

h′
X(x) = ξ − δ(ξ − 1)

[
1 + ξ(x − u)/σ

]−1/ξ
.

For ξ → 0,

1 − F(x;u,σ, ξ, δ)

f (x;u,σ, ξ, δ)
= 1

σ
− δ exp[−(x − u)/σ ]

σ
.

Thus,

h′
X(x) = δ

exp[−(x − u)/σ ]
σ 2 .

Therefore,

lim
u→xFX

h′
X(u) =

⎧⎨
⎩

ξ, ξ �= 0,

0, ξ → 0.

Proof of the Proposition 2.2

Let f and F the density and cumulative distribution of HLGPD, respectively.
Then, for ξ �= 0, we have

1 − F(x;u,σ, ξ, λ)

f (x;u,σ, ξ, λ)
= 1 + [1 + ξ(x − u)/σ ]

λ∗ + 1 + [1 + ξ(x − u)/σ ]−λ∗/ξ∗+1

λ∗ .



818 F. Ferraz do Nascimento and M. Bourguignon Pereira

Thus,

h′
X(x) = ξ

λ
+ (

ξ∗ − λ∗)[
1 + ξ(x − u)/σ

]−λ∗/ξ∗
.

For ξ → 0,

1 − F(x;u,σ, ξ, λ)

f (x;u,σ, ξ, λ)
= 1

λ∗ + exp[−λ∗(x − u)]
λ∗ .

Thus,

h′
X(x) = − exp

[−λ∗(x − u)
]
.

Therefore,

lim
u→xFX

h′
X(u) =

⎧⎨
⎩

ξ

λ
, ξ �= 0,

0, ξ → 0.

Proof of the Proposition 2.3

Let ZG,p the quantile of GPD given in (1.3) and let ZM,p the quantile of MOGPD
given in (2.1). Then, for ξ = 0,

ZG,p − ZM,p = σ
{− log(1 − p) + log(1 − p) − log

[
1 − (1 − δ)p

]}
= σ

{− log
[
1 − (1 − δ)p

]}
.

If δ < 1, [1−(1−δ)p < 1], and then ZG,p −ZM,p > 0. If δ > 1, [1−(1−δ)p > 1]
and ZG,p − ZM,p < 0.

For ξ �= 0,

ZG,p − ZM,p = σ

ξ

{
(1 − p)−ξ − (1 − p)−ξ

[1 − (1 − δ)p]
}

= σ

ξ
(1 − p)−ξ {

1 − [
1 − (1 − δ)p

]ξ}
.

If δ < 1, can be verified that for any value of ξ , ZG,p − ZM,p > 0.

Proof of the Proposition 2.4

Let ZG,p the quantile of GPD given in (1.3) and let ZH,p the quantile of HLGPD
given in (2.2). Then, for ξ = 0,

ZG,p − ZH,p = σ
[− log(1 − p) + log(1 − p)/λ − log(1 + p)

]
= σ

[
(1/λ) log(1 − p) + log

(
1 − p2)]

.

If λ > λ∗∗, ZG,p − ZH,p > 0. If λ < λ∗∗, ZG,p − ZH,p < 0.
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For ξ �= 0,

ZG,p − ZH,p = σ

ξ

[
(1 − p)−ξ −

(
1 − p

1 + p

)−ξ/λ]

= σ

ξ
(1 − p)−ξ

[
1 −

(
1 − p

1 + p

)−1/λ]
.

As λ > 0 and (1 − p)/(1 + p) < 1, if ξ < 0, ZG,p − ZH,p > 0 and if ξ > 0,
ZG,p − ZH,p < 0.
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