
Brazilian Journal of Probability and Statistics
2017, Vol. 31, No. 4, 765–800
https://doi.org/10.1214/17-BJPS375
© Brazilian Statistical Association, 2017

Studying the effective brain connectivity using
multiregression dynamic models

Lilia Costaa, Thomas Nicholsb,c,d and Jim Q. Smithe

aUniversidade Federal da Bahia
bOxford Big Data Institute

cLi Ka Shing Centre for Health Information
dDiscovery, Nuffield Department of Population Health, University of Oxford

eThe University of Warwick

Abstract. The Multiregression Dynamic Model (MDM) is a multivariate
graphical model for a multidimensional time series that allows the estima-
tion of time-varying effective connectivity. An MDM is a state space model
where connection weights reflect the contemporaneous interactions between
brain regions. Because the marginal likelihood has a closed form, model se-
lection across a large number of potential connectivity networks is easy to
perform. With application of the Integer Programming Algorithm, we can
quickly find optimal models that satisfy acyclic graph constraints and, due
to a factorisation of the marginal likelihood, the search over all possible di-
rected (acyclic or cyclic) graphical structures is even faster. These methods
are illustrated using recent resting-state and steady-state task fMRI data.

1 Introduction

In this paper, we estimate the effective connectivity for resting-state and steady-
state task-based functional Magnetic Resonance Imaging (fMRI) data, using a
class of Dynamic Bayesian Network (DBN) models, called the Multiregression
Dynamic Model (MDM). The MDM is a model for multivariate time series and
aims to efficiently identify dynamic dependence across variables over time (Queen
and Smith, 1993, Queen and Albers, 2009). In the study of functional integra-
tion, which considers how different parts of the brain work together to give rise
to behavior and cognition, a distinction is made between functional connectivity
and effective connectivity (Poldrack, Mumford and Nichols, 2011). The former is
defined as the correlation among measurements of neuronal activity of different
areas whilst the effective connectivity represents causal influence from one brain
region onto another (Friston, 2011). Several models have been developed in order
to define and detect a causal flow from one variable to other, especially in the area
of machine learning (e.g., Spirtes, Glymour and Scheines, 2000 and Pearl, 2000).
The MDMs embody a particular pattern of causal relationships which, unlike the
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Bayesian Network (BN), expresses the dynamic message passing as well as the
potential connectivity between different areas in the brain.

There are different methods in neuroscience literature which aim to estimate
functional and effective connectivity. They usually associate a model to a graph-
ical structure. A graph consists of nodes and edges, where the latter represents
connections between pairs of the former. In connectivity studies, nodes are typi-
cally considered to be the regions of interests (ROI’s), and the goal of each method
is to detect the edges that connect the regions (Sporns, 2010). When one node in-
fluences other, the edge indicates the direction of the effect. In the example shown
in Figure 1, the edges are directed and, as no path starts and ends at the same node,
they are called directed acyclic graphs (DAGs). When there is a directed edge from
one node to another, the former is called a parent while the latter is a child.

One of the most popular methods for modeling brain dependences in neu-
roimaging is the Dynamic causal modeling (DCM). The DCM estimates the
directed effective connectivity through a model formulated with stochastic dif-
ferential equations (Stephan et al., 2008). The most common DCM is a deter-
ministic one, where it is assumed that the neuronal activity is completely de-
termined by the model, and so it is not intended to be used for resting-state
connectivity (Penny, Ghahramani and Friston, 2005, Smith et al., 2011). The
DCM uses a detailed biophysical model to connect the neuronal activity to the
measurable fMRI data, making the inference process quite complex and in-
feasible for more than just a few nodes (Friston, Harrison and Penny, 2003,
Poldrack, Mumford and Nichols, 2011).

Another popular model is the Bayesian Network which is a simpler and non-
dynamic model that expresses causal concepts in terms of conditional indepen-
dence among variables (Smith and Croft, 2003, Goldenberg et al., 2010). A BN
is a specific case of the MDM when connections are constant over time. Other
classes of dynamic linear models have been developed recently, such as the
Linear Dynamic System (LDS; Smith et al., 2010, 2011) and the Multivariate
(or Bilinear) Dynamical System (BDS; Penny, Ghahramani and Friston, 2005,
Ryali et al., 2011). While they are more sophisticated than the MDM, these other
models usually estimate static connectivity and their scores are not factorable, and
hence are much slower to search over.

In an MDM, the directed edges can be associated with a potential causal direc-
tionality, as argued in Queen and Albers (2009), and hint at the effective connec-
tivity rather than the functional connectivity. The MDMs are a class of directed
graphical models with a number of appealing features: (i) In contrast to standard
Bayesian Networks, an MDM explicitly models the changes in the connectivity
over time; (ii) Critically, the MDM is driven by contemporaneous interactions be-
tween the brain regions rather than lagged relationships as some methods used,
such as Dynamic Bayesian Network (Goldenberg et al., 2010) and methods based
on Granger causality (see below); (iii) The MDMs need not be acyclic, though
when constrained to be acyclic they can dissociate otherwise indistinguishable
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Markov-equivalent graphs (see Section 4); (iv) But perhaps the biggest advantage
of the MDM as compared to other dynamic models is their closed form for the
marginal likelihood. The marginal likelihood is used to score models and estimate
parameters, and can be written as a product of multivariate Student’s t distribu-
tions conditional on a small number of smoothing parameters (details below). This
closed form allows us to perform model selection over a dynamic class of models
very quickly, just as for the simple BN; (v) In addition, if it is necessary to include
other features, like change points or covariates, it is straightforward to embellish
the MDM. Even after that, the MDM often exhibits a closed form likelihood dis-
tribution (Costa et al., 2015). This means that it is possible to search over many
candidate networks quickly, estimating each of their parameters and hence their
time profile of changing strengths along the way.

One particular embellishment is to use lagged information, that is, to add the
past of variables as parents, creating a Granger causality MDM (Granger, 1969,
Havlicek et al., 2010). Classes like this one that directly model Granger causality
have received severe criticism when applied to the fMRI datasets (Chang, Thoma-
son and Glover, 2008, David et al., 2008, Valdés-Sosa et al., 2011, Smith et al.,
2012). For instance, the match between the sampling interval and the time con-
stant in the neurodynamics is often poor, because the temporal delay blood-based
response can vary considerable across brain regions. In fact, (Smith et al., 2011)
discovered that lag-based approaches like these do not perform well at identifying
connections for fMRI data, albeit only under the assumption of static connectivity
strength. Therefore we do not consider this extension further.

In this paper, we use two search methods, one for acyclic graphs, and another
for directed (acylic or cyclic) graphs. We call the first the MDM-IPA, which uses
the Integer Programming Algorithm to search for the acyclic graphical structures.
This method has showed good performance for synthetic and real resting-state
fMRI data; in particular, we have shown that it provides comparable performance
to methods like Patel’s tau and generalized synchronization (Costa et al., 2015).
The other search method is called the MDM-DGM, which does not consider the
acyclic constraints and searches the larger class of directed graphs and we present
here for the first time.

The purpose of this paper is to present the development of this new search
method the MDM-DGM and a comparison with the MDM-IPA. The MDM-DGM
appears to be more suitable for neuroscience because unlike the MDM-IPA it is
able to model a bidirectional communication between brain regions which typi-
cally exists in this domain. In this paper, we also present the first application of
the MDM-DGM to two different fMRI studies (resting-state and task fMRI data)
and the first application of the MDM-IPA to task fMRI data. The first application
consists of a resting-state experiment acquired on 25 subjects and 3 sessions per
subject, considering 4 brain regions, and aims to study the information flow of
the brain, for example, “forward” or “backward”. The second one provides data
from 5 different experiments, considering 11 brain regions and 15 subjects, and
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aims to compare the map of brain connections for different conditions, such as
resting-state and motor activity.

The remainder of this paper is structured as follows. Section 2 describes the
MDM while Section 3 provides search network algorithms. In Sections 4 and
5, these search methods are applied into resting-state and steady-state task real
datasets, respectively. Finally, Section 6 concludes the work and describes the di-
rections for future work.

2 The multiregression dynamic model

The Multiregression Dynamic Model (MDM) is a multivariate model for an ob-
servable series which is broken down into univariate regression dynamic linear
models (DLMs; West and Harrison, 1997), one for each node. These DLMs allow
the effective connectivity to vary during the period of investigation. To introduce
the DLM, consider the relationship between 3 regions: Posterior Cingulate, Ante-
rior Frontal and Left Lateral Parietal, with their respective time series being Yt (1),
Yt (2) and Yt (3), representing the averaging time series over all voxels within the
region. A possible model linking one of the series to the two others might be

Yt (1) = θ
(1)
t + θ

(2)
t Yt (2) + θ

(3)
t Yt (3) + vt ,

where θ
(1)
t is the baseline, θ

(2)
t and θ

(3)
t are the coefficients for regions 2 and 3,

respectively, and vt is an error term. The parameters θ
(2)
t and θ

(3)
t are defined as

effective connectivity and can be seen as a temporal dependence between brain
areas and therefore it may be defined as dynamic (activity-dependent). Thus these
parameters are all time-dependent, allowing the influence of Anterior Frontal and
Left Lateral Parietal into Posterior Cingulate to vary over time. Considering a
walk-random model, the regression parameters are written in function of their past
values as

θ
(j)
t = θ

(j)
t−1 + w

(j)
t ,

where w
(j)
t is innovation, for j = 1, . . . ,3. It is interesting to note that other

dynamic models of this environment, for example Dynamic Causal Modeling
(Friston, Harrison and Penny, 2003, Stephan et al., 2008), albeit having techni-
cal differences in definition, are similarly modeled as a function of latent variables
which follow a Markovian dynamic process. Furthermore, unlike non-dynamic
directed acyclic graph (DAG), Markov equivalent DAGs have different associ-
ated predictive distributions and thus can be distinguished. Thus, at least in prin-
cipal, it is possible to use the MDM to discriminate patterns of causal direc-
tionality, that would be undetectable with BN models (Queen and Albers, 2009,
Costa et al., 2015), see an example of this in Section 4.
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Figure 1 Dependence structure for the MDM considering region 1 as the parent of region 2 and
region 3; and region 2 as the parent of region 3. The solid circles represent observed variables,
Yt (r), r = 1,2,3. The dashed circles represent latent variables: blue for observational errors, vt (r);

violet for the intercept of the regression of region r , θ
(1)
t (r); and orange for the effective connectivity

strength between two regions, θ
(2)
t (2), θ

(2)
t (3) and θ

(3)
t (3).

The description of the model

Before providing a detailed description of the MDM, we will introduce some no-
tation. Let Y′

t = (Yt (1), . . . , Yt (n)) denote the variable at time t for the n regions.
Their observed values are designated respectively by y′

t = (yt (1), . . . , yt (n)).
We define Pa(r) to be the set of parents for region r , and denote Yt (r)′ =
(Y1(r), . . . , Yt (r)) as the previous information up to time t for region r = 1, . . . , n.

The linear multiregression dynamic model (LMDM) is defined by n observa-
tion equations, system equation and initial information (Queen and Smith, 1993).
A DAG representing an MDM for three nodes is shown in Figure 1, and in full
generality is as follows.

Observation equations:

Yt (r) = Ft (r)
′θ t (r) + vt (r), vt (r) ∼ N

(
0,V (r)

);
System equation:

θ t = Gtθ t−1 + wt , wt ∼N (0,Wt ); (2.1)
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Initial information:

(θ0|y0) ∼ N (m0,C0); (2.2)

(
φ(r)|y0

) ∼ G
(

n0(r)

2
,
d0(r)

2

)
, (2.3)

where r = 1, . . . , n; t = 1, . . . , T ; N (·, ·) is a Gaussian distribution and Ft (r) is a
known function of Pa(r). In an MDM, Ft (r) is usually defined as Ft (r) = M(r)Y∗

t ,
where M(r) is pr × (n+ 1) matrix containing only zeros and ones, where ones in-
dicate the parents of Yt (r) and the first row of M(r) is (1,0, . . . ,0) representing
the intercept; pr = |Pa(r)| + 1 counts the number of parents of r plus one for
the intercept of region r ; Y∗

t = (1, Yt (1), . . . , Yt (n))′. The time-varying regression

coefficients are θ ′
t = (θ t (1)′, . . . , θ t (n)′), where θ t (r)

′ = (θ
(1)
t (r), . . . , θ

(pr )
t (r)) is

the pr -dimensional state vector for region r . The parameter θ
(1)
t (r) represents the

intercept of the regression of region r whilst θ
(i)
t (r) for i > 1 represents the ef-

fective connectivity strength for the (i − 1)th parent of region r . The parameters
at time t depend on time t − 1 through Gt = blockdiag{Gt (1), . . . ,Gt (n)}, where
Gt (r) is a pr × pr matrix. While we have included Gt to indicate the possible
enrichment of the system model, in practice this work only considers Gt (r) = Ipr ,
where Ipr is pr -dimensional identity matrix, and hence Gt is omitted from now
on. This is the simplest choice of Gt (r) and defines a random walk process on the
connectivity strength which appears to fit this application very well. However, in
some applications, it can be desirable to define other Gt (r). For example, if the
assumption that the standardized conditional one-step forecast errors are serially
independent is not verified and it is necessary to include the ARMA components
in DLM form, West and Harrison (1997, Chapter 9) suggest that Gt (r) is defined
as a function of other parameters. However, in this case, the estimation process
becomes more complex and much less compatible with the efficient model search
methods we use here.

The error terms of this model are vt (r) and wt . The observational er-
ror, vt (r), is taken to be independent over t , with variance V (r). The wt

are innovations for the latent regression coefficients with covariance Wt =
blockdiag{Wt (1), . . . ,Wt (n)}, each Wt (r) being a pr ×pr matrix. Note that when
Wt = 0 for all t , the usual static regression model is obtained. These two terms
account for two different types of variance. The wt models the slowly varying
behavior expected in the θ t ’s, while vt (r) accounts for uncorrelated noise not oth-
erwise modelled. For more details of this model class see Queen and Smith (1993)
and Costa et al. (2015).

When the observational variances are unknown, we write the observation pre-
cision as φ(r) = V (r)−1 and the prior information is provided through the distri-
bution of θ0 and φ(r), which specifies the information at time t = 0, as shown
in equations (2.2) and (2.3). The model may be conveniently reparameterised
as Wt (r) = V (r)W∗

t (r) and the posterior variance is Ct (r) = V (r)C∗
t (r). When
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W∗
t (r) is unknown, the state innovation variance can be defined indirectly in terms

of a single discount factor δ(r). That is, W∗
t (r) can be defined deterministically

through δ(r) as a “discounted” value of C∗
t−1(r). As details in Appendix A, the

discount factor can be estimated simply: Since the full posteriors have a closed
form conditional on δ(r), we can find δ(r) that maximizes the predictive like-
lihood described below. By doing things this way, the marginal likelihood is of
closed form so hugely more efficient to calculate. This is what makes the search
over this elaborate model space feasible. For the exploratory phase of the process,
it is necessary to take some short cuts like these. We note however that through
sensitivity analyses we have been able to check that the marginal likelihood scores
of different models are not highly sensitive to these settings. So results associated
with the model selection should not be that different to a full Bayesian analysis
with properly set up priors. And we have found that this so analysis is often suffi-
cient to see the data against expert judgments from the client to better understand
what lies in it. Enough of their domain knowledge is embedded in the closed form
analysis for them to properly interpret the outputs.

Of course once a model (or class of high scoring models) has been selected
by the scientist for much closer scrutiny then we would advise more principled
estimation. But this would often include other features like change points and non-
linear dynamics which the scientist might believe also exist which we have ignored
in the initial exploratory phase for computational reasons. Indeed the accommo-
dation of these sorts of features often has a much great impact on the output than
estimation of these hyperparameters.

Because the equations of the LMDM can be viewed as a collection of nested
univariate DLMs, the parameters can be estimated using well-known Kalman Fil-
ter recurrences over time. In particular, these standard techniques show that the
posterior filtered distributions are written as(

θ t (r)|yt ) ∼ Tnt (r)

(
mt (r),Ct (r)

)
and

(
φ(r)|yt ) ∼ G

(
nt (r)

2
,
dt (r)

2

)
,

where Tnt (r)(·, ·) is a Noncentral t distribution with nt (r) degrees of freedom, and
these parameters are easily found through a recurrence relations (see Appendix A).
The “filtering estimate” considers data until the present moment, i.e. Yt , and it is
used in the calculation of the predictive likelihood and, at the final time point, for
model selection. However it is also possible to create retrospective estimates using
the entire time series, leading to a so-called smoothing estimate. The smoothing
estimates are obtained based on the complete dataset, that is, YT , and so tend to
have smaller variance, as shown in Section 4.

The conditional forecast distribution of (Yt (r)|yt−1,Pa(r)) is given by:(
Yt (r)|yt−1,Pa(r)

) ∼ Tnt−1(r)

(
ft (r),Qt(r)

)
, (2.4)
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where, again, the parameters are directly computed (see Appendix A). To whom
it wants to run the MDM, there is an R package in Schwab et al. (2017) and a R
code in the supplementary material of this paper.

Criteria for model selection

One of the most popular ways of comparing two models is to use a Bayes factor
(Jeffreys, 1961, West and Harrison, 1997). This is defined as the ratio between
the predictive likelihood of two models, model 0 and model 1, say. From the con-
ditional forecast distribution (equation (2.4)), the joint log predictive likelihood
(LPL) can be calculated as

LPL(m) =
n∑

r=1

T∑
t=1

logp
(
Yt (r)|yt−1,Pa(r)

)
, (2.5)

where m denotes the current choice of model that determines the relationship be-
tween the n regions. To compare model m1 to model m0, we use a Bayes factor
(BF) so that, on the log scale,

log(BF) = LPL(m1) − LPL(m0).

Priors

As shown above, the prior information is provided through the distribution of θ0

which specifies the information at time t = 0. Here we will show the impact of
the parameter priors on the inference process. Consider, for example, node 1 is the
only parent of node 2. Under the observation equation: Yt (2) = θtYt (1)+vt (2), the
conditional forecast mean of the variable Yt+1(2) is mt(2)Yt+1(1), as in equation
(A.8). Furthermore from equation (A.4), mt(2) can be rewritten as

mt(2) = At(2)Yt (2) + mt−1(2)
(
1 − At(2)Yt (1)

)
,

where At(2) = R∗
t (2)Yt (1)

R∗
t (2)Yt (1)2 + 1

.

Thus, the calculation of the current forecast mean is based on (1−At(2)Yt (1))%
of the previous mean mt−1. When the latter is replaced by its own equation in the
function of mt−2(2), we find that

mt(2) = At(2)Yt (2) + At−1(2)Yt−1(2)
(
1 − At(2)Yt (1)

)
+ mt−2(2)

(
1 − At−1(2)Yt−1(1)

)(
1 − At(2)Yt (1)

)
.

The forecast mean of the second previous time mt−2 contributes
(1 − At−1(2)Yt−1(1))(1 − At(2)Yt (1))% to current forecast mean. Following the
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same reasoning for mt−2(2) onwards, we find the forecast mean can be expressed
as a function of the prior mean as

mt(4) = At(2)Yt (2) +
t−1∑
k=1

[
Ak(2)Yk(2)

t∏
j=k+1

(
1 − Aj(2)Yj (1)

)]

+ m0(2)

t∏
i=1

(
1 − Ai(2)Yi(1)

)
.

(2.6)

Note that as t increases the value of
∏t

i=1(1−Ai(2)yi(1)) therefore decays to zero.
So the importance of the prior mean m0(2) in the calculation of mt(2) decreases
as t increases.

We studied the impact of the prior distribution in the calculation of the pos-
terior distribution of a regression parameter using real fMRI data, with 176 time
points and 36 subjects. This inferential process was led using the values of 0 and
1 for the hyperparameter m0(2) and the values of 0.5, 1 and 3 for the hyperpa-
rameter C∗

0 (2). Figure 2 (left) shows the average of the contribution of prior mean
m0(2) in the calculation of posterior mean mt(2) (as in the equation (2.6)) over
36 subjects. Note that this contribution is less than 1% after time 17 for all values
of prior hyperparameters (a similar result can be seen for the constant model in
West and Harrison, 1997, Chapter 2). The central graph shows the posterior mean
mt(2) and the right hand graph shows the posterior variance Ct(2) for a partic-
ular subject with the same values of hyperparameters. In general, the average of
difference between the results of the prior hyperparameters over subjects is less
than 0.02 for the posterior mean from time 11 and less than 0.002 for the posterior
variance from time 12. Therefore, after time 10 the posterior distribution is almost
the same regardless of the typical values we might choose for the hyperparameters
of the prior (see, in the central and right hand graphs, that the different colour lines
become almost the only one after the point 10).

3 Searching the MDM using search-and-score methods

Estimating a graphical structure is a formidable problem, since the number of pos-
sible causal models grows exponential with the number of nodes considered. For
instance, there are over 1 billion possible graphical structures for a BN with just 7
nodes (Sloane and Plouffe, 1995). Several search algorithms have been developed
recently to learn BN structure (see, e.g., Spirtes, Glymour and Scheines, 2000,
Ramsey et al., 2010, Cussens, 2010, Cowell, 2013). Here we apply an Integer Pro-
gramming (IP) algorithm to search for DAGs, and a modification of this method to
search a Directed Graph Model (DGM).
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Figure 2 In this picture we show the impact of priors in the posterior distribution of the connectivity
Y (1) → Y (2). The left-hand graph shows the average of the contribution of the prior mean m0(2) in
the calculation of posterior mean mt (2), defined as

∏t
i=1(1 − Ai(2)yi(2))%, over 36 subjects, by

different values of hyperparameters. They are less than 1% from time 17. The central graph shows the
posterior mean mt (2) whilst the right hand graph shows the posterior variance Ct (2) for a particular
subject by the same values of hyperparameters. See text for more details.

Integer programming algorithm

An Integer Programming algorithm is a search-and-score method, we use to esti-
mate network structure with the MDM scores (MDM-IPA). A standard form of IP
is defined as the problem of maximizing c′x, such that x is integer and both Ax ≤ b
and x ≥ 0 are satisfied, given c, A and b (Williams, 2009). In our case, from equa-
tion (2.5), LPL(m) is written as a sum of n local scores, say c(r,Pam(r)), one for
each node r , so that LPL(m) = ∑n

r=1 c(r,Pam(r)). Therefore, the choice of par-
ent set Pam(r) specified by the candidate model m determines the local score for
Yt (r), and a model selection for MDM can be seen as a search for n sets of parents,
Pa(1), . . . ,Pa(n), that maximise the LPL, subject to this configuration of parents
corresponding to a valid MDM. In the standard IP form, this problem has n2n−1

unknowns, with x being a binary vector, indicating, for each of n nodes, which
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of the 2n−1 possible sets of parents are active; c corresponds to all possible local
scores; and A and b express constraints that ensure x corresponds to a valid MDM.
There are 2 types of constraints, n convexity constraints that ensure each region has
exactly 1 set of parents, and cluster constraints that ensure the solution is a DAG.
The cluster constraints assert that for any subset of nodes in a graph, there must be
at least one node with no parents in that subset. We solve this IP problem with the
gobnilp system (Cussens, 2012, Bartlett and Cussens, 2013) which uses the SCIP
IP framework (Achterberg, 2007).

Directed graph model

Bidirectional communication between some brain regions is often expected. Thus
cyclic graphs (i.e., graphs allowing cycles) may better represent brain networks
than DAGs. Therefore, we are also considering search for graphical structure with-
out the constraints of DAG (cluster constraints). Because the predictive likelihood
factors by node (modularity property), optimisation can be done node-by-node,
choosing the parent-set that maximises each node’s contribution to the LPL. The
main problem with this class is that the composite model typically will not corre-
spond to a single probability model. The output is therefore a simple heuristic. It
is nevertheless very useful as an additional exploratory data analysis tool.

We call this approach the MDM-DGM algorithm (DGM is short for Directed
Graph Model). The analysis of cyclic graphs is unlike the analysis of DAGs in
some aspects. Spirtes, Glymour and Scheines (2000, Chapter 12) compare some
properties such as the Markov condition and factorability between DAG and cyclic
graphs. For instance, a DAG satisfies the local Markov property (LMP), that is, the
variable of node i, given its parents, is independent of all other variables, except
for its parents and descendants (Heckerman, 1998). But, a directed cyclic graph
(DCG) does not always satisfy this property. Thus, suppose a DCG: 1 → 2 � 3.
Then although from one constrained graph: 1 → 2 → 3, Y(3) would be indepen-
dent of Y(1) given its parent Y(2) by the LMP. However, the subgraph 1 → 2 ← 3
implies that Y(3) is dependent of Y(1) given Y(2). So the LMP is not satisfied for
this DCG.

Consider now another example, the DCG in Figure 3 where each variable is
generated from another so that they are totally dependent. However, note that, in an
associated undirected graph (changing all directed edges by undirected ones), Y(1)

is conditional independent of Y(3) given Y(2) and Y(4) and, in the same way, Y(2)

and Y(4) are conditional independent given Y(1) and Y(3). Therefore, Spirtes
(1995) asserted that the notion of d-separation, while it does not imply conditional
independence like in DAGs, is informative in cyclic graphs. Two disjoint sets of
nodes, say U and V, are said to be d-separated by W if any element of W blocks
every path between U and V. And a path is said to be blocked by a set of nodes,
say W, if the path contains:

• a chain, u → y → v, where y ∈ W, or
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1

2

3

4

Figure 3 An example of cyclic graph.

• a fork, u ← y → v, where y ∈ W, or
• a collider, u → y ← v, where y /∈ W and no descendant of y is in W.

In 2000, Spirtes et al. showed that the global Markov property for directed
(acyclic or cyclic) graph holds for linear structural equation model (SEM). That
is, a joint distribution P is represented by directed graph G if and only if when-
ever I and II are d-separated given III in G, where I, II and III are disjoint sets of
nodes in G, the two sets of variables of nodes I and II are conditional independent
in P given the variables of III.

Another aspect which differs between cyclic and acyclic graphs is factorabil-
ity. In DAGs, the joint distribution of variables is defined as the product of the
conditional distributions of each variable given its parents, whilst this may be not
possible in DCG. For instance, for the 2-node DGM 1 � 2, a factorised distribu-
tion implies independence,

p
(
y(1),y(2)

) = p
(
y(1)|y(2)

)
p

(
y(2)|y(1)

)
⇒ p

(
y(1)|y(2)

) = p
(
y(1),y(2)

)
/p

(
y(2)|y(1)

)
= p

(
y(1)

)
,

which of course does not reflect the dependence constraint asserted by the graph.
The joint model can no longer be guaranteed to be Gaussian and the calculation
above can not provide a Bayesian conjugative analysis. In fact in the non-stochastic
case the DGM-MDM degenerates to an SEM model, which are notoriously hard
to formally estimate. In this sense, the DGM can be seen as a class of a structurally
dynamic SEMs (see, e.g., Koster, 1996). So this emphasises that the DGM models
we fit here simply provide a heuristic, summarising the best features of classes of
MDM and not a model itself.

Following, we show the performance of the search methods described here, us-
ing two real fMRI datasets. The first one consists of a resting-state experiment with
4 brain regions while the second one provides data from 5 different experiments
with 11 brain regions.
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4 The application of the MDM search methods into a resting-state
fMRI real dataset

There is growing interest in the neuroscience literature about the brain at rest. In
simple terms, the brain continues to work even when the person is apparently not
performing any activity, and in particular, the brain spends about 20% of the bod-
ies energy regardless of whether in a resting or task state (Raichle, 2010). Resting-
state fMRI allows the study of intrinsic connectivity networks that represent a map
of complex neural circuits. Initially, the resting-state data were measured with neu-
roimaging through positron emission topography (PET) and more recently through
functional magnetic resonance imaging (fMRI). FMRI data reflect the blood oxy-
genation level, which is indirectly related to the activation of brain neurons. When
neurons increase their firing rate, they require more oxygen, which in turn results
in an increase in blood flow in that region. Counterintuitively, the amount of oxy-
gen delivered by the blood exceeds the increased demand for oxygen. Therefore,
an increase in oxygen is indicative of activation of the neurons in that place. This
change in oxygenation gives rise to the blood oxygenation level dependent signal
(BOLD), the time series variable measured by fMRI.

Our first application consists of a resting-state study in which participants
were instructed to rest with their eyes open while the word “Relax” was cen-
trally projected in white, against a black background (Shehzad et al., 2009,
Ridgway et al., 2013). There are 25 right-handed native English-speaking partic-
ipants, being 11 males with mean age of 20.5 ± 8.4. Subjects had no history of
psychiatric or neurological illness, as confirmed by a psychiatric clinical assess-
ment. They were scanned 3 times, being session 2 was 5 − 11 months after the
first, and session 3 was < 45 minutes after session 2. Data consist of 197 BOLD
fMRI resting-state time-points, sampled every 2 seconds, for 4 ROI’s: Posterior
Cingulate—PC; Anterior Frontal—AF; Left Lateral Parietal—LP and Right Lat-
eral Parietal—RP. According to Shehzad et al. (2009), “Mean time series for each
ROI were extracted from this standardized functional volume by averaging over
all voxels within the region. To ensure that each time series represented region-
ally specific neural activity, in each analysis, the mean time series of each ROI
was orthogonalized with respect to 9 nuisance signals (global signal, white mat-
ter, cerebrospinal fluid, and 6 motion parameters)”. These data are available for
download in http://www.nitrc.org/projects/nyu_trt.

In this experiment, we are interested to study the information flow of the brain,
and then we need to estimate the map of brain connectivity. First, four different
graphical structures were manually chosen to representing the scientific beliefs
about the brain connectivities (from DAG1 to DAG4 in the Figure 4). DAG1 rep-
resents the idea that Posterior Cingulate hub drives other regions whilst DAG2
corresponds to a Posterior Cingulate hub driven by Anterior Frontal and Left and
Right Lateral Parietal. In DAG3, the information flows “forward” while, in DAG4,

http://www.nitrc.org/projects/nyu_trt
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Figure 4 The graphical structures from DAG1 to DAG4 were used in the first learning process
for resting-state fMRI real data and DAG4 was chosen for most of datasets. Then the scores were
summed over all datasets and the MDM-IPA and the MDM-DGM were applied. The results are IPA
and DGM graphs, respectively. PC means the posterior cingulate area, AF means the anterior frontal
area, LP means the left lateral parietal area and RP means the right lateral parietal area.

the information flows “backward”. Some previous studies with similar or with the
same data (see, e.g., Smith et al., 2009, Ridgway et al., 2013) which estimate func-
tional connectivity have provided a graph formed by the union of these 4 DAGs,
that is, there is a bidirectional edge between LP and PC, RP and PC, and AF and
PC. And so, it was not possible to estimate the information flow as we can do
below.

Considering a weakly informative priors, with n0(r) = d0(r) = 0.001 and
C∗

0(r) = 3Ipr for all regions r , the discount factor was estimated for each region,
for each model and each of the 75 datasets (see the average of δ across datasets
in Figure 5). The regions that show the most dynamic behaviour (smaller δ) were
AF and PC, but only in DAG models where these regions had no parents. This re-
sult is expected for such regions, in that, with no external input, variation observed
must be explained by a highly variable internal state variable (i.e. intercept). The
log predictive likelihood was used to select the best DAG model (of the four) for
each session and each subject. DAG4 was selected a majority of datasets (54.7%),
followed by DAG1 for 41.3% of runs. With respect to the intrasession consistency,
we found that 91% of the subjects having a single consistent optimal DAG.
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Figure 5 The average of discount factor parameter δ across 75 datasets (3 sessions for each 25
subjects) for each DAG and region. PC means the posterior cingulate area, AF means the anterior
frontal area, LP means the left lateral parietal area and RP means the right lateral parietal area.

Markov equivalent and non-equivalent graphs

We focus on subject 22 and session 2, a typical where DAG4 was selected. Fig-
ure 6 shows the filtering (blue lines) and the smoothing (green lines) estimates for
connectivities. Time-varying connectivity is evident: Connections out of the PC (to
LP and RP) are stronger before time point 50 in comparison with the connections
after time point 50 (Figures 6(a) and 6(b)). Figure 7 shows the LPL for different
values of discount factor (note that here we use the same value of δ for all nodes).
We consider three DAGs: DAG1 and DAG4 are Markov equivalent graphs while
each is Markov non-equivalent to DAG3. The measure of model selection, logBF,
is calculated as the difference between LPL of two DAGs, and so in Figure 7 the
model with the highest curve for a given δ is optimal, and the highest point over
all determines the best model. Therefore DAG4 should be chosen for all values
of discount factor, except for δ = 1 (the BN case) when the LPL is the same for
DAG1 and DAG4, and it is not possible to distinguish between these two equiva-
lent DAGs.

As a log Bayes factor is a difference of LPL scores, and the LPL is comprised
of a sum of terms, one per time point, we can examine the evolution of the evi-
dence for one model versus another with a plot of the cumulative log Bayes fac-
tor. For instance, Figure 8 shows the cumulative log Bayes factor comparing two
Markov non-equivalent graphs, DAG4 with DAG3 (orange lines), using a static
model (dotted lines) and dynamic models (solid lines). By about time point 40,
evidence accumulates for DAG4 (static or dynamic) vs. DAG3, but by time point
100 the dynamic model is clearly favoured. Of course the two Markov equivalent
graphs, DAG4 and DAG1 (blue lines), are indistinguishable in a static model (blue
dotted line), while in the dynamic model (blue solid line), we see that evidence for
DAG4 over DAG1 “arrives” by time 40 and is further bolstered around time 90.
Therefore, analyses presented here show that the methods that estimate functional
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Figure 6 The filtering (blue) and smoothing (green) posterior mean with 95% HPD interval for
connectivities (a) AF → PC, (b) PC → LP, (c) PC → RP.

connectivity, e.g. BN (δ = 1), are not able to discriminate between DAG4 and
DAG1 in this application, whilst the MDM that estimates effective connectivity
provides the result that DAG4 was selected for most datasets.

Searching the MDM

In order to search all possible networks for each subject and session, we use the
method detailed in Section 3. This requires that we compute the possible LPL
contributions for each node, specifically the score for every possible set of par-
ents. This score computation procedure took about 1 minute per dataset, using
the software R (R Core Team, 2016) on a 2.7 GHz quad-core Intel Core i7 linux
host with 16 GB. We summed individual scores over all datasets, to produce a
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Figure 7 The log predictive likelihood versus different values of discount factor (DF). DAG1 (solid
line) and DAG4 (dotdashed line) are considered Markov equivalent whilst neither is equivalent to
DAG3 (dotted line).

Figure 8 The cumulative log Bayes factor comparing DAG4 to DAG1, Markov equivalent graphs
(blue lines), and comparing DAG4 to DAG3, Markov non-equivalent graphs (orange lines), consid-
ering a static model (δ = 1; dotted lines) and a dynamic model (δ < 1; solid lines).

model estimation procedure that identifies a single common network. Now, how-
ever, this does not constrain the connection strengths over subjects/sessions, just
the graphical structure. The MDM-IPA was applied using GOBNILP (Globally
Optimal Bayesian Network learning using Integer Linear Programming) which is
a C program that learns networks from local scores using the SCIP framework for
Constraint Integer Programming (Cussens, 2012; Bartlett and Cussens, 2013). The
MDM-DGM was applied in the software R and both methods were run on a Intel
2.83 GHz Core2 Quad CPU with 8 GB RAM. The results were found almost in-
stantly. The MDM-IPA procedure found a similar graph to DAG4 (Figure 4—IPA),
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that is, the information flows in a “backward” way, except for the edge RP −→ PC.
However the MDM-DGM found causal interactions between all brain regions con-
sidered (see Figure 4—DGM).

5 The analysis of resting-state and task-based fMRI data

For the second application, we used a novel type of fMRI study that examined five
separate five-minute steady-state sessions: Session 1 was a (conventional) resting-
state condition; session 2 was a motor condition in which involved continuous
and monotonic sequential finger tapping against the thumb, using the right hand;
session 3 was a visual condition which consisted of videos of colourful abstract
shapes in motion; session 4 and session 5 were a combination between visual and
motor condition, but the former was in a random way whilst in the latter, indi-
viduals were instructed to change tapping direction when they saw an irregularly
appearing cue, which were present in all visual conditions. Note the novel as-
pect, how all tasks are “on” for the entire acquisition, whereas conventional task-
based fMRI entails alternating periods of stimulus and rest. Data were acquired
on 15 healthy volunteers, and each acquisition consists of 230 time points, sam-
pled every 1.3 seconds, with 2 × 2 × 2 mm3 voxels. The FSL software was used
for preprocessing, including head motion correction, automated artifact removal
procedure (Salimi-Khorshidi et al., 2014, Griffanti et al., 2014) and intersubject
registration. The FSL tools FSLMaths and Randomise generate variance maps
and variance change maps whilst FEAT and specialised code written in Python
generate correlation maps (see details of data preprocessing in Duff et al., 2017).
FSL (FMRIB Software Library) consists of analysis tools for fMRI, MRI and dif-
fusion tensor imaging (DTI) brain imaging data. It uses Bayesian techniques to
deal with the imperfect and noisy images of the brain and allows to incorporate
prior belief about the brain and the neuroimaging equipment (Smith et al., 2004,
Woolrich et al., 2009, Jenkinson et al., 2012).

We use 11 ROI’s defined on 5 motor brain regions and 6 visual regions. The
motor nodes are Cerebellum, Putamen, Supplementary Motor Area (SMA), Pre-
central Gyrus and Postcentral Gyrus (nodes numbered from 1 to 5 respectively)
whilst the visual nodes are Visual Cortex V1, V2, V3, V4, V5 and task negative
(V1 + V2; nodes numbered from 6 to 11 respectively). The observed time series
are computed as the average of BOLD fMRI data over the voxels of each of these
defined brain areas. See more details about these data in Duff et al. (2017). In this
experiment, the estimates of the brain connectivity maps will contribute to sci-
entific discussion about the difference between rest and task activity and how the
communication between these brain regions varies across the five conditions of the
fMRI dataset.
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Searching the MDM

Both the MDM-IPA and the MDM-DGM require the scores for each subject, ses-
sion and node, considering all possible sets of parents for each node. Computing
these scores took about 5 minutes per subject/session, using the software R on
a 2.7 GHz quad-core Intel Core i7 linux host with 16 GB. The MDM-IPA took
less than one minute per subject/session, using GOBNILP, whilst the result of
the MDM-DGM was found almost instantly in the software R, both on an Apple
MacBook Pro with a Intel 2.83 GHz Core2 Quad CPU with 8 GB RAM. As the
MDM-IPA and the MDM-DGM were applied in the same computer, we noted that
the results for the latter were found a little faster. We assessed the intersubject
consistency of the resulting networks by the prevalence of directed edges and by
testing a null hypothesis of homogeneous connectivity over the network. Specifi-
cally, we estimated pij , the probability that an edge i → j exists, as the proportion
p̂ij of subjects with this particular edge. We used a one-sided Binomial test of
H0 : pij = π versus Ha : pij > π , where π is the edge occurrence rate under ho-
mogeneity, set equal to the average of p̂ij over the 90 possible edges.

Figure 9 shows p̂ij , but only for those edges with significant Binomial tests af-
ter false discovery rate correction (FDR; Benjamini and Hochberg, 1995) at level
αFDR = 0.05, where i (parents) indexes rows and j (children) indexes columns
(see Figure 17 for the unthresholded image of pij ). The black horizontal and ver-
tical lines divide the figure into four squares; the top left square represents the
connectivity between motor brain regions, whilst the lower right square represents
one between visual brain regions. Unsurprisingly, most of connectivities are within
these two squares. The two other squares represent cross-modal connections, be-
tween motor and visual regions, that are less prevalent.

We applied the MDM-DGM algorithm across subjects as described previously.
Significantly prevalent edges are shown in Figure 10, while all p̂ij are shown in
Figure 18. The nodes are ordered according to the expected flow of information
in the brain, and thus it is notable that we find significant edges between consec-
utive nodes. In general, Figure 9 also shows this pattern but less clear for DAG
constraints. Interesting patterns of lack of edges can be seen in Figure 18; for ex-
ample, while cross-modal connections are inconsistent, with p̂’s rarely exceeding
50%, efferent connections from primary motor and somatosensory (regions 4 and
5) to motor regions are particularly lower (appear in green) in all sessions. Also no-
table is how visual regions have inconsistent (≈ 50%) influence on motor regions
except for the visual session (session 3), where regions V1–V3 efferent connec-
tions to motor regions have notably lower prevalence.

Functional and effective connectivity

We also consider two methods of estimating the functional connectivity: full cor-
relation and partial correlation (Baba, Shibata and Sibuya, 2004, Marrelec et al.,
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Figure 9 The proportion of subjects who have a particular edge i → j , where i indexes rows and
j columns, using the MDM-IPA per session, only for significant connectivities, αFDR = 0.05. The
black horizontal and vertical lines divide the figure into four squares; the top left square represents
the connectivity between motor brain regions, whilst the lower right square represents one between
visual brain regions. In general, intra-modal connections are more frequent than cross-modal con-
nections.

2006). For each node pair, per subject/session, we computed the full and par-
tial correlation and converted each to a Z statistic with Fisher’s transformation.
For each node pair we tested the null hypothesis of mean zero (Fisher’s trans-
formed) correlation with a one-sample t-test, corrected for multiplicity with FDR
(αFDR = 0.05). Figure 11 and Figure 12 show the significant (αFDR = 0.05) full
and partial correlation for every session, respectively. Note that these techniques
provide symmetric results about the principle diagonal. The vast majority of con-
nections exist with high significance full correlation (Figure 11), however connec-
tions with the strongest correlation (above 0.6) tend to be intra-modal as discussed
above. As expected, the significant MDM edges are a subset of the significant par-
tial correlations (Figure 12).
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Figure 10 The proportion of subjects who have a particular edge using the MDM-DGM per ses-
sion, only for significant connectivities, αFDR = 0.05 (see Figure 9 for description of the panels).
Within each group, nodes are arranged according to the anticipated flow of information in the brain
and note the prevalence of forward and reverse connections along this hierarchy. Notably V1 ↔
task-negative visual connections are found in resting, while V1 ↔ V5 connections are found in all
tasks with a visual component (sessions 3–5).

In short, while full and partial correlations do not account for nonstationari-
ties nor represent a particular joint model, Figures 9 and 10 demonstrate that the
application of the MDM gives scientifically plausible results and ones broadly
compatible with other methods. For example, Duff et al. (2017) using these data
and other functional connectivity analyses found that correlations between cer-
tain visual brain regions increased under visual stimulation. In this work, we have
also shown that the strength of connectivity between some visual brain regions is
higher in sessions that used visual stimulation than in other sessions, for example,
in resting-state (comparing for example connectivities between visual regions in
Figure 9(a) and (c)).
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Figure 11 The average correlation significant between two nodes over subjects using full correla-
tion method for every session (αFDR = 0.05). Nearly all edges have significant non-zero correlations,
as expected, and mostly within modality.

Comparing sessions

We make formal comparisons between the different experimental conditions. For
the MDM-IPA and the MDM-DGM, we compared edge prevalence between
every possible pair of sessions using a McNemar test. Adjusting each of the
5 × (5 − 1)/2 = 10 possible session comparisons for FDR, there is no signifi-
cant difference between the sessions for the MDM-IPA at FDR 5%. However, for
the MDM-DGM algorithm, significant differences were found for 9 of 10 session
comparisons, as shown in Figure 13. (Note that FDR controls the familywise er-
ror rate weakly, and thus less than one (i.e., 10 × 0.05 = 0.5) of the comparisons
are expected to show any positive results if all 10 were null; further, FDR control
on each matrix is not compromised by examining the set of 9 results.) In gen-
eral most of the difference between the sessions occurs in the connections between
visual nodes (in the lower right square); in particular note how reciprocal V1–task-
negative connections are more prevalent in resting-state relative to other sessions.
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Figure 12 The average correlation significant between two nodes over subjects using partial cor-
relation method for every session (αFDR = 0.05). Partial correlations are seen to be consistent and
along adjacent regions in the visual hierarchy (V1–V5, regions 6–10) and among the first 3 regions
of the motor regions (cerebellum, putamen and SMA).

When Session 1, resting-state, was compared with other sessions, most of the dif-
ference between connections was positive (with colours above the dark blue in the
colour scale). So, in this case, connections existed in resting-state but not in other
experimental conditions. Similar result was also found in Duff et al. (2017) who
asserted that many correlations between nodes were lower during the active con-
ditions compared to rest. Figures 14 and 15 gives the significant difference of full
and partial correlations for every pair of sessions, respectively. Overall the number
of significant different connections was highest between Session 1, resting-state,
and other sessions. Session 3, visual condition, was closest to Session 4, visual and
motor conditions.

Evaluating the dynamics of the system

As described above, model fitting involves estimating the discount factor δ for each
node in each subject. Figure 16 shows the discount factor for each node (mean
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Figure 13 The significant difference of the proportion of subjects who have a particular connection
i → j between two sessions using the MDM-DGM algorithm. Positive intensities reflect greater
edge prevalence in the first session listed over the second. For example, in the first (upper, left) panel
comparing resting-state to the motor condition, pink, purple and dark blue indicate edges were found
more often in resting session relative to the motor session. Prevalence never differed significantly in
cross-modal areas.
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Figure 14 The significant difference of the average of full correlation over subjects between two
sessions. Differences in cross-model correlations are evident between resting (stronger) and other
conditions (weaker), as well with the task-negative visual region (node 11) and all other visual re-
gions (stronger in resting and motor sessions 1 and 2).
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Figure 15 The significant difference of the average of partial correlation over subjects between
two sessions. Differences in connection strength are diffuse and difficult to interpret (compare with
MDM-DGM differences in Figure 13).
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Figure 16 The discount factor of each node averaged over the subjects using the graphical struc-
ture found in Figure 9 for each session. Precentral and postcentral gyrus are notable for having
nearly stationary behaviour in all experiments, while V5 and task-negative visual regions are no-
table for having nearly maximal time-varying behavior.

over subjects), for each session. For two motor areas, Precentral and Postcentral
Gyrus (nodes 4 and 5) the average of δ is above 0.9 for all sessions, indicating
a more static pattern. However, other brain areas appear to be noticeably more
volatile. In general it appears that visual nodes have a shorter memory than motor
nodes. For instance, the average of DF for nodes that have parents in Session 1
was 0.96 for motor nodes and was 0.80 for visual nodes. A possible reason is that
the physical/sensory environment is much more constrained/static than the visual
environment. For example, for session 1 (resting-state experiment), subjects were
shown a screen with a fixation point. However, they were not explicitly asked to
fixate. This might explain the greater perceptual variability in visual relative to
sensory-motor areas.

Session 1, resting-state, has one of the smallest δ comparing with other sessions;
an exception is Visual Cortex V1 (node 6) which, interestingly, has 1 or more
parents in the resting session but none in the other sessions. One possible reason
is that subjects do not do a specific activity in the resting-state experiment, being
free to switch between different mental activities during the experiment. In contrast
session 5, tapping cued by random events in the movie, has a long memory with
some of the largest δ with the exception of Cerebellum, SMA and V4 areas (nodes
1, 3 and 9, respectively).
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6 Conclusions

This paper presented the Multiregression Dynamic Model applied to fMRI data.
Initially, we showed here, using the resting-state fMRI data, that the MDM can
distinguish between Markov equivalent and non-equivalent DAGs whilst the BN
can not do that. Therefore, the MDM estimates that the information in the brain
flows “backwards” for most subjects. To our knowledge, this result has never been
found before using this data. We also show for the first time an application of the
MDM into task fMRI data.

Also we discussed two different search methods: The MDM-IPA and the MDM-
DGM and presented their applications into neuroscience data. The analysis with
fMRI real data using the MDM-IPA shows results consistent with neuroimaging
literature. The estimated discount factor smaller than 1 shows that most connec-
tivities vary over time so that there is a loss of information and a systematic bias
when static models are used to study brain connections.

Although the MDM-IPA appears to fit fMRI data well, in order to obtain more
realistic results, we used for the first time the MDM-DGM algorithm to learn
directed (cyclic or acyclic) graphs. As shown above, the MDM-DGM provides
graphs with most of its bidirectional connections between consecutive nodes (i.e.
nodes anatomically closer to each other than to others). Another interesting result
is that, as found in similar but independent studies, here the brain connections de-
crease from rest to steady-state conditions (see, e.g., Duff et al., 2017). Moreover,
the MDM-DGM usually provides denser graphs than the MDM-IPA. This should
be expected because the space of possible directed graphs is higher than for DAGs
with the same number of nodes. This complicates the interpretation somewhat.
However the number of nodes can easily be penalised for example using a penalty
function or by using non local priors.

A further important question relates to the heterogeneity among individuals.
In this work we have fitted models independently to each subject, or constrained
only the network structure to be the same (and then let all other parameters be fit
independently over subjects). We are now investigating Bayesian hyperclustering
techniques that find homogeneous sub-groups in terms of connectivity.

Appendix A: MDM equations

In this appendix, we provide details about the filtering and smoothing equations
based on the Kalman filter (West and Harrison, 1997, Petris, Petrone and Cam-
pagnoli, 2009). Moreover, the one-step forecast conditional distributions is also
described here (Queen and Albers, 2008).
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Filtered distributions

The filtering densities are defined assuming firstly(
θ t−1(r)|yt−1, φ(r)

) ∼N
(
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t−1(r)φ
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)
and (A.1)
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Thus, the marginal distribution of θ t−1(r) given the past is written as(
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, (A.3)

a noncentral t distribution with nt−1(r) degrees of freedom and parameters
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The conditional posterior distribution of θ t (r) given φ(r) is found through the
property of multivariate Gaussian distribution. Thus, equations (A.4) and (A.5) can
be combined to form the conditional (on φ(r)) posterior of θ t (r) given all data up
through time t : (
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Now, using equations (A.2) and (A.5), the posterior distribution of φ is found
as (

φ(r)|yt (r)
) ∼ G

(
nt (r)

2
,
dt (r)

2

)
, (A.7)

where nt (r) = nt−1(r) + 1 and dt (r) = dt−1(r) + (yt (r) − ft (r))
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t (r).
The marginal posterior distribution of θ t (r) is found by equations (A.6) and

(A.7), that is, (
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) ∼ Tnt (r)
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,

where Ct (r) = St (r)C∗
t (r).
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These results were found assuming the equations (A.1) and (A.2). However,
these equations hold for all t , including t = 0.

This closed form of the recurrences assumes the innovation variance matrix,
W∗

t , is known. When it is not true, the different values of W∗
t are expressed in

terms of the loss of information in the change between times t − 1 and t . More
precisely, the distribution of the innovation residual is(

wt (r)|yt−1(r), φ(r)
) ∼ N

(
0,W∗

t (r)φ(r)−1)
,

and so the prior distribution of θ t is(
θ t (r)|yt−1(r), φ(r)

) ∼ N
(
mt−1(r),R∗

t (r)φ(r)−1)
.

Thus, the prior variance of θ t (after observing Yt ′ , t ′ < t , but before seeing Yt ) is
written as function of the posterior variance at time t − 1, C∗

t−1(r), plus a measure
of the uncertainty, W∗

t (r). Therefore, the higher the value of W∗
t , the lower the

precision of information from θ t−1 and the current observation yt has more impact
into estimating of θ t than the past observations yt−1. Now if we can assume that
R∗

t (r) = C∗
t−1(r)+W∗

t (r) is well approximated by C∗
t−1/δ for some δ ∈ (0,1], we

have a similar expression for

W∗
t = 1 − δ

δ
C∗

t−1.

The discount factor δ is chosen as the value that maximizes the log predictive
likelihood (LPL).

One-step conditional forecast distributions

The one-step forecast distribution can be found through the prior distribution of φ

given the past (equation (A.2)) and the conditional distribution of Yt given the past
and the precision parameter φ (equation (A.5)), that is,(

Yt (r)|yt−1) ∼ Tnt−1(r)

(
ft (r),Qt(r)

)
, (A.8)

where Qt(r) = St−1(r)Q
∗
t (r).

Smoothed distributions

The smoothing estimation follows retrospective analysis, starting with t = T − 1
and continues until t = 1. First, the smoothing distributions of θ t (r) given the
entire time series and the precision φ(r), for t = 1, . . . , T − 1, is written as:

p
(
θ t (r)|yT ,φ(r)

)
=

∫
p

(
θ t (r)|θ t+1(r),yT ,φ(r)

)
p

(
θ t+1(r)|yT ,φ(r)

)
dθ t+1(r).

(A.9)

Suppose first that the second integration term is(
θ t+1(r)|yT ,φ(r)

) ∼ N
(
smt+1(r), sC∗

t+1(r)φ
−1(r)

)
, (A.10)
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Using Bayes’ theorem, the first integration term is

p
(
θ t (r)|θ t+1(r),yT ,φ(r)

)
= p(θ t (r)|θ t+1(r),yt , φ(r))p(yt+1, . . . ,yT |θ t (r), θ t+1(r),yt , φ(r))

p(yt+1, . . . ,yT |θ t+1(r),yt , φ(r))
.

But, Yt+1, . . . ,YT are independent of θ t (r) given θ t+1(r) (Queen and Smith,
1993) and thus p(θ t (r)|θ t+1(r),yT ,φ(r)) = p(θ t (r)|θ t+1(r),yt , φ(r)). This is a
gaussian distribution by equations (A.6) and (A.4) with parameters:

E
[
θ t (r)|θ t+1(r),yt , φ(r)

]
= mt (r) + C∗

t (r)
(
R∗

t+1(r)
)−1(

θ t+1(r) − mt (r)
);

var
[
θ t (r)|θ t+1(r),yt , φ(r)

]
= (

C∗
t (r) − C∗

t (r)
(
R∗

t+1(r)
)−1C∗

t (r)
)
φ−1(r).

(A.11)

Returning to initial problem (equation (A.9)), the required density p(θ t (r)|yT ,

φ(r)) can be seen as the expectation value of p(θ t (r)|θ t+1(r),yT ,φ(r)) (equation
(A.11)) with respect to (θ t+1(r)|yT ,φ(r)) (equation (A.10)). Therefore, by the
properties of the multivariate gaussian distribution, the conditional distribution of
θ t (r) given yT and φ is also gaussian with the following parameters:

smt (r) = E
[
θ t (r)|yT ,φ(r)

]
= E

[
E

(
θ t (r)|θ t+1(r),yT ,φ(r)

)|yT ,φ(r)
]

= mt (r) + C∗
t (r)

(
R∗

t+1(r)
)−1(

smt+1(r) − mt (r)
);

sC∗
t (r) = var

[
θ t (r)|yT ,φ(r)

]
= E

[
var

(
θ t (r)|θ t+1(r),yT ,φ(r)

)|yT ,φ(r)
]

+ var
[
E

(
θ t (r)|θ t+1(r),yT ,φ(r)

)|yT ,φ(r)
]

= [
C∗

t (r) − C∗
t (r)

(
R∗

t+1(r)
)−1(

R∗
t+1(r) − sC∗

t+1(r)
)

× (
R∗

t+1(r)
)−1C∗

t (r)
]
φ−1(r)

Moreover, as the conditional distribution of (φ(r)|yT ) is given by equation
(A.7), then (θ t (r)|yT ) ∼ TnT (r)(smt (r), sCt (r)), where sCt (r) = ST (r)sC∗

t (r).
The equation (A.10) is true for t = T − 1, that is(
θT (r)|yT ,φ(r)

) ∼ N
(
smT (r) = mT (r), sC∗

t+1(r)φ
−1(r) = C∗

T (r)φ−1(r)
)
.

Therefore, the distributions of (θ t (r)|yT ) for t = T − 1, T − 2, . . . ,1 can be
computed by backward procedure.
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Appendix B: Learning network results

Figure 17 The proportion of subjects who have a particular edge using the MDM-IPA per session
(see Figure 9 for explanation of the panels). Clear intra- vs inter-modal pattern is seen, but a distinct
pattern of hierarchical connections (e.g. among visual regions) is not seen; compare to Figure 18.
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Figure 18 The proportion of subjects who have a particular edge using the MDM-DGM per session
(see Figure 9 for an explanation of the panels). A pattern of reciprocal adjacent connections up- and
down the visual hierarchy (notes 6–10, V1–V5) is evident.
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